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Abstract. In this paper, we introduce a transformation that converts a class of linear and nonlinear semidefi-
nite programming (SDP) problems into nonlinear optimization problems. For those problems of interest, the
transformation replaces matrix-valued constraints by vector-valued ones, hence reducing the number of con-
straints by an order of magnitude. The class of transformable problems includes instances of SDP relaxations
of combinatorial optimization problems with binary variables as well as other important SDP problems. We
also derive gradient formulas for the objective function of the resulting nonlinear optimization problem and
show that both function and gradient evaluations have affordable complexities that effectively exploit the
sparsity of the problem data. This transformation, together with the efficient gradient formulas, enables the
solution of very large-scale SDP problems by gradient-based nonlinear optimization techniques. In particular,
we propose a first-order log-barrier method designed for solving a class of large-scale linear SDP problems.
This algorithm operates entirely within the space of the transformed problem while still maintaining close
ties with both the primal and the dual of the original SDP problem. Global convergence of the algorithm is
established under mild and reasonable assumptions.

Key words. transformation – semidefinite program – semidefinite relaxation – nonlinear programming –
first-order methods – log-barrier algorithms – interior-point methods

1. Introduction

This paper concerns the solution of large-scale linear and nonlinear semidefinite pro-
grams. In the past several years, semidefinite programming (SDP) has been one of the
most active research areas in mathematical programming. There are two major factors
that are responsible for this increased interest in SDP. Firstly, SDP has found numerous
applications in various fields, such as statistics, structural design, electrical engineering
and combinatorial optimization. Secondly, interior-point methods have proven to be
reliable and effective in the solution of small to moderately sized problems. It is often
the case, however, that problems arising from applications have very large sizes. This is
especially true for SDP problems that arise as relaxations of combinatorial optimization
problems.
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Generallyspeaking, themostpopular interior-pointmethodsareprimal-dualmethods.
For large-scale problems, however, the capability of these methods is severely limited
due to their high demand for storage and computation arising from the use of Newton’s
method, which requires the solution of large, dense linear systems in each iteration.
Even with efforts to exploit sparsity in the problem data (see [6], for example), the
practical limitations of primal-dual interior-point methods still remain. Recently, Ben-
son et al. [1] proposed a potential-reduction dual-scaling interior-point method that can
better take advantage of the special structure in SDP relaxations of certain combinato-
rial optimization problems, hence enabling it to solve problems with matrix dimension
up to several thousands. Nonetheless, for larger problems this approach still encoun-
ters formidable difficulty because it, like the related primal-dual methods, requires the
storage and factorization of a dense matrix.

In the past few years, several nonlinear programming methods have been proposed
for solving large SDP problems (see [2,9,10]), and a common feature of these methods
is that each relies only on gradient-based information and consequently avoids costly
matrix operations and linear solves. The approach by Helmberg and Rendl [9] for
solving a special class of linear SDPs is to optimize a certain partial Lagrangian dual
formulation, whose objective function is non-differentiable, using the bundle method
for non-smooth convex programming. In contrast, Homer and Peinado [10] use the
change of variables X = VV T , V ∈ �n×n , where X is the primal matrix variable
of the MAXCUT SDP relaxation (see Sect. 2), to transform it into an unconstrained,
differentiable nonlinear programming problem in the new variable V . More recently,
Burer and Monteiro [2] proposed a variant of Homer and Peinado’s method by using
the change of variable X = L LT , where L is a lower triangular matrix. We note that
the substitutions X = VV T and X = L LT can be viewed as a matrix analogy to the
square-slack variable substitution for scalar inequality constraints.

In this paper, we propose a transformation for converting an SDP problem of a par-
ticular form into a nonlinear programming problem. The motivation for introducing
such a transformation is two-fold: to reduce the number of constraints and to facilitate
the use of gradient-based, nonlinear optimization algorithms that are free from the need
for second-order information and linear system solving.

We start with the same change of variables used in [2], that is, we employ the idea
of the Cholesky factorization L LT of a positive semidefinite matrix S. The novelty of
our approach, however, lies in the derivation of a fundamental mapping that expresses
a subset of the lower entries (say, the off-diagonal) of the Cholesky factor L as a function
of the corresponding entries (the off-diagonal) of S and the other lower entries (the
diagonal) of L. With the aid of this mapping, we show how to transform a large and
important class of linear and/or nonlinear SDP problems into the problem of minimizing
a nonlinear function over an “orthant” of the form �n++ ×�N , where n is the size of L
and N is an appropriate nonnegative integer. This transformation has several desirable
properties, including that the number of variables of the resulting nonlinear program is
minimal in the sense that it equals the dimension of the feasible region of the original SDP
problem and that the positive-semidefinite-matrix constraint is replaced by a positive-
vector constraint.

The paper is organized as follows. In Sect. 2, we describe the class of SDP problems
to which the aforementioned transformation applies and give several examples of linear
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and nonlinear SDP problems lying in this class in order to illustrate its generality.
In Sect. 3, we describe the transformation and show that every problem in the above
class can be converted to a nonlinear optimization problem over an orthant of the
form �n++ ×�N , where n and N are as described above. In particular, the fundamental
mapping that forms the basis of this conversion is also described in this section. In Sect. 4,
we develop explicit formulas for the first derivative of the objective function of the
nonlinear optimization problem. In Sect. 5, we analyze the computational requirements
involved in the function and derivative evaluations for both dense and sparse cases. In
Sect. 6, we propose a first-order, or gradient-based, log-barrier algorithm for a class of
linear SDP problems and establish its global convergence under very mild conditions.
Some final remarks are offered in the last section.

1.1. Preliminary notation

In this paper, �, �n , and �n×n denote the space of real numbers, real n-dimensional
column vectors, and real n×n matrices, respectively. By Sn we denote the space of real
n×n symmetric matrices, and we define Sn+ and Sn++ to be the subsets of Sn consisting
of the positive semidefinite and positive definite matrices, respectively. We write A � 0
and A � 0 to indicate that A ∈ Sn+ and A ∈ Sn++, respectively. We let tr(A) denote the
trace of a matrix A ∈ �n×n , namely tr(A) denotes the sum of the diagonal elements
of A. Moreover, for A, B ∈ �n×n , we define A • B ≡ tr(AT B). If I is a finite set, we
let |I| denote its cardinality, that is, the number of elements of I.

This paper is heavy in notation. Instead of collecting all the symbols in one place,
we will gradually develop additional notation throughout the course of the paper.

2. The problem class and examples

In this section, we introduce a standard form problem which describes the class of
semidefinite programming problems studied in this paper. We then present several
specific examples of important linear and nonlinear SDP problems which are members
of this class.

Define

K ≡ {(i, j) : 1 ≤ j ≤ i ≤ n}, (1)

i.e.,K consists of the ordered index pairs corresponding to the lower-triangular positions
of an n × n matrix. LetD ⊆ K denote the subset corresponding to the diagonal indices,
that is, D ≡ {(i, i) : i = 1, 2, . . . , n}. In addition, for anyA ⊆ K, define

SA ≡ {X ∈ Sn : Xi j = 0 for every (i, j) ∈ K \A},
i.e., SA is the subspace of Sn consisting of those matrices which have zeros in the
positions corresponding to K \A. For instance, SD is the set of diagonal matrices.

Let I be a proper subset of K which contains all the diagonal indices, namely,
D ⊆ I ⊂ K, and let m be a nonnegative integer. Given functions g : SI × �m → �
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and H : �m → Sn , consider the following semidefinite program (NLSDP):

(NLSDP) min
{
g(ZI, y) : (ZI, y) ∈ Fsdp

}
, (2)

where

Fsdp ≡
{
(ZI, y) ∈ SI ×�m : ZI + H(y) � 0

}
. (3)

Note that both functions g and H can be either linear or nonlinear, and m = 0 means
that the variable y is non-existent. In addition, since I contains the diagonal indices, for
any y ∈ �m , there exists some ZI ∈ SI such that ZI + H(y) � 0, implying that the
interior of Fsdp, which we denote as int

(
Fsdp

)
, is nonempty.

Many SDP problems can be put in the form of (2) as the following examples
demonstrate.

Example 1. A class of dual linear SDP problems

Let an index set I such thatD ⊆ I ⊂ K and a nonnegative integer m be given. Consider
the following primal SDP:

max
{

C • X : Xi j = BIi j , (i, j) ∈ I; Ak • X = bk, k = 1, . . . , m; X � 0
}

, (4)

where C, A1, . . . , Am ∈ Sn , BI ∈ SI , and b ∈ �m are the data. Its dual is

min

{
BI • ZI + bT y : ZI +

m∑
k=1

yk Ak − C � 0; (ZI, y) ∈ SI ×�m

}
, (5)

which is in the form of (2) with g(ZI, y) = BI •ZI+bT y and H(y) =∑m
k=1 yk Ak−C.

Example 2. SDP relaxations of binary combinatorial optimization problems

In SDP relaxations of binary combinatorial optimization problems, the binary constraints
x2

i = 1, i = 1, 2, . . . , n, are relaxed into Xii = 1, i = 1, 2, . . . , n, (see [19,13,5,
16] for the evolution of such relaxations), resulting in primal linear SDP problems in
the form of (4) with I = D and BI = I , the identity matrix. The dual form of these
SDP relaxations are special instances of (5). In particular, when m = 0, we obtain
the MAXCUT SDP relaxation that forms the basis of the approximation algorithm of
Goemans and Williamson in [7]. Another example where m > 0 is given next.

Example 3. The Lovász theta number

Let a simple graph G = (V, E) with vertex set V = {1, . . . , n} be given. For notational
convenience, we assume that the edge set E is given as a subset of K, i.e., an edge
between u and v, u �= v, is represented in E as either (u, v) if u > v or (v, u) if v > u.
Let ei jk denote the (n + 1)-dimensional column vector of all zeros except ones in the
i-th, j-th, and k-th positions, and define Ai jk ≡ ei jkeT

i jk. Then the (unweighted) Lovász
theta number ϑ(G) of the graph G is the optimal value of the (n + 1)-dimensional SDP

max
{
C • X : Xii = 1, i = 1, . . . , n + 1; Ai j(n+1) • X = 1, (i, j) ∈ E; X � 0

}
,
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where

C =


1/2 1/4

. . .
...

1/2 1/4
1/4 . . . 1/4

 ∈ Sn+1

(see Laurent et al. [11]). This problem is an instance of the primal SDP (4) with I = D
and m = |E|. Hence, its dual is an instance of (5).

Example 4. A second version of the Lovász theta number

Let the graph G be as in the previous example. It is well-known that the Lovász theta
number ϑ(G) of G also equals the maximum value of the n-dimensional SDP

max
{

J • X : Xi j = 0, (i, j) ∈ E; tr(X) = 1; X � 0
}
,

where J = eeT is the n × n matrix of all ones. This linear SDP can be reformulated as
a nonlinear SDP in the form of (2) with I ≡ K \ E, m = 0, and

g(XI ) = − J • XI

tr(XI )
.

Example 5. The positive semidefinite matrix completion problem

Given an index setM such thatD ⊆M ⊂ K and a partially positive semidefinite matrix
AM ∈ SM (i.e., all the principal minors of AM withinM are positive semidefinite), the
positive semidefinite matrix completion problem is either to find a completion matrix
XN ∈ SN , whereN ≡ K \M, such that AM + XN � 0 or to determine that no such
matrix exists.

The problem can be formulated as the nonlinear convex program

min
{
‖XD‖2

F : XD + AM + XN � 0; (XD, XN ) ∈ SD × SN
}

,

which is in the form of (2) with I = D ∪N , m = 0, and H the constant matrix AM.
Whenever the optimal value is zero, a completion matrix is found; otherwise, there
exists no such completion matrix.

3. Reduction to nonlinear programming

In this section, we introduce a mapping that transforms the semidefinite program (2)
into a nonlinear optimization problem whose feasible region is the orthant �n++ ×�N ,
where n = |D| and N = |I \ D| + m. We also discuss the differentiability of this
transformation and conclude with an explicit statement of the equivalent nonlinear
programming formulation of (2).
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3.1. Further notation

We first define the following symbols: Ln,Ln+,Ln++,LA, πl
A, πA and LI++.

– Let Ln ⊂ �n×n denote the set of real n × n lower triangular matrices, and let Ln+
andLn++ denote the subsets ofLn consisting of those lower triangular matrices with
nonnegative and positive diagonal entries, respectively.

– For any A ⊆ K, define LA ≡ {L ∈ Ln : Li j = 0 if (i, j) �∈ A}.
– Let πl

A : �n×n → LA and πA : �n×n → SA denote the orthogonal (in Frobenius
norm) projection operators from�n×n onto the subspacesLA and SA, respectively.

– For any I ⊂ K containingD, let LI++ ≡ {L ∈ LI : Lii > 0, i = 1, 2, . . . , n}. Note
that LD++ = Ln++.

It is well known that for any S ∈ Sn++, there exists a unique L ∈ Ln++ such that S =
L LT ; L is called the lower Cholesky factor of S. We denote the transformation which
maps a positive definite matrix into its lower Cholesky factor by chol : Sn++ → Ln++.
Namely, for any S ∈ Sn++,

L = chol(S) ⇐⇒ L LT = S and L ∈ Ln++.

For each k = 1, . . . , m, let ek ∈ �m denote the k-th coordinate vector, and for each
(i, j) ∈ K, let Ei j denote the n×n lower triangular matrix with zeros everywhere except
a one in position (i, j).

3.2. The main ideas

From now on, we assume that I and J are given and that D ⊆ I ⊂ K and J ≡ K \ I.
We also assume that a nonnegative integer m and functions g : Sn × �m → � and
H : �m → Sn are given. For the purpose of following the main ideas presented in this
subsection, it would be sufficient, and indeed preferable, for the reader to assume that I
represents the diagonal indices and J the off-diagonal ones.

We employ two key ideas to transform the feasibility set Fsdp of the SDP problem
(2) into a certain “orthant”:

1. The square slack variable substitution S = L LT for any S ∈ Sn+ that turns the
positive-semidefinite constraint ZI + H(y) � 0 into the equality constraint

ZI + H(y) = L LT . (6)

2. An elimination scheme that uses the equations in (6) to eliminate all the variables
Li j for (i, j) ∈ J , and all the variables in ZI as well.

The square slack substitution is an old idea in nonlinear programming that has not been
regarded as practically useful in general, in part because it can turn a convex feasibility
set into a nonconvex one. However, in our context it will be the first step in the process
of turning a matrix-valued constraint into a vector-valued one, while still allowing us to
construct globally convergent algorithms for linear SDP problems as will be shown in
Sect. 6.
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While the meaning of the first idea is clear, that of the second calls for an explanation.
Recall that the lower triangular index set K has been partitioned into K = I ∪ J .
Accordingly, we can partition the lower triangular matrix L into L = LI + LJ , and
partition the equations in (6) into two systems of equations:

πJ
[
(LI + LJ )(LI + LJ )T − H(y)

] = 0 (7)

corresponding to the index set J , and

πI(ZI) = πI
[
(LI + LJ )(LI + LJ )T − H(y)

]
(8)

corresponding to the index set I. Together, there are |I| + |J | ≡ n(n + 1)/2 equations
in (7) and (8); and there are 2|I | + |J | + m variables: |I| in LI and also in ZI , |J | in
LJ and m in y. Our strategy is to first use the |J | equations in (7) to eliminate the |J |
variables in LJ , and then to use the |I| equations in (8) to eliminate the |I| variables
in ZI .

A fundamental observation, which will be formally stated and proved in Lemma 1,
is that given any H(y) ∈ Sn and LI ∈ LI++, the |J | variables in LJ can be uniquely
determined and explicitly computed from the |J | equations in (7). In other words, system
(7) defines LJ as a function of (LI, y), namely, LJ = LJ (LI, y). By substituting
LJ = LJ (LI, y) into (8), we obtain ZI as a function of (LI, y) as well. In fact, since
LJ (LI, y) satisfies (7), we have

ZI = (LI + LJ (LI, y))(LI + LJ (LI, y))T − H(y) ≡ ZI(LI, y) ∈ SI .
The above two functions, LJ (LI, y) and ZI(LI, y), allow us to construct a homeo-
morphism between the sets LI++ ×�m and int

(
Fsdp

)
for sufficiently smooth H , which

maps a point (LI, y) ∈ LI++ ×�m into a point (ZI, y) ≡ (ZI(LI, y), y) ∈ int
(
Fsdp

)
.

3.3. Transforming the feasibility set into an orthant

In this subsection we formalize the ideas developed in the previous subsection.

Lemma 1. For each pair (LI, H ) ∈ LI × Sn such that LIii �= 0 for all i = 1, . . . , n,
there exists a unique LJ ∈ LJ satisfying

πJ (H ) = πJ
(
(LI + LJ )(LI + LJ )T ). (9)

Proof. System (9) can be expressed as |J | equations, one for each (i, j) ∈ J :

Hi j =
n∑

s=1

(
LIis + LJis

)(
LIjs + LJjs

) = LJi j LIj j +
j−1∑
s=1

(
LIis + LJis

)(
LIjs + LJjs

)
,

where the second equality follows from the facts that both LI and LJ are lower
triangular matrices, that i > j , and that LIi j = LJj j = 0. It follows that any solution LJ

of (9) must satisfy

LJi j =
1

LIj j

Hi j −
j−1∑
s=1

(
LIis + LJis

)(
LIjs + LJjs

) (10)
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for all (i, j) ∈ J . Notice that LJi j is expressed completely in terms of Hi j , LIj j , and the

first j − 1 columns of LI and LJ . Letting j0 be the smallest integer such that there
exists no index pair (i, j) ∈ J with j < j0, we thus see that, for each (i, j0) ∈ J ,

LJi j0
= 1

LIj0 j0

Hi j0 −
j0−1∑
s=1

LIis LIj0s

 .

Hence, column j0 of LJ has an explicit formula in terms LIj0 j0
, column j0 of H , and

columns 1 through j0 − 1 of LI . Now using (10) and a simple induction argument, it is
straightforward to see that LJ can be explicitly, recursively, and uniquely computed in
a “top-to-bottom and left-to-right” order just like in a Cholesky factorization procedure.

Definition 1. The function LJ : LI++ × Sn → LJ is defined by (9), i.e., for any given
(LI, H ) ∈ LI++ × Sn, LJ (LI, H ) is the unique solution of (9). Moreover, for any
H : �m → Sn, we also let (with a slight abuse of notation but without confusion)
LJ (LI, y) ≡ LJ (LI, H(y)), which is a mapping from LI++ × �m to LJ .

Proposition 1. The function LJ (LI, H ) is infinitely differentiable and analytic in
LI++ × Sn. Furthermore, LJ (LI, y) is as smooth in LI++ × �m as H(y) is in �m.
In particular, if H(y) is analytic, then so is LJ (LI, y).

Proof. Equation (10) developed in the proof of Lemma 1 implies that LJ (LI, H ) is
infinitely differentiable in its domain. The statements regarding the differentiability of
LJ (LI, y) follow directly from the differentiability of LJ (LI, H ) and H(y), and the
definition of LJ (LI, y).

Definition 2. The function � : LI++ × �m → SI × �m is defined by �(LI, y) ≡
(ZI(LI, y), y), where the function ZI : LI++ ×�m → SI is given by

ZI(LI, y) ≡ (LI + LJ (LI, y))(LI + LJ (LI, y))T − H(y). (11)

Note that ZI(LI, y) ∈ SI due to the fact that (9) holds with H = H(y) and
LJ = LJ (LI, y). In addition, it is straightforward to verify that the function �−1 :
int
(
Fsdp

)→ LI++ ×�m defined by

�−1(ZI, y) ≡ (
πl
I[chol(ZI + H(y))], y

)
is in fact the inverse of �, and so the following result holds.

Lemma 2. The mapping � is a bijection between the sets LI++ × �m and int
(
Fsdp

)
.

Moreover, we note that all the mappings involved in the definitions of � and �−1

are infinitely differentiable in the respective domains, except possibly for H . Therefore,
both are as smooth as H is in the respective domains. We state this fact as the following
proposition.

Proposition 2. The maps � and �−1 are as smooth in LI++ × �m and int
(
Fsdp

)
,

respectively, as H is in �m.
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3.4. The nonlinear programming formulation

Consider the function f : LI++ ×�m → � defined by

f(LI, y) ≡ g(�(LI, y)), ∀ (LI, y) ∈ LI++ × �m, (12)

and the following nonlinear program (NLP):

(NL P) inf
{

f(LI, y) : (LI, y) ∈ Fnlp
}
, (13)

where the feasible set Fnlp is the open convex set

Fnlp ≡ LI++ ×�m = �−1(int
(
Fsdp

)
). (14)

Theorem 1. If the function g is continuous and attains its minimum in Fsdp, then

min{g(ZI, y) : (ZI, y) ∈ Fsdp} = inf{ f(LI, y) : (LI, y) ∈ Fnlp},
i.e., the optimal value of (NLSDP) equals the optimal value of (NLP).

Proof. Since � is a homeomorphism between Fnlp and int
(
Fsdp

)
, the continuity of g

implies

min{g(ZI, y) : (ZI, y) ∈ Fsdp} = inf
{
g(ZI, y) : (ZI, y) ∈ int

(
Fsdp

)} =
inf
{

g(�(LI, y)) : (LI, y) ∈ �−1(int
(
Fsdp

))} = inf
{

f(LI , y) : (LI, y) ∈ Fnlp
}
.

4. The derivative formulas

In this section, we develop formulas for the computation of the first derivative of
the objective function f of (NLP). In particular, we provide expressions for the first
derivative of f in terms of the first derivatives of g and H . Also involved in the
expressions for the gradient of f is a certain “dual estimate” that will play a fundamental
role in the analysis of Sect. 6.

We assume throughout this subsection that g is differentiable on Fsdp and that H is
differentiable on �m . Given (LI, y) ∈ LI ×�m , we let ∇LI f(LI, y) denote the matrix
in LI whose (i, j)-entry is the partial derivative (∂ f/∂LIi j )(LI, y) for every (i, j) ∈ I,

and for a given (ZI, y) ∈ SI ×�m , we let ∇ZI g(ZI, y) denote the matrix in SI whose
(i, j)-entry is (∂g/∂ZIi j)(ZI, y) for every (i, j) ∈ I.

The following lemma establishes the existence and uniqueness of a matrix which
plays an important role in the derivation of the derivatives of the function f .

Lemma 3. For any L ∈ Ln++ and D ∈ SI , there exists a unique matrix X ∈ Sn

satisfying

πI(X) = D, (15)

πl
J (X L) = 0. (16)
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Proof. The existence and uniqueness of X follow from the following constructive ar-
gument. First, note that: (i) (15) and (16) form a square linear system of equations for
X ∈ Sn ; (ii) L j j > 0 for all j and Lk j = 0 for all k < j since L ∈ Ln++; and (iii) i > j
for all (i, j) ∈ J since J contains no diagonal entries. It is already known from (15)
that Xi j = X ji = Di j for all (i, j) ∈ I, and from (16) we immediately see that

Xi j = − 1

L j j

n∑
k> j

Xik Lk j , (i, j) ∈ J . (17)

Using this last relation recursively in a “bottom-to-top and right-to-left” order (or some
other workable order) so as to guarantee that all the Xik = Xki terms in the right-hand
side have already been determined before their appearance in the sum, we conclude that
the entries Xi j = X ji for all (i, j) ∈ J are uniquely determined.

The above lemma allows us to introduce an important quantity associated with
a given pair (LI, y) ∈ LI++ ×�m .

Definition 3. For any (LI, y) ∈ LI++ × �m, the dual estimate X = X(LI, y) is
the unique matrix X ∈ Sn that satisfies the equations (15) and (16) with D =
∇ZI g(ZI(LI, y), y).

The term “dual estimate” is motivated by the development in Sect. 6 where we will see
that the matrix X plays the role of a dual variable. The matrix X also plays an important
role in expressing the derivatives of the function f .

Theorem 2. Let (LI, y) ∈ LI++ × �m, L ≡ LI + LJ (LI, y), ZI ≡ ZI(LI, y) and
X ≡ X(LI, y). Then

∇LI f(LI, y) = 2 πl
I(X L), (18)

∇y f(LI, y) = ∇y g(ZI, y) − (H ′
y)
∗(X), (19)

where, given y ∈ �m, (H ′
y)
∗ : Sn → �m is the adjoint of the derivative operator

H ′
y ≡ H ′(y) : �m → Sn of the map H at y, i.e., (H ′

y)
∗ is the linear operator defined

for every M ∈ Sn by[
(H ′

y)
∗(M)

]
k =

∂H

∂yk
(y) • M, k = 1, 2, . . . , m. (20)

Proof. To prove (18), it is sufficient to show that (∂ f/∂LIi j )(LI, y) = 2(X L)i j for all

(i, j) ∈ I. Differentiating (12) with respect to LIi j for a fixed index pair (i, j) ∈ I, we
obtain

∂ f

∂LIi j

(LI, y) = ∇ZI g(ZI, y) • ∂ZI

∂LIi j

(LI, y) = X • ∂ZI

∂LIi j

(LI, y), (21)

where ZI ≡ ZI(LI, y). Here, the last equality follows from the fact that: (1) X sat-
isfies (15) with D = ∇ZI g(ZI, y), implying that X − ∇ZI g(ZI, y) ∈ SJ ;
(2) (∂ZI/∂LIi j )(LI, y) ∈ SI ; and (3) SI and SJ are orthogonal subspaces in Sn
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with respect to the Frobenius inner product (denoted by the symbol •). Differentiating
(11) with respect to LIi j , we obtain

∂ZI

∂LIi j

(LI, y) = L

(
∂LJ

∂LIi j

(LI, y) + Ei j

)T

+
(

∂LJ

∂LIi j

(LI, y) + Ei j

)
LT .

Taking inner product of both sides of this equation with X and using the fact that X is
symmetric, we obtain

X • ∂ZI

∂LIi j

(LI, y) = 2(X L) •
(

∂LJ

∂LIi j

(LI, y) + Ei j

)
= 2(X L) • Ei j = 2(X L)i j ,

(22)

where the second equality follows from (16) and the fact that (∂LJ /∂LIi j )(LI, y) ∈ LJ .
Combining (21) and (22), we conclude that (18) holds.

We will now briefly outline the proof of (19), which is very similar to the one above.
Differentiating (12) with respect to yk for a fixed k ∈ {1, . . . , m}, we obtain

∂ f

∂yk
(LI, y) = ∇ZI g(ZI, y) • ∂ZI

∂yk
(LI, y) + ∂g

∂yk
(ZI, y)

= X • ∂ZI

∂yk
(LI, y) + ∂g

∂yk
(ZI, y), (23)

where the second equality follows by arguments similar to the ones above. Differentiat-
ing (11) with respect to yk, we obtain

∂ZI

∂yk
(LI, y) = L

(
∂LJ

∂yk
(LI, y)

)T

+
(

∂LJ

∂yk
(LI, y)

)
LT − ∂H

∂yk
(y).

Taking the inner product of both sides of this equation with X and using arguments
similar to the ones above, we conclude that

X • ∂ZI

∂yk
(LI, y) = −∂H

∂yk
(y) • X.

Relation (19) now follows from (23) and the last identity.

5. Complexity of the function and derivative evaluations

In this section, we calculate the computational time and space complexities of evaluating
f at any (LI, y) ∈ LI++×�m in both the dense and sparse cases. We also obtain, under
the mild assumption that certain important matrices are readily available, an expression
of the complexities of computing the gradient of f at any (LI, y) in the dense and sparse
cases.

We adopt the same convention as in Golub and Van Loan [8] for counting flops, that
is, a flop is a floating point operation (e.g., the inner product of two n-vectors involves
2n flops).
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5.1. The dense case

The efficient computation of f(LI, y) for any (LI, y) ∈ LI++ ×�m can be arranged in
the following steps:

(1) compute H(y);
(2) use H(y) to compute LJ = LJ (LI, y);
(3) use H(y) and LJ to compute ZI = ZI(LI, y);
(4) compute g(ZI, y), which equals f(LI, y).

We first consider the number of flops required to complete steps (1) through (4), and
for this, we introduce two technical definitions. For any function ξ : V → W between
two sets V and W , and for each v ∈ V , we denote by fps(ξ(v)) the number of flops
required to compute ξ(v) ∈ W . Moreover, we define fps(ξ) ≡ sup{fps(ξ(v)) : v ∈ V }.
We assume that both fps(g) and fps(H ) are finite.

Proposition 3. For each (LI, y) ∈ LI++ × �m, the computation of f(LI, y) takes at
most O((|I| + |J |)n + fps(g)+ fps(H )) = O(n3 + fps(g)+ fps(H )) flops.

Proof. Steps (1) and (4) together take no more than fps(H )+fps(g) flops. A straightfor-
ward analysis of the proof of Lemma 1 shows that step (2) takes at mostO(|J |n) flops,
and it is easy to see that step (3) takes at most O(|I|n) flops. Hence, the computation
of f(LI, y) takes at mostO((|I| + |J |)n + fps(g)+ fps(H )) flops, and the equality of
the proposition follows from the fact that |I| + |J | = n(n + 1)/2.

To consider the space requirements of the evaluation of f , let ξ be as above. Then
for all v ∈ V , we denote by spc(ξ(v)) the space required to store v and to compute and
store ξ(v) ∈ W . We also define spc(ξ) ≡ sup{spc(ξ(v)) : v ∈ V }. As with the function
fps, we assume that spc(g) and spc(H ) are finite.

Proposition 4. For each (LI, y) ∈ LI++ × �m, the computation of f(LI , y) requires
at most O(|I| + |J | + spc(g) + spc(H )) = O(n2 + spc(g) + spc(H )) space.

Proof. Steps (1) and (4) together require no more than spc(H ) + spc(g) space, and
assuming that LI and H(z) are easily accessible in the computer’s memory, step (2) takes
no more than |J | units of additional space. Similarly, |I| space is needed for step (3).
Hence, the result of the proposition follows from the equality |I| + |J | = n(n + 1)/2.

We remark that, in the dense case, spc(H ) is at least O(n2). Hence, the additional
space requirements incurred due to the transformation from (NLSDP) to (NLP) are not
significantly greater than the requirements for evaluating g.

We now turn to the computation of the gradient of f at any (LI, y) ∈ LI++ × �m ,
and for this, we assume that L ≡ LI + LJ (LI, y) and ZI ≡ ZI(LI, y) have already
been computed and stored. Using Theorem 2, we can arrange the computation of the
gradient of f at (LI, y) ∈ LI++ × �m as follows:

(1) use ZI and y to compute ∇ZI g(ZI, y), ∇y g(ZI, y) and (∂H/∂yk)(y) for k =
1, . . . , m;

(2) let πI(X) = ∇ZI g(ZI, y), and then use L to compute πJ (X) via (17);
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(3) use X and L to compute ∇LI f(LI, y) = 2πl
I(X L);

(4) use ∇y g(ZI, y), (H ′
y)
∗, and X to compute∇y f(LI , y) = ∇y g(ZI, y)− (H ′

y)
∗(X),

where the operation (H ′
y)
∗(X) is defined in (20).

Define

fps
(
(H ′)∗

) ≡ m∑
k=1

fps

(
∂H

∂yk

)
and also define spc((H ′)∗) similarly; we again assume that both quantities are finite. In
addition, define

nz((H ′)∗) = sup
{
nz((H ′

y)
∗) : y ∈ �m}

where

nz((H ′
y)
∗) ≡ max

{
m∑

k=1

nz

(
∂H(y)

∂yk

)
: y ∈ �m

}
,

and, for each M ∈ Sn , nz(M) is the number of nonzero entries in the lower triangular
part of M. Note that, although the definition of nz(·) can detect sparsity, nz((H ′

y)
∗) =

O(mn2) for any y ∈ �m in the dense case. We have the following proposition.

Proposition 5. Let (LI, y) ∈ LI++ × �m be given, and suppose that LI + LJ (LI, y)
and ZI(LI, y) have already been computed and stored. Then, the number of flops
required for the computation of ∇ f(LI, y) is at most

O
(
(|I| + |J |)n + nz((H ′)∗) + fps(∇g) + fps((H ′)∗)

)
= O(n3 + mn2 + fps(∇g)+ fps((H ′)∗)),

and the amount of space required is at most

O
(|I| + |J | + spc(∇g)+ spc((H ′)∗)

) = O(n2 + spc(∇g) + spc((H ′)∗))

Proof. We first address the number of flops required to compute the gradient. Step (1)
clearly takes no more than fps(∇g) + fps((H ′)∗) flops, and it is easy to see using the
recursive formula for X described in (17) that step (2) takes at most O(|J |n) flops.
Step (3) requires O(|I|n) flops, and step (4) takes at most nz((H ′)∗) flops, as can be
seen from Theorem 2. Noting that |I| + |J | = n(n + 1)/2 and that, in the dense case,
nz((H ′)∗) = O(mn2), we obtain the first result of the proposition.

We now establish the space requirements of the gradient computation. Step (1)
requires spc(∇g) + spc((H ′)∗) space, and steps (2) and (3) need |I| + |J | units of
additional space. Finally, step (4) takes no additional space, since the computation of
∇y f(LI, y) simply involves m matrix dot products involving matrices already com-
puted and stored and since the contents of ∇yg(ZI, y) can clearly be overwritten with
∇y f(LI, y). Noting once again that |I| + |J | = n(n + 1)/2, we have the second result
of the proposition.
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5.2. The sparse case

We first note that the sparsity characteristics of the feasible set Fsdp of (NLSDP) are
directly derived from the sparsity characteristics of H(�m) ⊆ Sn , that is, the image
of �m under the map H . These sparsity characteristics, which we will loosely refer to
as the sparsity of H , have obvious consequences for the values fps(H ) and fps((H ′)∗)
introduced in the previous subsection, but the sparsity of H also plays a significant role
in determining the sparsity characteristics of LJ (LI, y). In what follows, we relate the
sparsity of H to the time and space complexities of the function and gradient evaluations.

Via the Cholesky factorization, it is well-known that, in general, the greater the
sparsity of H(y) is, the greater the sparsity of LJ (LI, y) will be. For each (LI, y) ∈
LI++ × �m , define Z(LI, y) ⊆ J to be the index subset of J of zero entries of
LJ (LI, y), i.e.,

Z(LI, y) ≡ {(i, j) ∈ J : [LJ (LI, y)]i j = 0},
and define

Z ≡ ∩{Z(LI, y) : (LI, y) ∈ LI++ ×�m},
Ĵ ≡ J \ Z.

The following lemma is an immediate consequence of Lemma 3.

Lemma 4. Let (LI, y) ∈ LI++ × �m be given and define L ≡ LI + LJ (LI, y) and

ZI ≡ ZI(LI, y). Then, there exists a unique matrix X̂ ≡ X̂(LI, y) in SI∪Ĵ satisfying

πI(X̂) = ∇ZI g(ZI, y),

πl
Ĵ

(X̂ L) = 0.

Proof. By Lemma 3, there exists a unique matrix X̂ satisfying πI∪Z(X̂) = ∇ZI g(ZI, y)

and πl
Ĵ

(X̂ L) = 0. Clearly, this matrix also satisfies the conditions of the lemma.

We refer to the matrix X̂(LI, y) introduced in the above lemma as the sparse dual
estimate at (LI, y). The following sparse analogue of Theorem 2 gives a representation
of the gradient of f in terms of the sparse dual estimate.

Theorem 3. Let (LI, y) ∈ LI++ × �m be given and define L ≡ LI + LJ (LI, y),
ZI ≡ ZI(LI, y) and X̂ ≡ X̂(LI, y). Then

∇LI f(LI, y) = 2 πl
I(X̂ L),

∇y f(LI, y) = ∇y g(ZI, y) − (H ′
y)
∗(X̂).

Proof. Using the fact that (∂LJ /∂LIi j )(LI, y) ∈ L Ĵ for all (i, j) ∈ I and

(∂LJ /∂yk)(LI, y) ∈ L Ĵ for all k = 1, . . . , m, it is easy to verify that the arguments
used in the proof of Theorem 2 hold if we replace X by X̂.
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Two comments regarding the relationship between X(LI, y) and X̂(LI, y) are in
order. First of all, these two functions are not equal. The defining equations for X(LI, y)
ensure that X(LI, y) is, in general, a dense symmetric matrix, while the equations in
Lemma 4 guarantee that X̂(LI, y) has the same sparsity pattern as L ≡ LI+LJ (LI, y).
Secondly, it is not difficult to see that, like X(LI, y), X̂(LI, y) can be computed
by a recursive formula similar to (17), but for X̂, the computation can be done in
O((|I| + |Ĵ |)n) flops and in O(|I| + |Ĵ |) space.

We are now prepared to state the time and space complexities for the function and
gradient evaluations in the sparse case.

Proposition 6. For each (LI, y) ∈ LI++ × �m, assume that LI + LJ (LI, y) and
ZI(LI, y) have already been computed. Then the numbers of flops required for the
computation of f(LI, y) and ∇ f(LI , y) are, respectively, at most

O((|I| + |Ĵ |)n + fps(g) + fps(H )), and

O((|I| + |Ĵ |)n + nz((H ′)∗) + fps(∇g)+ fps((H ′)∗)).

In addition, the amount of space required for these operations is, respectively, at most

O(|I| + |Ĵ | + spc(g)+ spc(H )), and

O(|I| + |Ĵ | + spc(∇g)+ spc((H ′)∗)).

Proof. In the previous subsection, we showed that the evaluations of the function and
gradient took O((|I| + |J |)n + fps(g) + fps(H )) and O((|I| + |J |)n + nz((H ′)∗) +
fps(∇g)+ fps((H ′)∗) flops, respectively, and that they requiredO(|I|+ |J |+ spc(g)+
spc(H )) andO(|I|+ |J |+ spc(∇g)+ spc((H ′)∗)), respectively. In this subsection, the
same arguments are valid, except that |J | is replaced by |Ĵ |. Hence, the proposition
follows.

We remark that, in many special cases (e.g., the case of the linear SDP), the set Z
defined above can be determined in polynomial time using the well-known symbolic
factorization procedure. In addition, a reordering procedure can be performed in order
to reformulate (NLSDP) so that the resultant size ofZ is usually larger than the original
size of Z .

5.3. Complexity for the linear SDP

In the case of the linear SDP (Example 1), where g(ZI, y) = BI • ZI + bT y and
H(y) =∑m

k=1 yk Ak−C, we clearly have fps(∇g) = fps((H ′)∗) = 0 due to the linearity
of g and H . Moreover, fps(g) = O(|I| + m), fps(H ) = O(

∑m
k=1 nz(Ak) + nz(C))

and nz((H ′)∗) = O(
∑m

k=1 nz(Ak)). Notice the only difference between fps(H ) and
nz((H ′)∗) is the appearance of the nz(C) in fps(H ). Using these facts and the inequalities
n ≤ |I| and m ≤ O(n2), Proposition 6 implies that the time complexities for the gradient
and function evaluations are, respectively,

O
(
n nz(L) +∑m

k=1 nz(Ak) + nz(C)
)
,

O
(
n nz(L) +∑m

k=1 nz(Ak)
)
,
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where nz(L) = |I| + |Ĵ | denotes the number of nonzeros in the lower Cholesky
factor L.

In Table 1, we specialize the complexities above to the three cases: (i) both L
and the collection {A1, . . . , Am, C} are sparse; more specifically, we assume that∑m

k=1 nz(Ak)+nz(C) ≤ O(n2); (ii) L is dense but {A1, . . . , Am, C} is relatively sparse
whenever m " n; more specifically, we assume that

∑m
k=1 nz(Ak) + nz(C) ≤ O(n3);

(iii) both L and {A1, . . . , Am, C} are dense. (Note that the fourth case never occurs, i.e.,
if {A1, . . . , Am, C} is dense, then L cannot be generally sparse.)

Table 1. Number of flops required for f and ∇ f evaluations

Sparse Case Mixed Case Dense Case

O(n nz(L)) O(n3) O((n + m)n2)

The space requirements for evaluating f and∇ f can be considered similarly. Noting
that spc(∇g) = spc((H ′)∗) = 0 and that spc(g) = O(|I| + m), Proposition 6 shows
that the space complexities for the gradient and function evaluations are, respectively,

O(nz(L) + spc(H )),

O(nz(L)).

If we make the reasonable assumption that the matrices {A1, . . . , Am, C} are stored in
memory for use throughout all iterations, then it is easy to see that H can be computed
in the space of the union of the nonzeros of the matrices {A1, . . . , Am, C}, i.e.,

spc(H ) = O(nz
(∑m

k=1 |Ak| + |C|) ),
where the absolute value of a matrix is taken element-wise. It is clear from the
“fill-in” of the Cholesky factorization, however, that nz(L) is an upper-bound on
nz
(∑m

k=1 |Ak| + |C|), and so we can further refine the above space complexity results.
The resulting complexities for the sparse and dense cases are given in the Table 2.

Table 2. Space required for f and ∇ f evaluations

Sparse Case Dense Case

O(nz(L)) O(n2)

6. A first-order algorithm for the linear SDP

Although the transformation proposed in Sect. 3 is applicable to both linear and non-
linear SDP problems in the form of (2), it is considerably more difficult to construct
theoretically sound algorithms for nonlinear problems than linear ones. In this section,
we develop a globally convergent, first-order algorithm for the special case of problem
(2) in which g is linear, H is affine and I = D (the diagonal).
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This section is divided into four subsections. In the first subsection, we state the
linear SDP problem to be solved by our algorithm, specialize the results developed in
Sects. 3 and 4 to this linear SDP, and give several properties of the dual estimate matrix
X defined in Definition 3. In the second subsection, we state sufficient conditions for
a sequence of points in the feasible region of the transformed problem to be bounded and
to approach optimality. In the third subsection, we introduce the notion of the central
path with respect to the transformed problem and show its equivalence to the central
path for the original linear SDP problem. In the fourth subsection, we state a first-order,
interior-point, log-barrier algorithm for solving the transformed problem.

6.1. The linear SDP problem and its transformed NLP problem

Consider the following linear SDP, specialized from Example 1:

min

{
BD • ZD + bT y : ZD +

m∑
k=1

yk Ak − C � 0; (ZD, y) ∈ SD ×�m

}
,

where the data for the problem consist of C, A1, . . . , Am ∈ Sn , BD ∈ SD, and b ∈ �m .
Note that I = D, the set of diagonal entries, and so the complementary set J consists
of the strictly lower entries.

We wish to simplify the presentation of the above linear SDP, and so we introduce
a vector variable z ∈ �n and express ZD = Diag(z), where Diag : �n → SD is the
linear operator that places its argument on the diagonal of a diagonal matrix. Letting
d ∈ �n be the unique vector satisfying BD = Diag(d), we also see that BD • ZD

can be rewritten as dT z. Now letting the linear operator A∗ : �m → Sn be defined by
A∗(y) =∑m

k=1 yk Ak and introducing an auxiliary variable S ∈ Sn , the above SDP can
be rewritten as

(P) min
{
dT z + bT y : Diag(z) +A∗(y) − C = S; S � 0; (z, y) ∈ �n ×�m}.

The dual SDP associated with (P) is the problem

(D) max {C • X : diag(X) = d; A(X) = b; X � 0} ,
where X ∈ Sn is the optimization variable, diag : SD → �n is the adjoint of Diag
that extracts the diagonal of a diagonal matrix, and A : Sn → �m is the adjoint of A∗
whose k-th component function evaluates Ak • X for all X ∈ Sn .

We remark that: (i) the above class of SDP problems (P) and (D) contains the SDP
relaxations of many binary combinatorial optimization problems (see Sect. 2); and (ii)
the above designation of primal and dual problems is opposite to the usual one where
(D) is usually said to be the primal while (P) is said to be the dual.

We denote by F0(P) and F0(D) the sets of interior feasible solutions for problems
(P) and (D), respectively, i.e.,

F0(P) ≡ {
(z, y, S) ∈ �n ×�m × Sn++ : Diag(z) +A∗(y) − C = S

}
,

F0(D) ≡ {
X ∈ Sn++ : diag(X) = d;A(X) = b

}
.
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Note that F0(P) �= ∅. We also note that the term Diag(z) found in the statement of
problem (P) can be rewritten as

∑n
i=1 zi(eieT

i ), where ei ∈ �n is the i-th column of the
identity matrix of size n. We will make the following assumptions throughout the rest
of the paper.

Assumption 1. F0(D) �= ∅, i.e., (D) has a feasible solution that is positive definite.

Assumption 2. The matrices {eieT
i }n

i=1 ∪ {Ak}m
k=1 are linearly independent.

We note that Assumption 1 implies in particular that d ∈ �n++.
In the remainder of the paper, we will replace the variable LD with a vector variable

w ∈ �n that satisfies LD = Diag(w). This will help to simplify notation, and it will be
straightforward to translate ideas that are expressed in terms of LD into ideas in terms
of w. For example, the condition that LD ∈ LD++ becomes w ∈ �n++ when written in
terms of w.

The following theorem specializes the results of Sect. 3 to the context of the above
pair of primal-dual problems.

Theorem 4. The following statements hold:

(a) for each (w, y) ∈ �n++ × �m, there exists a unique (LJ , z) ∈ LJ ×�n such that

Diag(z) +A∗(y) − C = (
Diag(w) + LJ

)(
Diag(w) + LJ

)T ; (24)

(b) the functions LJ (w, y) and z(w, y) defined according to (24) are each infinitely
differentiable on their domain �n++ × �m;

(c) the sets �n++ × �m and F0(P) are in bijective correspondence according to the
assignment (w, y) $→ (z, y, S) where z = z(w, y) and S = L LT for L ≡ Diag(w)+
LJ (w, y).

As a consequence of Theorem 4, the problem obtained from (P) by restricting the
feasible region to the set F0(P) can be recast as the nonlinear program

(NL P) inf
{

f(w, y) : (w, y) ∈ �n++ × �m} ,

where f : �n++ ×�m → � is given by

f(w, y) = dT z(w, y) + bT y, ∀(w, y) ∈ �n++ ×�m .

It follows from Theorem 1 that problems (P) and (NL P) have the same optimal values.
However, (NL P) has an open feasible set and in general does not have an optimal
solution. In fact, it can be easily seen that if (b, d) �= 0 then all optimal solutions of (P)

lie in the boundary ofF0(P), and in this case (NL P) does not have an optimal solution.
Associated with a point (w, y) ∈ �n++ × �m , define

L(w, y) ≡ Diag(w) + LJ (w, y) ∈ Ln, (25)

S(w, y) ≡ L(w, y)L(w, y)T ∈ Sn++. (26)

The following result is an immediate consequence of Lemma 3 and Theorem 2.
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Proposition 7. Let (w, y) ∈ �n++ × �m be given and define L ≡ L(w, y). Then, the
system of linear equations

diag(X) = d, (X L)i j = 0, i > j, X ∈ Sn (27)

has a unique solution in Sn, which we will denote by X(w, y). Moreover, the matrix
X ≡ X(w, y) satisfies

(a) ∇w f(w, y) = 2 diag(X L);
(b) ∇y f(w, y) = b −A(X).

In the following lemma, we establish several important properties of the matrix
function X(w, y).

Lemma 5. Let (w, y) ∈ �n++ × �m be given and define L ≡ L(w, y), S ≡ S(w, y),
X ≡ X(w, y), and ∇w f ≡ ∇w f(w, y). Then,

(a) X L is upper triangular, or equivalently, LT X L is diagonal;
(b) X � 0 if and only if ∇w f ≥ 0; in addition, X � 0 if and only if ∇w f > 0;
(c) w ◦ ∇w f(w, y) = 2 diag(LT X L), hence wT∇w f(w, y) = 2 tr(LT X L) = 2 X • S,

where “◦” denotes the Hadamard (element-wise) product.

Proof. The upper triangularity of X L follows directly from (27). Since LT and X L
are both upper triangular, so is the product LT X L which is also symmetric. Hence
LT X L must be diagonal. On the other hand, if LT X L is diagonal, say it equals D, then
X L = L−T D is upper triangular. So, a) follows.

To prove the first part of (b), we note that the nonsingularity of L implies that X � 0
if and only if LT X L � 0, but since LT X L is diagonal by (a), LT X L � 0 if and only
if diag(LT X L) ≥ 0. Given that both LT and X L are upper triangular matrices, it is
easy to see that diag(LT X L) is the Hadamard product of diag(LT ) and diag(X L). Since
diag(LT ) > 0, it follows that diag(LT X L) ≥ 0 if and only if diag(X L) ≥ 0. The first
statement of (b) now follows from the sequence of implications just derived and the fact
that ∇w f = 2 diag(X L) by Proposition 7(a).

The second part of (b) can be proved by an argument similar to the one given in the
previous paragraph; we need only replace the inequalities by strict inequalities.

Statement (c) follows from (25), Proposition 7(a), and the simple observation that
the diagonal of LT X L is the Hadamard product of diag(LT ) = w and diag(X L) since
both LT and X L are upper triangular.

The following theorem establishes that the matrix X(w, y) plays the role of a (pos-
sibly infeasible) dual estimate for any (w, y) ∈ �n++ ×�m .

Theorem 5. Let (w, y) ∈ �n++ × �m, and define L ≡ L(w, y), S ≡ S(w, y), X ≡
X(w, y), ∇w f ≡ ∇w f(w, y), and ∇y f ≡ ∇y f(w, y). Then:

(a) X is feasible for (D) if and only if ∇w f ≥ 0 and ∇y f = 0;
(b) X is strictly feasible for (D) if and only if ∇w f > 0 and ∇y f = 0;
(c) X • S ≤ ε if and only if wT∇w f ≤ 2 ε.
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Proof. By the definition of X, we have diag(X) = d and X ∈ Sn . The theorem is an
easy consequence of Proposition 7(b) and Lemma 5(b)–(c).

For each (w, y) ∈ �n++ ×�m , Theorem 5 gives necessary and sufficient conditions
for X(w, y) to be a feasible or strictly feasible solution for (D). These conditions
are based entirely on the gradient ∇ f(w, y). Moreover, whenever ∇w f(w, y) ≥ 0 at
a given point (w, y) ∈ �n++ × �m , the closeness to optimality of the point (w, y)
can be easily measured by the magnitudes of ∇y f(w, y) and wT∇w f(w, y). Since
S(w, y) is positive definite and since X(w, y) is positive semidefinite and nonzero
whenever ∇ fw(w, y) ≥ 0, the duality gap X(w, y) • S(w, y) is positive whenever
∇ fw(w, y) ≥ 0, though it can converge to zero as (w, y) approaches the boundary
of �n++ ×�m .

6.2. Boundedness and optimality results

Recall that our transformation is not defined on the boundary of �n++ × �m because it
requires division by the components of w in order to evaluate the function LJ (w, y).
Since some components of w will necessarily go to zero as optimality is approached, it
is natural to ask whether (and where) the function LJ (w, y) and other related functions
L(w, y), z(w, y), S(w, y) and X(w, y) will remain bounded as (w, y) approaches the
boundary of �n++ × �m . In this section, we provide some results on this boundedness
issue. We also give sufficient conditions for the accumulation points of sequences
{X(wk, yk)} and {(z(wk, yk), yk, S(wk, yk))} to be optimal solutions of problems (P)

and (D), respectively.
The following technical result is a slight variant of Lemma 2 of Monteiro and

Pang [14].

Proposition 8. Let a linear map Ã : Sn → �p be given and consider the induced
linear map G : Sn × Sn ×�p → Sn ×�p defined by

G(X, S, y) ≡
(

Ã∗(y) − S
Ã(X)

)
, ∀ (X, S, y) ∈ Sn × Sn ×�p. (28)

Then, for any constant � ≥ 0 and any compact set K ⊂ G(Sn++ × Sn++ × �p), the set

F(�,K) ≡ {
(X, S) ∈ Sn+ × Sn+ : X • S ≤ �, G(X, S, y) ∈ K for some y ∈ �p

}
is compact.

Proof. Let a constant � ≥ 0 and a compact set K ⊂ G(Sn++ × Sn++ × �p) be given.
Since F(�,K) is obviously closed, it suffices to show that this set is bounded. As-
sume for contradiction that there exists a sequence {(Xk, Sk)} ⊂ F(�,K) such that
limk→∞ ‖(Xk, Sk)‖ = ∞. Then, {Xk•Sk} is bounded and {G(Xk, Sk, yk)} ⊂ K for some
sequence {yk} ⊂ �p. SinceK is compact, we may assume without loss of generality that
for some G∞ ∈ K ⊂ G(Sn++ × Sn++ × �p), we have G∞ = limk→∞ G(Xk, Sk, yk).
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Clearly, we have G∞ = G(X∞, S∞, y∞) for some (X∞, S∞, y∞) ∈ Sn++×Sn++×Rp.
Since X∞ � 0 and S∞ � 0, there exists η > 0 such that the set

N∞ ≡ {
(X, S, y) ∈ Sn++ × Sn++ × �p : η−1 I � X � ηI, η−1 I � S � ηI

}
contains (X∞, S∞, y∞). SinceN∞ is an open set and every linear map maps open sets
into open sets relative to its image, we conclude that G(N∞) is open relative to the
image of G. Since G(X∞, S∞, y∞) ∈ G(N∞) and G∞ = limk→∞ G(Xk, Sk, yk), we
conclude that for all k sufficiently large, say k ≥ k0, we have G(Xk, Sk, yk) ∈ G(N∞),
and hence that G(Xk, Sk, yk) = G(X̃k, S̃k, ỹk) for some (X̃k, S̃k, ỹk) ∈ N∞. Using the
definition of G, we immediately see that (Xk − X̃k) • (Sk − S̃k) = 0 for all k ≥ k0. This
equality together with the fact that (X̃k, S̃k, ỹk) ∈ N∞ implies

Xk • Sk + η−2n ≥ Xk • Sk + X̃k • S̃k = Xk • S̃k + Sk • X̃k ≥ η (Xk • I + Sk • I ),

for every k ≥ k0. Since {Xk • Sk} is bounded and {(Xk, Sk)} ⊂ Sn+ × Sn+, the above
inequality implies that {Xk} and {Sk} are bounded. This contradicts the assumption that
limk→∞ ‖(Xk, Sk)‖ = ∞, hence the result follows.

As a consequence of the above proposition, we obtain the following result which
guarantees the boundedness of certain sets in the (w, y)-space, as well as some relevant
functions defined on these sets.

Lemma 6. There exists β > 0 such that for any � > 0 the set B ≡ B(�, β) defined by

B(�, β) ≡ {
(w, y) ∈ �n++ ×�m : ∇w f ≥ 0, wT∇w f ≤ 2 �, ‖∇y f ‖ ≤ β

}
,

is bounded, and the functions z(·, ·), L(·, ·), X(·, ·), S(·, ·) and ∇w f(·, ·) are all bounded
on B(�, β).

Proof. Let Ã : Sn → �n+m be the linear map defined by Ã(X) = (diag(X),A(X))

for all X ∈ Sn . Clearly, its adjoint Ã∗ : �n × �m → Sn is the map defined by
Ã∗(z, y) = diag(z)+A∗(y) for all (z, y) ∈ �n ×�m . Assumption 2 implies that Ã∗ is
an injective map, and hence that Ã is an onto map. This implies that the linear map G
defined in (28) is an onto, and hence open, map. Thus, the set G(Sn++×Sn++×�p) is open
for p = n+m. Since by Assumption 1 the point (C, (d, b)) ∈ G(Sn++×Sn++×�p), there
exists β > 0 such that the compact setK ≡ {(C, (d, u)) ∈ Sn ×�n+m : ‖u−b‖ ≤ β} is
contained in G(Sn++ ×Sn++ ×�p). Then, by Proposition 8, the set F(�,K) is bounded
for every � ≥ 0. Now, using (27), Proposition 7(b) and Lemma 5(b)–(c), we easily see
that (w, y) ∈ B(�, β) if and only if (X(w, y), S(w, y)) ∈ F(�,K). By Proposition 8,
this implies that the functions X(·, ·) and S(·, ·) are bounded on B. By (26), we have
tr(S(w, y)) = ‖L(w, y)‖2

F for all (w, y) ∈ �n++ × �m . Hence, the boundedness of
S(·, ·) on B implies that of L(·, ·), and in turn that of w ≡ diag(L) on B. Moreover,
since S(·, ·) is bounded on B, then so is Ã∗(z, y) = C − S. By the injectivity of Ã∗, we
conclude that (y, z) is bounded on B. Finally, ∇w f(w, y) is bounded on B because of
Proposition 7(a).
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Given a sequence of points {(wk, yk)}k≥0 ⊂ �n++×�m , we define Lk ≡ L(wk, yk),
Xk ≡ X(wk, yk), Sk ≡ S(wk, yk), zk ≡ z(wk, yk), ∇w f k ≡ ∇w f(wk, yk) and ∇y f k ≡
∇y f(wk, yk) for all k ≥ 0. The following result gives sufficient conditions for the
accumulation points of the sequences {Xk} and {(zk, yk, Sk)} to be optimal solutions of
problems (D) and (P), respectively. This result will be used to establish the convergence
of the sequence generated by the log-barrier algorithm of Sect. 6.3.

Theorem 6. Let {(wk, yk)}k≥0 ⊂�n++×�m be a sequence of points such that∇w f k ≥ 0
for all k ≥ 0, the sequence {(wk)T∇w f k} is bounded, and limk→∞∇y f k = 0. Then,

(a) the sequences {Xk}, {(zk, yk, Sk)}, {Lk}, {wk} and {∇w f k} are all bounded;
(b) if in addition limk→∞(wk)T∇w f k = 0, then any accumulation points of {Xk} and

{(zk, yk, Sk)} are optimal solutions of (D) and (P), respectively.

Proof. Statement (a) follows immediately from Lemma 6. To prove (b), let X∞ and
(z∞, y∞, S∞) be accumulation points of the sequences {Xk} and {(zk, yk, Sk)}, respec-
tively. The assumption of the lemma and Proposition 7(b) imply that

lim
k→∞A(Xk) − b = lim

k→∞∇y f k = 0

and that Xk � 0 and diag(Xk) = d for all k ≥ 0. This clearly implies that X∞ � 0,
A(X∞) = b and diag(X∞) = d, that is, X∞ is a feasible solution of (D). Since each
(zk, yk, Sk) is a feasible solution of (P), it follows that (z∞, y∞, S∞) is also a feasible
solution of (P). Moreover, we have (wk)T∇w f k = 2Xk • Sk , for all k ≥ 0, from which
it follows that X∞ • S∞ = 0. We have thus shown that X∞ and (z∞, y∞, S∞) are
optimal solutions of (D) and (P).

6.3. The central path for the transformed problem

It is well known that under a homeomorphic transformation ξ , any path in the domain
of ξ is mapped into a path in the range of ξ , and vice versa. Furthermore, given any
continuous function f from the range of ξ to �, the extremers of f in the range of ξ are
mapped into corresponding extremers of the composite function f(ξ(·)) in the domain
of ξ . In particular, if f has a unique minimizer in the range of ξ , then this minimizer is
mapped into the unique minimizer of f(ξ(·)) in the domain of ξ .

In view of these observations, it is easy to see that under the transformation intro-
duced in Sect. 3, the central path of a convex SDP problem is transformed into a new
“central path” in the “orthants” of the transformed space. Furthermore, since the points
on the original central path are the unique minimizers of a defining log-barrier function
corresponding to different parameter values, the points on the transformed central path
are therefore unique minimizers of the transformed log-barrier function corresponding
to different parameter values. In general, however, it is possible that extraneous, non-
extreme stationary points be introduced to the transformed log-barrier function by the
nonlinear transformations applied. In this section, we show that at least for the linear
SDP problem studied in this section, the transformed log-barrier functions do not have
any such non-extreme stationary point.
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Since the variable w of (NL P) is constrained to be positive, a natural problem to
consider is the following log-barrier problem associated with (NL P), which depends
on the choice of a constant ν > 0:

(NL Pν) min

{
f(w, y) − 2ν

n∑
i=1

log wi : (w, y) ∈ �n++ ×�m

}
.

(The reason for the factor 2 will become apparent shortly.) Not surprisingly, (NL Pν) is
nothing but the transformed form of the standard log-barrier problem for (P),

(Pν) min
{
dT z + bT y − ν log(det S) : Diag(z) +A∗(y) − C = S; S � 0

}
,

under the bijective transformation given in Theorem 4 between �n++ ×�m and F0(D).
Indeed, (Pν) is transformed into the nonlinear program

min
{

f(w, y) − ν log(det(S(w, y))) : (w, y) ∈ �n++ × �m} ,

which is exactly (NL Pν) after the simplification

log(det S) = log(det(L LT )) = 2 log(det L) = 2 log

(
n∏

i=1

wi

)
= 2

n∑
i=1

log wi ,

where S ≡ S(w, y) and L ≡ L(w, y) and the second inequality follows from the fact
that the determinant of a triangular matrix is the product of its diagonal entries.

Recall that (P) always has interior feasible solutions. Hence, under Assumptions 1
and 2, (Pν) and the corresponding standard log-barrier problem for (D),

(Dν) max {C • X + ν log(det X) : diag(X) = d; A(X) = b; X � 0} ,
each have unique solutions (zν, yν, Sν) and Xν, respectively, such that XνSν = νI . One
can ask whether (NL Pν) has a unique stationary point, and if so, how this unique station-
ary point (i.e., global minimum) relates to Xν and (zν, yν, Sν). The following theorem
establishes that (NL Pν) does in fact have a unique stationary point (wν, yν) which is
simply the inverse image of the point (zν, yν, Sν) under the bijective correspondence
given in Theorem 4(c).

Theorem 7. For each ν > 0, problem (NL Pν) has a unique minimum point, which is
also its unique stationary point. This minimum (wν, yν) is equal to the inverse image of
the point (zν, yν, Sν) under the bijective correspondence of Theorem 4(c). In particular,
we have z(wν, yν) = zν and S(wν, yν) = Sν. Moreover, X(wν, yν) = Xν.

Proof. Let (w, y) be a stationary point of (NL Pν), and define ∇ f ≡ ∇ f(w, y), L ≡
L(w, y), X ≡ X(w, y), z ≡ z(w, y), and S ≡ S(w, y). Since (w, y) is a stationary point
of (NL Pν), it satisfies the first-order optimality conditions of (NL Pν)

∇w f ◦ w = 2 νe, ∇y f = 0, (29)

where e ∈ �n is the vector of all ones. Notice that (29), together with Theorem 5 and
Proposition 7, implies that X is strictly feasible for (D).
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Proposition 7(a) implies that the first equation of (29) is equivalent to diag(X L)◦w =
νe, and the equality w = diag(LT ) implies that diag(X L) ◦ diag(LT ) = νe, which in
turn implies that diag(LT X L) = νe since X L is upper triangular by Lemma 5. Since
LT X L is diagonal by the same proposition, it follows that LT X L = νI , and hence that
XS = νI . This clearly implies that X = Xν and (z, y, S) = (zν, yν, Sν). This conclusion
shows that (NL Pν) has a unique stationary point satisfying all the conditions stated in
the theorem. That this stationary point is also a global minimum follows from the fact
that (zν, yν, Sν) is a global minimum of (Pν).

6.4. A globally convergent log-barrier algorithm

In this subsection, we introduce a straightforward barrier algorithm for solving (NL P).
The convergence of the algorithm is a simple consequence of Theorem 6(b).

Let constants γ1 ∈ [0, 1), γ2 > 1, and � > 0 be given, and for each ν > 0, define

N (ν)≡ {(w, y)∈�n++ ×�m : 2γ1ν e≤w ◦ ∇w f(w, y)≤ 2γ2ν e, ‖∇y f(w, y)‖≤�ν
}
,

(30)

where e ∈ �n is the vector of all ones. Note that each (w, y) ∈ N (ν) satisfies
∇w f(w, y) > 0 and that the unique minimizer (wν, yν) of (NL Pν) is in N (ν), as
can be seen from equation (29). We propose the following algorithm:

Log-Barrier Algorithm:
Let σ ∈ (0, 1) and µ0 > 0 be given, and set k = 0.
For k = 0, 1, 2, . . .

1. Use a minimization method to solve (NL Pµk ) approximately,
obtaining a point (wk, yk) ∈ N (µk).

2. Set µk+1 = σµk , increment k by 1, and return to step 1.
End

We stress that since (NL Pµk ) has a unique stationary point (wν, yν) for all µk > 0
which is also the unique minimum, step 1 of the algorithm will succeed using any
reasonable unconstrained minimization method. Specifically, any convergent, gradient-
based method will eventually produce a point in the set N (µk).

In view of (30), the algorithm clearly produces a sequence of points {(wk, yk)}k≥0
that satisfies the hypotheses of Theorem 6(b). Hence, the log-barrier algorithm converges
in the sense of Theorem 6.

In practice, a reasonable stopping criterion for the above barrier algorithm would be
that for a sufficiently small barrier parameter value the gradient of the corresponding
barrier function becomes sufficiently small. When a gradient-based method is applied,
however, a very high accuracy should not be expected without an excessively long
computation.

7. Final remarks

Large-scale SDP problems are difficult to solve by conventional interior-point methods
due to the necessity of solving large and mostly dense linear systems at every iteration.
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First-order algorithms based only on gradient information are attractive alternatives to
overcome this difficulty. In this paper, we have proposed an approach that leads to
first-order algorithms for solving a class of large-scale SDP problems via nonlinear
programming techniques.

The proposed transformation is applicable to both linear and nonlinear SDP problems
of the form given in (2). In this paper, we proposed a first-order log-barrier algorithm
and studied its global convergence for certain linear SDP problems. A similar algorithm
can also be easily constructed for nonlinear SDP problems that might be potentially
useful, but whose global convergence might be a much more complicated issue.

Although SDP problems of the given form are formulated as nonlinear programs,
a generic nonlinear optimization solver is unlikely to be effective in solving very large-
scale SDP problems without fully exploiting the special structures of these problems.

We have recently implemented variants of the first-order barrier algorithm for several
classes of linear SDP problems and found that the proposed approach is indeed a viable
approach to solving some large-scale SDP problems from combinatorial optimization.
The implementation details and numerical results are reported in [3]. Moreover, in [4]
we have extended the application of the proposed transformation to linear SDP problems
of a general form (where the diagonal of the primal matrix variable is not required to be
fixed), and presented preliminary numerical results. In addition, we have proposed and
analyzed a second-order potential reduction algorithm.
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