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Abstract. The Goemans–Williamson randomized algorithm guarantees a high-quality approx-
imation to the MAX-CUT problem, but the cost associated with such an approximation can be
excessively high for large-scale problems due to the need for solving an expensive semidefinite re-
laxation. In order to achieve better practical performance, we propose an alternative, rank-two
relaxation and develop a specialized version of the Goemans–Williamson technique. The proposed
approach leads to continuous optimization heuristics applicable to MAX-CUT as well as other binary
quadratic programs, for example the MAX-BISECTION problem.

A computer code based on the rank-two relaxation heuristics is compared with two state-of-the-
art semidefinite programming codes that implement the Goemans–Williamson randomized algorithm,
as well as with a purely heuristic code for effectively solving a particular MAX-CUT problem arising
in physics. Computational results show that the proposed approach is fast and scalable and, more
importantly, attains a higher approximation quality in practice than that of the Goemans–Williamson
randomized algorithm. An extension to MAX-BISECTION is also discussed, as is an important
difference between the proposed approach and the Goemans–Williamson algorithm; namely, that the
new approach does not guarantee an upper bound on the MAX-CUT optimal value.
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1. Introduction. Many combinatorial optimization problems can be formulated
as quadratic programs with binary variables, a simple example being the MAX-CUT
problem. Since such problems are usually NP-hard, which means that exact so-
lutions are difficult to obtain, different heuristic or approximation algorithms have
been proposed, often based on continuous relaxations of the original discrete prob-
lems. A relatively new relaxation scheme is called the semidefinite programming
relaxation (or SDP relaxation), in which a vector-valued binary variable is replaced
by a matrix-valued continuous variable, resulting in a convex optimization problem
called a semidefinite program (SDP) that can be solved to a prescribed accuracy in
polynomial time. Some early ideas related to such a relaxation can be found in a
number of works, including [10, 23, 24, 26, 27].

Based on solving the SDP relaxation, Goemans and Williamson [18] proposed
a randomized algorithm for the MAX-CUT problem and established the celebrated
0.878 performance guarantee. Since then, SDP relaxation has become a powerful
and popular theoretical tool for devising polynomial-time approximation algorithms
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for hard combinatorial optimization problems, and even in cases where performance
guarantees are not known, randomized algorithms based on the SDP relaxation can
often give good-quality approximate solutions in practice. It is important to note that
such Goemans–Williamson-type approaches produce both upper and lower bounds on
the optimal value of the underlying discrete problem.

In the meantime, there have been hopes that the SDP relaxation would eventually
lead to practically efficient algorithms for solving large-scale combinatorial optimiza-
tion problems by producing tight lower and upper bounds. In this regard, however,
results thus far have not always been encouraging. The main difficulty lies in the fact
that the number of variables and/or constraints in an SDP relaxation is one order of
magnitude higher than that of the original problem. Hence, the cost of solving such
SDP problems grows quickly as the size of the problems increases. In other words, a
key issue here is the scalability of the SDP relaxation approach with respect to the
problem size.

There has been a great deal of research effort towards improving the efficiency of
SDP solvers, including work on exploiting sparsity in more traditional interior-point
methods [1, 9, 16, 17, 29] and work on alternative methods [5, 6, 7, 20, 21, 30, 31].
Indeed, the efficiency of SDP solvers has been improved significantly in the last few
years. Nevertheless, the scalability problem still remains.

On the other hand, computational studies have continued to affirm that the
quality of bounds produced by the SDP relaxation is quite high. For example, the
Goemans–Williamson approximation algorithm produces lower bounds (i.e., discrete
solutions) that are better than or at least comparable to that of a number of heuristics
(see [11], for example). It is thus natural to investigate whether the quality of the
SDP relaxation can be preserved while somehow extending its use to problems of very
large size.

Can the approaches inspired by Goemans and Williamson, which rely on solving
the SDP relaxation, ever become competitive in attacking large-scale problems? In
this paper, we hope to provide a partial answer to this question. We will argue that
in terms of producing a lower bound, the answer seems to be negative, at least for
some problem classes including the familiar MAX-CUT problem. In other words, if
one is interested only in obtaining a high-quality approximate solution, then the SDP
relaxation does not seem to hold much promise. Our argument is based on strong
empirical evidence showing that on a large set of test problems the performance of
the SDP relaxation approach is clearly inferior to that of a new rank-two relaxation
approach that we will propose and study in this paper. The advantages of this rank-
two approach appear not only in terms of computational costs but, more notably, also
in terms of the approximation quality.

Based on the proposed rank-two relaxation and a specialized version of the
Goemans–Williamson technique, we construct a continuous optimization heuristic
for approximating the MAX-CUT problem and establish some properties for this ap-
proach that are useful in designing algorithms. We then compare a code based on our
heuristic with some state-of-the-art SDP-based approximation codes on a set of MAX-
CUT test problems. We also compare our code with a well-established, heuristic code
for MAX-CUT on a set of test problems from physics. Finally, we consider extensions
to other related problems—in particular, to the MAX-BISECTION problem.

This paper is organized as follows. Section 2 briefly introduces the MAX-CUT
problem and its corresponding SDP relaxation. In section 3, we present the rank-two
relaxation scheme and study its properties, including a useful characterization for a
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maximum cut. In section 4, we present our heuristic algorithm for the MAX-CUT
problem, and computational results on MAX-CUT are given in section 5. We extend
the heuristic to the MAX-BISECTION problem in section 5.3 and give numerical
results as well. Lastly, we conclude the paper in section 7.

2. Max-cut and the semidefinite relaxation. Let an undirected and con-
nected graph G = (V,E), where V = {1, 2, . . . , n} and E ⊂ {(i, j) : 1 ≤ i < j ≤ n},
be given. Let the edge weights wij = wji be given such that wij = 0 for (i, j) /∈ E,
and in particular, let wii = 0. The MAX-CUT problem is to find a bipartition (V1, V2)
of V so that the sum of the weights of the edges between V1 and V2 is maximized. It
is well known that the MAX-CUT problem can be formulated as

max
1

2

∑
1≤i<j≤n

wij(1− xixj)

subect to (s.t.) |xi| = 1, i = 1, . . . , n,
(1)

which has the same solution as the following binary quadratic program:

min
∑

1≤i<j≤n

wijxixj

s.t. |xi| = 1, i = 1, . . . , n.
(2)

Moreover, it is easy to verify that (2) can be rewritten into the matrix optimization
problem

min 1
2 W •X,

s.t. diag(X) = e,
rank(X) = 1,
X 	 0,

(3)

where W = [wij ], W •X =
∑n

i,j=1 wijxij , diag(X) is the vector in 
n consisting of
the diagonal elements of X, e is the vector of all ones, and X 	 0 means that X is
symmetric positive semidefinite.

Since the MAX-CUT problem is NP-hard, various heuristics and approximation
algorithms have been proposed to attack it. Recent ground-breaking work comes
from Goemans and Williamson [18], who replace the “unit scalars” xi in (2) by unit
vectors vi ∈ 
n and the scalar products xixj by the inner products v

T
i vj . The resulting

problem is the following relaxation of the MAX-CUT problem:

min
∑

1≤i<j≤n

wijv
T
i vj

s.t. ‖vi‖2 = 1, i = 1, . . . , n,

(4)

where vi ∈ 
n. Furthermore, a change of variables X = [vTi vj ] ∈ 
n×n leads to the
following so-called SDP relaxation for the MAX-CUT problem:

min 1
2 W •X,

s.t. diag(X) = e,
X 	 0.

(5)

It is well known that such an SDP problem is approximately solvable in polynomial
time (see [25], for example). Comparing (5) with (3), we clearly see that the SDP
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relaxation is nothing more than the problem obtained from (3) by dropping the rank-
one restriction on X.

It is worth observing that a solution (v1, . . . , vn) of (4) consists of n points on the
surface of the unit sphere in 
n, each representing a node in the graph. Goemans and
Williamson [18] proposed the following randomized algorithm for generating cuts in
the graph: after a solution of (4) is obtained, one randomly partitions the unit sphere
into two half-spheres H1 and H2 (the boundary in-between can be on either side)
and forms the bipartition consisting of V1 = {i : vi ∈ H1} and V2 = {i : vi ∈ H2}.
Furthermore, Goemans and Williamson established the celebrated result that if all
the weights are nonnegative, then the expected value of such randomly generated cuts
is at least 0.878 times the maximum cut value. That result gives a strong performance
guarantee for this randomization procedure. In fact, it has recently been shown in
[13] that the factor 0.878 is indeed the best possible in several senses.

3. A rank-two relaxation. In this section, we present an alternative rank-two
relaxation scheme that leads to a nonlinear optimization problem having only n vari-
ables but also a nonconvex objective function. Since the number of variables is not
increased from the MAX-CUT problem, this approach possesses scalability for relax-
ing large-scale problems. On the other hand, since the relaxation is nonconvex, we
cannot expect to find an optimal solution in practice, and so we can no longer ensure
a computable upper bound on the original problem. For solving this problem to gain
information about the underlying MAX-CUT problem, the trade-off is obviously be-
tween computational efficiency and a theoretical guarantee. When the main objective
is to obtain high-quality approximate solutions, however, we hope to demonstrate
through computational experiments that the gain clearly outweighs the loss.

We replace the “unit scalar” variables xi in (2) by unit vectors vi ∈ 
2 (not 
n),
and the scalar products xixj by the inner products v

T
i vj . As before, the constraint

|xi| = 1 becomes ‖vi‖2 = 1; namely, all the vectors vi should be on the unit circle.
In this way, we obtain a relaxation of the MAX-CUT problem that has exactly the
same form as (4) except that now all vectors vi are in 
2 instead of 
n. Alternatively,
this relaxation can be viewed as replacing the rank-one restriction on X in (3) by the
rank-two restriction rank(X) ≤ 2; hence we call it a rank-two relaxation.

Using polar coordinates, we can represent a set of n unit vectors v1, . . . , vn in 
2

by means of a vector θ = (θ1, . . . , θn)
T ∈ 
n consisting of n angles, namely,

vi =

(
cos θi
sin θi

)
∀ i = 1, . . . , n.

In this case, we have

vTi vj ≡ cos(θi − θj) ∀ i, j = 1, . . . , n.
Let T (θ) be the skew-symmetric matrix-valued function of θ defined by

Tij(θ) = θi − θj ∀ i, j = 1, . . . , n,
and let f : 
n → 
 be the function defined as

f(θ) ≡ 1

2
W • cos(T (θ)) ∀ θ ∈ 
n,(6)

where cos(T (θ)) is the n×n matrix whose entries are the cosine of the corresponding
entries of T (θ). Then, in terms of the polar coordinates, we obtain the following
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relaxation for the MAX-CUT problem:

min
θ∈�n

f(θ).(7)

This is an unconstrained optimization problem with a nonconvex objective function.
In general, it has multiple local, nonglobal minima.

The derivatives of the function f(θ) can be easily computed. Indeed, the first
partial derivatives of f(θ) are given by

∂f(θ)

∂θj
=

n∑
k=1

wkj sin(θk − θj) ∀ j = 1, . . . , n,

and hence,

g(θ) ≡ ∇f(θ) = [W ◦ sin(T (θ))]T e,(8)

where the notation “◦” indicates the Hadamard, i.e., entrywise, product of W and
sin(T (θ)). The second partial derivatives of f(θ) are given by

∂2f(θ)

∂θi∂θj
=

{
wij cos(θi − θj) if i �= j,

−∑
k �=j wkj cos(θk − θj) if i = j

for every i, j = 1, . . . , n, and hence the Hessian of f(θ) is given by

H(θ) ≡ ∇2f(θ) =W ◦ cos(T (θ))−Diag ([W ◦ cos(T (θ))]e) ,(9)

where, for any vector v, Diag(v) is the diagonal matrix with v on its diagonal. Note
that the major effort in the evaluation of f, g, and H is the computation of the
quantities W ◦ cos(T (θ)) and W ◦ sin(T (θ)).

There are interesting relationships between cuts in the graph and the function
f(θ), which we will now describe. We call a vector θ̄ ∈ 
n an angular representation
of a cut, or simply a cut, if there exist integers kij such that

θ̄i − θ̄j = kijπ ∀ i, j = 1, . . . , n.(10)

Clearly, in this case cos(θ̄i − θ̄j) = ±1 and there exists a binary vector x̄ ∈ {−1, 1}n
such that

cos(θ̄i − θ̄j) ≡ x̄ix̄j = ±1 ∀ i, j = 1, . . . , n.
Moreover, the cut value corresponding to a cut θ̄ is

ψ(θ̄) ≡ 1

2

∑
i>j

wij [1− cos(θ̄i − θ̄j)].(11)

We note that the function f(θ) is invariant with respect to simultaneous, uniform
rotation on every component of θ, i.e., f(θ) ≡ f(θ+τe) for any scalar τ , and is periodic
with a period of 2π with respect to each variable θi. Modulo the uniform rotation
and the periodicity for each variable, there is an obvious one-to-one correspondence
between the binary and angular representations of a cut; namely,

θ̄i =

{
0 if x̄i = +1,
π if x̄i = −1,
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and vice versa. With the above correspondence in mind, in what follows we will use θ̄
and x̄ interchangeably to represent a cut. Moreover, given an angular representation
of a cut θ̄ (or a binary one x̄), we will use the notation x(θ̄) (or θ(x̄)) to denote the
corresponding binary (or angular) representation of the same cut.

Since sin(θ̄i − θ̄j) = 0 for any θ̄ satisfying (10), it follows directly from (8) that
g(θ̄) = 0 at any cut θ̄. We state this simple observation in the following proposition.

Proposition 3.1. Every cut θ̄ ∈ 
n is a stationary point of the function f(θ).
We will now derive in the lemma below a characterization of a maximum (mini-

mum) cut which will be useful in the later development. We first need the following
definition.

Definition 3.2. A matrix M ∈ 
n×n is called nonnegatively summable if the
sum of the entries in every principal submatrix of M is nonnegative, or equivalently,
if uTMu ≥ 0 for every binary vector u ∈ {0, 1}n.

Clearly, every positive semidefinite matrix is nonnegatively summable. On the
other hand, the matrix eeT − I is nonnegatively summable, but not positive semidef-
inite.

Lemma 3.3. Let x̄ ∈ {−1, 1}n be given and consider the matrix M(x̄) ∈ 
n×n

defined as

M(x̄) =W ◦ (x̄x̄T )−Diag([W ◦ (x̄x̄T )]e).(12)

Then, x̄ is a maximum (respectively, minimum) cut if and only if M(x̄) (respectively,
−M(x̄)) is nonnegatively summable.

Proof. Let q : 
n → 
 be the quadratic function defined as q(x) = (xTWx)/2 for
all x ∈ 
n, and note that x̄ is a maximum cut if and only if x̄ minimizes q(x) over
the set of all x ∈ {−1, 1}n. Now, let x ∈ {−1, 1}n be given and observe that

x̄− x = 2δ ◦ x̄,
where “◦” represents the Hadamard product and δ ∈ 
n is defined as

δi ≡
{
0 if xi = x̄i,
1 if xi �= x̄i.(13)

Using this identity and the fact that δT v = δTDiag(v)δ for any v ∈ 
n, we obtain

q(x)− q(x̄) = (Wx̄)T (x− x̄) + 1

2
(x− x̄)TW (x− x̄)

= −2x̄TW (δ ◦ x̄) + 2(δ ◦ x̄)TW (δ ◦ x̄)
= −2δT ([W ◦ x̄x̄T ]e) + 2δT [W ◦ x̄x̄T ]δ
= −2δTDiag ([W ◦ x̄x̄T ]e) δ + 2δT [W ◦ x̄x̄T ]δ = 2δTM(x̄)δ.

Noting that every x ∈ {−1, 1}n corresponds to a unique vector δ ∈ {0, 1}n via (13),
and vice versa, we conclude from the above identity that x̄ minimizes q(x) over x ∈
{−1, 1}n if and only if δTM(x̄)δ ≥ 0 for all δ ∈ {0, 1}n, or equivalently, M(x̄) is
nonnegatively summable.

The proof of the second equivalence is analogous. Hence, the result
follows.

Although every cut is a stationary point of f(θ), the following theorem guarantees
that only the maximum cuts can possibly be local minima of f(θ). In fact, the theorem
gives a complete classification of cuts as stationary points of the function f(θ).
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Theorem 3.4. Let θ̄ be a cut and let x̄ ≡ x(θ̄) be the associated binary cut. If
θ̄ is a local minimum (respectively, local maximum) of f(θ), then x̄ is a maximum
(respectively, minimum) cut. Consequently, if x̄ is neither a maximum cut nor a
minimum cut, then θ̄ must be a saddle point of f(θ).

Proof. Since x̄ix̄j = cos(θ̄i − θ̄j), we have ∇2f(θ̄) ≡ M(x(θ̄)) due to (9) and
(12). If θ̄ is a local minimum of f , then the Hessian ∇2f(θ̄) is positive semidefinite
and hence nonnegatively summable. The first implication of the theorem then follows
from the first equivalence of Lemma 3.3. The second implication of the theorem can
be proved in a similar way using the second equivalence of Lemma 3.3. Hence, the
result follows.

The converses of the two implications in the above theorem do not hold. Indeed,
consider the unweighted graph K3 (the complete graph with three nodes) for which
the cut x̄ = [1 − 1 − 1]T is maximum. From (12), we have

M(x̄) =


 2 −1 −1

−1 0 1
−1 1 0


 ,

which is indeed nonnegatively summable but not positive semidefinite. Hence the
corresponding angular representation θ̄ is not a local minimum of the function f(θ)
in view of the fact that M(x̄) ≡ ∇2f(θ̄).

There are indeed instances where maximum cuts are local minima of f(θ), as
indicated by the following observation.

Proposition 3.5. For a bipartite graph with nonnegative weights, the global
minimum value of f(θ) is attained by a maximum cut.

Proof. A maximum cut is one that cuts through all the edges in the bipartite
graph. For this cut, cos(θi − θj) = −1 for all edges (i, j) ∈ E. Hence the global
minimum value of f(θ) is attained at −eTWe/2.

Obviously, for problems where a maximum cut x̄ corresponds to a local minimum
of f(θ), the optimality of x̄ can be checked in polynomial time by determining whether
M(x̄) is positive semidefinite or not.

Since nonmaximum cuts cannot possibly be local minima of f(θ), a good min-
imization algorithm would not be attracted to stationary points corresponding to
nonmaximum cuts that are either local maxima or saddle points of f(θ). This fact
will play an important role in the construction of our algorithms.

4. A heuristic algorithm for MAX-CUT. To produce an approximate so-
lution to the MAX-CUT problem, we first minimize the function f(θ) and obtain a
local minimum θ corresponding to a distribution of points on the unit circle. Using
periodicity, we may easily assume that θi ∈ [0, 2π) for each i = 1, . . . , n. Any partition
of the unit circle into two equal halves gives a cut as follows. Pick an angle α ∈ [0, π)
and let

xi =

{
+1 if θi ∈ [α, α+ π),
−1 otherwise.

(14)

The corresponding value of the cut x is given by

γ(x) ≡ 1

2

∑
i>j

wij(1− xixj).(15)

An advantage of the rank-two relaxation over the SDP relaxation is that it is straight-
forward and inexpensive to examine all possible cuts generated in the above fashion,
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making it easy to find the best one. The following, deterministic (rather than random)
procedure finds a best possible Goemans–Williamson-type cut associated with a given
θ. Without loss of generality, let us assume that θ satisfies θi ∈ [0, 2π), i = 1, . . . , n,
and that

θ1 ≤ θ2 ≤ · · · ≤ θn,

after a reordering if necessary.
Procedure-CUT (input θ, output x∗).

Let α = 0, Γ = −∞, i = 1. Let j be the smallest index such that
θj > π if there is one; otherwise set j = n+ 1. Set θn+1 = 2π.
While α ≤ π

1. Generate cut x by (14) and compute γ(x).
2. If γ(x) > Γ, then let Γ = γ(x) and x∗ = x.
3. If θi ≤ θj − π, let α = θi and increment i by 1;
otherwise let α = θj − π and increment j by 1.

End
Since our rank-two relaxation has the same form as Goemans and Williamson’s

relaxation (4), except that ours has variables in 
2 rather than 
n, the same analysis
of Goemans and Williamson, with minimal changes, can be applied to show that the
cut value generated by the above procedure is at least 0.878 times the relaxed cut
value ψ(θ) as is defined in (11). That is,

γ(x∗) ≥ 0.878ψ(θ).

However, since we cannot guarantee that ψ(θ) is an upper bound on the maximum
cut value, there is no performance guarantee. Nevertheless, we do have the property
that, in a weak sense and to some extent, the better the local maximum of ψ(θ)
(or, equivalently, local minimum of f(θ)) we obtain, the better a cut will likely be
produced. To see this, let x∗a and x

∗
b be two binary cuts generated by Procedure-CUT

from θa and θb, respectively. If γ(x
∗
a) ≤ ψ(θa) and ψ(θb) > 1

0.878ψ(θa), then since

γ(x∗b) ≥ 0.878 ψ(θb) > ψ(θa) ≥ γ(x∗a),

x∗b is a better cut than x
∗
a.

After we minimize the function f(θ) and obtain a local minimum θ1, we will call
on Procedure-CUT to produce a best possible cut x1 associated with θ1. At this
point, we may stop and return the generated cut x1. On the other hand, if we are
willing to spend more time, we may try to improve the quality of our approximation.

We know that the angular representation of the cut x1, θ(x1), is a stationary
point—most likely a saddle point—of the function f(θ), but not a minimizer unless it
is already a maximum cut. Assuming that θ(x1) is in fact a saddle point, it is probable
that close by there are local minima of f that are deeper than θ1 is. Although we
cannot restart the minimization directly from the stationary point θ(x1), we can
certainly restart from a slight perturbation of θ(x1) and hopefully escape to a better
local minimum θ2, which in turn would hopefully lead to a better cut x2 or θ(x2).
We can continue this process until we reach a cut from which we deem that further
improvement seems unlikely. We state this heuristic as the following algorithm.

Algorithm 1 (input N, θ0, output x∗):
Given θ0 ∈ 
n and integer N ≥ 0, let k = 0 and Γ = −∞.
While k ≤ N
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1. Starting from θ0, minimize f to get θ.
2. Compute a best cut x associated with θ by Procedure-CUT.
3. If γ(x) > Γ, let Γ = γ(x), x∗ = x, and k = 0;
otherwise set k = k + 1.

4. Set θ0 to a random perturbation of the angular representation
of x.

End
The parameter N controls how many consecutive, nonimproving random pertur-

bations are allowed before we stop the algorithm. If so desired, the algorithm can be
runM times with multiple starting points θ0 to increase the chances of achieving bet-
ter cuts. Generally speaking, the larger N and M are, the longer time the algorithm
will take to run, and the better cut it will return.

A geometric interpretation of Algorithm 1 is as follows. After we arrive at a local
minimum of f , we search around this local minimum for a nearby saddle point (i.e.,
a cut) that has the lowest f -value in the neighborhood. We then move to the saddle
point and restart the minimization to locate a nearby local minimum that, hopefully,
has a smaller f -value than the previous one. We repeat this process until we deem
that the search has become unfruitful.

5. Computational results for MAX-CUT. We have implemented Algorithm
1 in a Fortran90 code named “CirCut.” For the minimization of f(θ), we use a
simple gradient algorithm with a backtracking Armijo line-search. Since numerical
experiments indicate that the accuracy of the minimization is not crucial, we stop the
minimization when the relative change in the function value is less than 10−4.

In CirCut, we also include an option for a simple local search in the cut space;
that is, after a cut is returned from Procedure-CUT, one has the option to improve it
through a quick local search that moves one or two nodes at a time, producing a so-
called locally 2-optimal solution. This feature can often slightly improve the quality
of a cut and is therefore set to be a default feature unless specified otherwise.

We compare our code CirCut with two SDP codes, SBmethod and DSDP, both
implementing the Goemans–Williamson randomized algorithm (along with other fea-
tures). Since these codes produce both an upper bound and a lower bound, while
our code only gives the latter, the comparisons should not be taken at face value.
In carrying out such comparisons, we have two objectives in mind. First, since our
heuristic is derived from the Goemans–Williamson randomized algorithm by a rank
restriction, we want to see how our modifications affect the performance, both time-
wise and quality-wise, of generating lower bounds. Second, since the approximation
quality of the Goemans–Williamson randomized algorithm has been shown to be at
least as good as a number of heuristics [11], through the comparisons we hope to get
a good picture of the approximation quality of our heuristic. We select the codes
SBmethod and DSDP for our comparisons because they represent the state of the art
in solving large-scale SDP problems.

We also compare our code with a state-of-the-art heuristic code for MAX-CUT
problems from the Ising spin glass model in physics, developed by Hartmann [19].
The purpose of this comparison is self-evident.

5.1. Comparison with SBmethod. We first report numerical results on the
MAX-CUT problem in comparison with SBmethod, an SDP code developed by Helm-
berg and Rendl [20]. SBmethod solves a large class of semidefinite programs using a
specialized bundle method, the so-called spectral bundle method, and in particular is
one of the fastest codes for solving MAX-CUT SDP relaxations.
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Table 1
Statistics for the torus set of MAX-CUT problems.

Graph name Size Lower bound Upper bound SDP bound

pm3-8-50 (512, 1536) 456 461 527
pm3-15-50 (3375, 10125) 2988 3069.51 3474

g3-8 (512, 1536) 41684814 41684814 45735817
g3-15 (3375, 10125) 2.85790e+8 2.87725e+8 3.1346e+8

Table 2
Comparison with SBmethod on MAX-CUT problems from the torus set.

Graph SBmethod CirCut (N = 4, M = 100)

Name Value Time Avg. value Avg. time Best value

pm3-8-50 434 28.72 443 0.218 452
pm3-15-50 2728 2131.89 2888 2.332 2936

g3-8 4.04736e+7 36.03 4.09098e+7 0.298 4.13946e+7
g3-15 2.73412e+8 3604.54 2.74357e+8 2.835 2.77917e+8

The first set of test problems comes from the DIMACS library of mixed semi-
definite quadratic linear programs [12]. This set contains four MAX-CUT problems,
called the torus problems, which originated from the Ising model of spin glasses in
physics (see section 5.3 for details). In Table 1, we give statistics for this set of
problems; note that the sizes of the graphs are given as (|V |, |E|). In the table, the
columns “Lower bound” and “Upper bound” give the best lower and upper bounds
on the maximum cut value known to us to date, and the column “SDP bound” gives
the SDP upper bounds on the maximum cut values. All the lower and upper bounds
were supplied to us by Michael Jünger and Frauke Liers [22] except for the lower
bounds 2988 for pm3-15-50 and 285790637 for g3-15, which were the best cut values
obtained so far by CirCut on these two problems, respectively. We mention that for
pm3-8-50 and g3-8, the best cut values obtained so far by CirCut are, respectively,
454 and 41684814, and the latter value is optimal.

In Table 2, we present a comparison between the SBmethod and CirCut codes.
Since the latest version of SBmethod does not include the functionality of generating
cuts by the Goemans–Williamson randomized procedure, we used an earlier version
that does. It is quite likely that the latest version of SBmethod would produce better
timings than those presented in the table.

We ran both SBmethod and CirCut on an SGI Origin2000 machine with sixteen
300MHZ R12000 processors at Rice University. Since neither code is parallel, however,
only one processor was used at a time. For both codes, the cut values were obtained
without any postprocessing heuristics, i.e., the simple local search feature of CirCut
was not invoked. The default parameter settings were used for SBmethod. In Table 2,
the cut value and computation time are reported for each problem. For CirCut, the
value of M is the number of times Algorithm 1 was run with random starting points,
and the value of N is the parameter required by Algorithm 1. The average time per
run, the average cut value, and the best value in the M runs are reported in the last
three columns of the table, respectively. All the reported times are in seconds. From
the table, it is clear that an average run of CirCut is much faster and produces better
quality cuts on all four test problems.

More results are reported in Table 3 for CirCut using different values of N . These
results indicate that the variations between the average and best cut values are quite
moderate, and they also show that even with N = 0 (no further improvement at-
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Table 3
More CirCut results on MAX-CUT problems from the torus set.

Graph CirCut (N = 0, M = 100) CirCut (N = 8, M = 100)

Name Avg. val. Avg. time Best val. Avg. val. Avg. time Best val.

pm3-8-50 430 0.031 444 448 0.386 454
pm3-15-50 2792 0.212 2834 2937 4.272 2964

g3-8 37870328 0.024 40314704 40917332 0.538 41684814
g3-15 253522848 0.154 264732800 277864512 7.880 281029888

tempted after minimization), CirCut gives quite respectable cuts in a minimal amount
of time on average. As N increases, CirCut produces better quality cuts and of course
uses more time. However, even forN = 8, CirCut is still faster by orders of magnitude.

We should bear in mind that in every run SBmethod also produces an upper
bound; hence the running times for CirCut and SBmethod are not exactly comparable.
They become totally comparable only when the sole objective of the computation is
to obtain approximate solutions. These comments also apply to the comparisons
presented in the next subsection and in section 6.

5.2. Comparison with DSDP. The second set of test problems are from the
so-called G-set graphs, which are randomly generated. Recently, Choi and Ye [9]
reported computational results on a subset of G-set graphs that were solved as MAX-
CUT problems using their SDP code COPL-DSDP, or simply DSDP. The code DSDP
uses a dual-scaling interior-point algorithm and an iterative linear-equation solver. It
is currently one of the fastest interior-point codes for solving SDP problems.

We ran CirCut on a subset of G-set graphs as MAX-CUT problems and compared
our results with those reported in Choi and Ye [9]. The comparison is given in Table 4,
along with graph name and size information. We emphasize that the timing for DSDP
was obtained on an HP 9000/785/C3600 machine with a 367 MHZ processor [8], while
ours was on the aforementioned SGI Origin2000 machine at Rice University. These
two machines seem to have comparable processing speeds. We did not run DSDP
on the same computer at Rice University for several reasons: (1) the latest version
of DSDP with an iterative linear-equation solver has not yet been made publicly
available, (2) since the speeds of DSDP and CirCut are orders of magnitude apart,
a precise timing is unnecessary in a qualitative comparison, and (3) it would be
excessively time-consuming to rerun DSDP on all the tested problems (as can be see
from Table 4).

The first two columns of Table 4 contain information concerning the tested graphs,
where the sizes are again given as (|V |, |E|), followed by timing (in seconds) and cut
value information. The DSDP results were given as reported in [9]. We ran CirCut
using two sets of parameters: “C1” results were for N = 0 and M = 1 (no further
improvement after minimization and a single starting point), and “C2” for N = 10
and M = 5. Note that in this table the running times listed for C2 include all M = 5
runs; i.e., the times are not averaged as in the previous tables.

We observe that C1 took less than 11 seconds to return approximate solutions
to all the 27 test problems with a quality that, on average, is nearly as good as that
of the DSDP cuts, which required more than 5 days of computation. On the other
hand, C2 took more time to generate the cuts, but the quality of the C2 cuts is almost
uniformly better than those of DSDP, with one exception. Only on problem G50 did
DSDP produce a slightly better cut. We note, however, that CirCut can easily find a
cut of the same value on G50 if M is set to a larger value.
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Table 4
Comparison with DSDP on MAX-CUT problems from the G-set.

Graph Time Value

Name Size DSDP C1 C2 DSDP C1 C2

G11 (800, 1600) 16.6 0.06 3.88 542 524 554
G12 (800, 1600) 17.7 0.06 3.76 540 512 552
G13 (800, 1600) 18.2 0.06 3.45 564 536 572
G14 (800, 4694) 35.2 0.09 5.53 2922 3016 3053
G15 (800, 4661) 32.1 0.09 5.91 2938 3011 3039
G20 (800, 4672) 32.0 0.11 5.56 838 901 939
G21 (800, 4667) 37.6 0.08 5.56 841 887 921
G22 (2000, 19990) 4123.3 0.36 22.31 12960 13148 13331
G23 (2000, 19990) 3233.5 0.37 18.85 13006 13197 13269
G24 (2000, 19990) 3250.7 0.30 27.30 12933 13195 13287
G30 (2000, 19990) 3718.9 0.32 23.77 3038 3234 3377
G31 (2000, 19990) 3835.7 0.33 19.61 2851 3146 3255
G32 (2000, 4000) 142.6 0.18 13.09 1338 1306 1380
G33 (2000, 4000) 132.5 0.14 12.62 1330 1290 1352
G34 (2000, 4000) 156.7 0.12 9.82 1334 1276 1358
G50 (3000, 6000) 264.6 0.17 15.71 5880 5748 5856
G55 (5000, 12498) 1474.8 0.54 39.73 9960 10000 10240
G56 (5000, 12498) 15618.6 0.46 33.52 3634 3757 3943
G57 (5000, 10000) 1819.8 0.48 32.23 3320 3202 3412
G60 (7000, 17148) 58535.1 0.73 56.75 13610 13765 14081
G61 (7000, 17148) 52719.6 0.51 63.57 5252 5429 5690
G62 (7000, 14000) 5187.2 0.47 47.04 4612 4486 4740
G64 (7000, 41459) 102163.9 0.94 67.56 7624 8216 8575
G70 (10000, 9999) 33116.2 0.37 94.39 9456 9280 9529
G72 (10000, 20000) 12838.1 0.72 86.59 6644 6444 6820
G77 (14000, 28000) 32643.4 0.95 109.41 9418 9108 9670
G81 (20000, 40000) 131778.2 1.49 140.46 13448 12830 13662

5.3. Comparison with a heuristic algorithm from physics. An area of
great interest in modern physics is the study of spin glasses [3, 14], and the particular
problem of computing the so-called groundstate of an Ising spin glass can be cast as
the problem of finding a maximum cut in a edge-weighted graph. In this section, we
compare our heuristic CirCut with a successful heuristic by Hartmann [19] for finding
an approximation to the groundstate of specially structured spin glasses.

Roughly speaking, a spin glass is a collection of n magnetic spins that possesses
various interactions between the spins and also exhibits disorder in its frozen, or
low-energy, state. In the collection, each spin can take on one of a finite number of
positions. For example, when there are exactly two possible positions, the two posi-
tions are imagined as “up” and “down” (or +1 and −1). In addition, the interactions
between the spins describe how the positions of a given spin and its “neighbor” spins
affect the overall energy of the spin glass. For example, in Table 5 we show the energy
contributed by two interacting spins i and j for a spin glass in which (i) there are two
possible positions for a spin, (ii) all interactions act pairwise between spins, and (iii)
each interaction is either positive or negative.

The groundstate, or low-energy state, of a spin glass occurs when the positions of
the n spins are chosen so as to minimize the overall energy of the spin glass. Addition-
ally, spin glasses are characterized by the fact that their groundstate is disordered;
that is, all interactions cannot be satisfied with zero energy, and hence the overall
energy of the system is positive. (Note that the standard physics terminology differs
somewhat from—but is equivalent to—our terminology.)
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Table 5
Energy levels of two interacting spins.

i j Interaction Energy

up up + 0
up down + 1

down up + 1
down down + 0
up up − 1
up down − 0

down up − 0
down down − 1

A special subclass of spin glasses, called the Ising spin glasses, has been studied
extensively. Ising spin glasses satisfy items (i) and (ii) of the previous paragraph, and
the so-called ±J model of Ising spin glasses also satisfies item (iii). It is not difficult
to see that this model can be represented by an edge-weighted graph Ḡ = (V,E, W̄ ),
where the vertex set V consists of the n spins, the edge set E describes the pairwise
interactions, and the symmetric weight matrix W̄ = (w̄ij) has w̄ij equal to 1, −1, or
0, respectively, if i and j interact positively, negatively, or not at all. Moreover, if a
variable xi that can take on values +1 or −1 is used to represent the position of spin
i, then the groundstate of the Ising spin glass can be seen to be the optimal solution
of the optimization

min
∑

(i,j)∈E

1

2
(1− w̄ijxixj)

s.t. |xi| = 1, i = 1, . . . , n.
(16)

After some immediate simplifications, (16) can be written in the equivalent form (2),
where wij = −w̄ij , that is, (16) is equivalent to the maximum cut problem on the
graph G = (V,E,W ), where W = −W̄ .

Many approaches for solving (16) have been investigated in both the physics
community and the optimization community (see [2, 28]). Recently, one of the most
successful heuristic approaches for solving (16) has been the approach of Hartmann
[19], which in particular focuses on finding the groundstates of ±J Ising spin glasses
that can be embedded as square or cubic lattices in two or three dimensions, respec-
tively. The interactions are of the type “nearest neighbor” so that each vertex (or
spin) has four neighbors in two dimensions and six in three dimensions. Such lattice
graphs lead to regular graphs having a great deal of structure. In addition, Hart-
mann considers cases in which negative interactions occur as many times as positive
interactions, that is,

∑
(i,j)∈E w̄ij = 0. Hartmann reported strong computational re-

sults with square lattices having side length L = 4, 5, . . . , 30 and cubic lattices having
length L = 4, 5, . . . , 14. Note that the square lattices have a total of L2 vertices and
that the cubic lattices have a total of L3 vertices.

Although we refer the reader to [19] for a full description of Hartmann’s algorithm,
we summarize the basic idea of the method here. Given a feasible solution x to (16),
the algorithm tries to find a new feasible solution x̂ having less energy by using x to
randomly build up a set of nodes V̂ for which the groundstate xV̂ of the induced graph

on V̂ can be found in polynomial time using a max-flow min-cut algorithm. Then x̂
is formed from x by setting x̂i = (xV̂ )i if i ∈ V̂ and x̂i = xi if i �∈ V . The energy of
x̂ is guaranteed to be no worse than that of x, and so this procedure can be iterated
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Table 6
Comparison of CirCut and Hartmann’s algorithm.

Graph Cut values Times

# |V | |E| C1 C2 H1 H2 C1 C2 H1 H2

1 1000 3000 874 880 882 896 5 39 69 9528
2 1000 3000 894 892 892 900 7 47 68 9605
3 1000 3000 878 882 878 892 6 45 68 9537
4 1000 3000 888 894 890 898 7 54 68 9583
5 1000 3000 878 880 876 886 6 48 69 9551
6 1000 3000 866 876 874 888 6 47 68 9555
7 1000 3000 882 894 890 900 8 57 69 9564
8 1000 3000 872 874 870 882 7 53 69 9629
9 1000 3000 884 896 888 902 6 48 68 9551

10 1000 3000 876 888 884 894 5 56 69 9629
11 2744 8232 2396 2410 2382 2446 22 219 236 33049
12 2744 8232 2398 2426 2390 2458 20 170 236 32836
13 2744 8232 2382 2404 2370 2442 20 165 235 33171
14 2744 8232 2398 2418 2394 2450 19 173 236 33136
15 2744 8232 2382 2412 2370 2446 20 177 235 32851
16 2744 8232 2404 2416 2384 2450 23 183 236 33129
17 2744 8232 2390 2406 2384 2444 19 166 234 32999
18 2744 8232 2412 2414 2386 2446 28 171 236 33089
19 2744 8232 2382 2390 2356 2424 31 187 235 32963
20 2744 8232 2410 2422 2388 2458 19 166 236 33140

until the energy exhibits no strict improvement from iteration to iteration. Various
parameters of the algorithm can affect its running time and also the quality of solution
that is returned; these parameters determine the number of iterations allowed with
no improvement, the number of independent times the overall algorithm is run, and,
more generally, the exhaustiveness of the search performed by the algorithm.

We ran both CirCut and the algorithm of Hartmann on the same SGI Origin 2000
used for the computational results in the previous subsections. Hartmann’s code is
written in ANSI C and uses only one processor. In addition, we compiled both codes
with the same compiler optimization option. In Table 6, we compare CirCut with the
algorithm of Hartmann on twenty graphs arising from twenty cubic lattices having
randomly generated interaction magnitudes; these problems are of the same type that
Hartmann investigated in [19]. Ten of the graphs have (L, n, |E|) = (10, 1000, 3000),
and ten have (L, n, |E|) = (14, 2744, 8232). We note that, for comparison purposes,
the output of each algorithm is in terms of the equivalent maximum cut problem.
Two versions of CirCut corresponding to the parameter choices (N,M) = (10, 5) and
(N,M) = (50, 10) were run on all thirty graphs; the versions are named C1 and
C2, respectively. Similarly, two versions H1 and H2 of Hartmann’s algorithm were
run such that H1 performed a less exhaustive search than H2. We remark that H2
represented the default parameters supplied to us by Hartmann.

Table 6 contains data corresponding to the four algorithms’ performance on each
of the twenty graphs. The first three columns give the graph number, the size of V , and
the size of E. The next four columns give the cut value found by the algorithms, and
the final four columns give the times (in seconds) required by each of the algorithms.

It can be seen from the table that on the first ten graphs, C1 had the fastest
speed, but the cuts it returned were in a few cases inferior to those produced by H1.
On the other hand, C2 was able to produce better cuts than H1 in a considerably
shorter amount of time. The overall winner in terms of cut values on graphs 1–10
was H2, but this performance was achieved at the expense of very large computation
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times. For the second set of graphs 11–20, we see that both C1 and C2 outperformed
H1 in terms of cut values and that C1 was much faster than H1 and C2 was notably
faster than H1 as well. Again, H2 returned the best cuts but took a very long time.
In all cases, the differences in the quality of cuts generated by the algorithms are
small, percentage-wise. For example, on average C1 attained over 98 percent of the
cut value of H2 in an amount of time less than one-tenth of a percent of that used by
H2.

Overall, the results seem to indicate that C2 is a good choice when quality cuts
are needed in a short amount of time. In particular, C2 is at least as effective as H1. In
addition, C1 is a good alternative, especially when the size of the graph becomes large.
When high quality cuts are needed and time is not an issue, H2 is the best choice.
Moreover, we remark that, based on some unreported experimentation, CirCut does
not seem to be able to achieve the same cut values as H2 even if CirCut is allowed to
search for a very long time.

6. Some extensions. Conceptually, there is little difficulty in extending the
rank-two relaxation idea to other combinatorial optimization problems in the form of
a binary quadratic program, especially to those arising from graph bipartitioning. For
a given problem, however, whether or not the rank-two relaxation will lead to high-
performance algorithms, like the one we have demonstrated for MAX-CUT, must be
determined by an individual investigation and a careful evaluation. Close attention
must also be paid to the specific structure of each problem in order to obtain good
algorithms.

In this section, we focus on extending the rank-two relaxation idea to a close
relative of MAX-CUT—the MAX-BISECTION problem. MAX-BISECTION is the
same as MAX-CUT except that it has the additional constraint eTx = 0 (i.e., the
number of positive ones in x must equal the number of negative ones, hence implying
that n should be even), which can also be written as

(eTx)2 = (eeT ) • (xxT ) = 0.
After removal of the rank-one restriction, one obtains the following SDP relaxation
of the MAX-BISECTION problem (comparable to (5)):

min 1
2 W •X

s.t. diag(X) = e,
eeT •X = 0,
X 	 0.

(17)

Randomized procedures similar to the Goemans–Williamson technique for MAX-CUT
have been proposed with different performance guarantees for MAX-BISECTION;
see [15, 32], for example.

In an approach analogous to that used for MAX-CUT, using the rank-two relax-
ation and polar coordinates, we obtain a new relaxation for MAX-BISECTION:

min f(θ)
s.t. eT cos(T (θ))e = 0.

(18)

Suppose that we have obtained a (local or global) minimizer θ for (18). How do
we generate a bisection? Without loss of generality, let us assume that n is even and
that θ satisfies θi ∈ [0, 2π), i = 1, . . . , n. We may also assume that, after a reordering,

θ1 ≤ θ2 ≤ · · · ≤ θn.
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Then, to generate a bisection, we pick any integer k ∈ [1, n/2) and let

xi =

{
1 if i ∈ [k, k + n/2),

−1 otherwise.
(19)

The following procedure efficiently considers all possible values of k in (19) and saves
the best resultant bisection.

Procedure-BIS (input θ, output x∗).
Given θ ∈ 
n such that 0 ≤ θ1 ≤ · · · ≤ θn < 2π, let Γ = −∞.
For k = 1, . . . , n/2− 1

1. Generate a cut x by (19) and compute γ(x).
2. If γ(x) > Γ, then let Γ = γ(x) and x∗ = x.

End
Instead of solving the constrained relaxation (18), we have found through nu-

merical experiments that solving the unconstrained relaxation (7) can generate the
same or better quality bisections while taking less time. Intuitively, this is not hard
to understand since the best bisection generated by Procedure-BIS for a given θ is
dependent only on the ordering of the points along the circle and independent of the
actual locations of the points. In fact, it is easy to verify that the constraint in (18) is
equivalent to ‖[v1 · · · vn]e‖2 = 0, where vi = [cos(θi) sin(θi)]

T ; that is, the n vectors
on the unit circle must sum up to zero. So by itself, the constraint puts a restriction
on the locations of points but has nothing to do with their ordering. Hence, whether
a given θ satisfies the constraint or not has no bearing on the quality of the bisection
x∗ generated by Procedure-BIS. On the other hand, the quality of x∗ depends greatly
on the objective value f(θ). Since it is more likely to obtain lower function values at
unconstrained local minima than at constrained ones, we are more likely to obtain
better bisections without the constraint.

In view of this, we construct our heuristic algorithm based on minimizing f(θ)
without the additional constraint. We simply replace Procedure-CUT in Algorithm-1
by Procedure-BIS and obtain a heuristic algorithm for the MAX-BISECTION prob-
lem, which we call Algorithm 2. In Algorithm 2, we also have the option of improving
a cut by a minimal local search that allows swapping only a pair of nodes at a time
and is set to be a default feature.

We ran Algorithm-2 of CirCut on a subset of the G-set problems plus two addi-
tional test problems. These extra problems were contained in a test set used by Choi
and Ye [9] and are publicly available.

In Table 7, we compare the results of CirCut with the results of DSDP re-
ported in [9]. Again, we mention that the timing for DSDP was obtained on an
HP 9000/785/C3600 computer with a 367 MHZ processor, while ours was on an SGI
Origin2000 machine with sixteen 300 MHZ processors at Rice University. (Note,
however, that both codes always use a single processor.)

Again, the first two columns of Table 7 contain the information on the tested
graphs, followed by timing (in seconds) and cut value information. We ran CirCut
using two sets of parameters: C1 results were for N = 0 and M = 1 (no further
improvement after minimization and a single starting point); and C2 for N = 5 and
M = 1.

C1 took less than 22 seconds to return approximate solutions to all 13 test prob-
lems with a quality that is on average superior to that of DSDP. While C2 took more
time to generate the bisections, the quality of the bisections generated by C2 is better
than that of DSDP on all but one problem: G50. Again, we mention that if N and
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Table 7
Comparison with DSDP on MAX-BISECTION problems.

Graph Time Value

Name Size DSDP C1 C2 DSDP C1 C2

G50 (3000, 6000) 462.2 0.29 2.29 5878 5690 5830
G55 (5000,12498) 1793.4 0.46 4.32 9958 10007 10171
G56 (5000,12498) 20793.5 0.44 3.36 3611 3672 3835
G57 (5000,10000) 2090.8 0.32 2.98 3322 3146 3382
G60 (7000,17148) 48949.9 0.54 4.66 13640 13759 13945
G61 (7000,17148) 42467.2 0.62 7.16 5195 5312 5545
G62 (7000,14000) 5446.0 0.50 4.98 4576 4402 4706
G64 (7000,41459) 123409.7 0.92 12.05 7700 8056 8431
G72 (10000,20000) 15383.9 0.76 7.34 6628 6314 6736
G77 (14000,28000) 36446.7 1.15 11.38 6560 8980 9638
G81 (20000,40000) 334824.2 1.54 26.87 9450 12582 13618
bm1 (882,4711) 33.9 0.08 0.65 848 857 863

biomedp (6514,629839) 46750.7 13.89 37.55 5355 5575 5593

M are set to larger values, CirCut is able to produce a bisection of the same value on
G50 as that of DSDP’s, within a time still much shorter than that required by DSDP.

6.1. Maximization versus minimization. So far, we have presented only
computational results on maximization problems, i.e., the MAX-CUT and MAX-
BISECTION problems, which are equivalent to minimizing f(θ). Moreover, all of the
graphs in the test sets have had either all positive edge weights or a combination of
both positive and negative weights.

Now let us consider the corresponding minimization problems on these graphs,
equivalent to maximizing f(θ). For those graphs having both positive and negative
weights, one can apply the same algorithms to the minimization problems by simply
minimizing −f(θ) instead of f(θ). Things are not so simple, however, if all the weights
are positive. In this case, it is easy to see that the global minimum of −f(θ) is attained
whenever all n points coincide on the unit circle such that cos(θi−θj) ≡ 1. This result
makes sense for the MIN-CUT problem in that the minimum cut in a graph with all
positive weights is to have all nodes on one side of the cut (i.e., to have no cut at
all). On the other hand, this result does not have a meaningful interpretation for
MIN-BISECTION, creating a challenge for generating a bisection whenever a global
minimum of −f(θ) is attained (although actually finding a global minimum may not
happen often). An obvious possible remedy to this problem is to reinstall the bisection
constraint back into the formulation. Further investigation is clearly needed for the
MIN-BISECTION problem.

7. Concluding remarks. The computational results presented here indicate
that the proposed rank-two relaxation heuristics are effective in approximating the
MAX-CUT and MAX-BISECTION problems. Being able to return high-quality ap-
proximate solutions in a short amount of time, they are particularly useful in situations
where either the problem is very large or time is at a premium.

Several factors have contributed to the performance of the rank-two relaxation ap-
proach: (1) the costs of local optimization are extremely low; (2) desirable properties
relate the discrete problem to its rank-two relaxation, enabling us to locate high-
quality local minima; and (3) good local minima of the rank-two relaxation appear to
be sufficient for generating good approximate solutions to the discrete problem.

The proposed heuristics consistently produce better-quality approximate solutions
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while taking only a tiny amount of time in comparison to the SDP relaxation approach,
particularly on larger problems. This fact suggests that as a practical technique
for producing lower bounds, the SDP relaxation approach does not seem to hold
much promise, at least for the MAX-CUT and the MAX-BISECTION problems. In
addition, the rank-two relaxation heuristic compares favorably to other heuristics, i.e.,
ones that are not based on the SDP relaxation.

It is known that, besides MAX-CUT, a number of other combinatorial optimiza-
tion problems can also be formulated as unconstrained binary quadratic programs in
the form of (2), such as the MAX-CLIQUE problem (see [4], for example). These are
potential candidates for which the rank-two relaxation approach may also produce
high-performance heuristic algorithms. Further investigation in this direction will be
worthwhile.
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