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Abstract. The stability number α(G) for a given graph G is the size of a maximum stable set in G. The
Lovász theta number provides an upper bound on α(G) and can be computed in polynomial time as the opti-
mal value of the Lovász semidefinite program. In this paper, we show that restricting the matrix variable in the
Lovász semidefinite program to be rank-one and rank-two, respectively, yields a pair of continuous, nonlinear
optimization problems each having the global optimal value α(G). We propose heuristics for obtaining large
stable sets inG based on these new formulations and present computational results indicating the effectiveness
of the heuristics.
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1. Introduction

Let G = (V ,E) be a simple, undirected graph. A stable (independent) set S in G is a
set of vertices that are mutually nonadjacent, and the size of S is given by its cardinality
|S|. The stability number of G, denoted by α(G), is the size of a maximum stable set
in G. The maximum stable set problem, or MSS problem for short, on G is to find a
maximum stable set in G. It is well known that the MSS problem on G is equivalent to
the minimum vertex cover problem on G and to the maximum clique problem on the
complement graph of G.

The MSS problem is a classical NP-Hard optimization problem which has been
studied extensively. Numerous approaches for solving or approximating the MSS prob-
lem have been proposed. A survey paper [2] by Bomze et al. gives a broad overview of
progress made on the maximum clique problem, or equivalently the MSS problem, in
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the last four decades. The authors describe several different formulations of the MSS
problem, a number of exact algorithms (such as explicit and implicit enumeration), and
a number of heuristic algorithms (such as sequential greedy approaches, local and ran-
dom searches) for the MSS problem. Though many of these algorithms perform well
on certain classes of instances, it seems clear that no single algorithm has demonstrated
superiority on all classes of graphs. Hence, new formulations and algorithms are needed
to strengthen our ability to solve or approximate the MSS problem in general.

An upper bound on the stability number α(G) was defined and studied by Lovász
in [18] (see also [12] for further details). This upper bound is called the Lovász theta
number ϑ(G) and can be computed as the optimal value of the following semidefinite
program (SDP), called the Lovász theta SDP:

max{eT Xe : trace(X) = 1, Xij = 0 ∀ (i, j) ∈ E, X � 0}, (1)

where X is a symmetric matrix of size |V | × |V |, the constraint X � 0 requires that X
be positive semidefinite, and e is the |V |-length column vector of all ones.

In addition to its theoretical value, the upper bound ϑ(G) could be practically useful
in an implicit enumeration scheme such as branch-and-bound for solving the MSS prob-
lem as long as it can be computed efficiently. There are, however, practical difficulties in
applying semidefinite programming to the MSS problem. For a graph having |V | verti-
ces and |E| edges, the number of variables and constraints involved in the corresponding
SDP (1) is on the order of |V |2 +|E|. Solving such an SDP becomes increasingly expen-
sive as the size of |V | and |E| increase. For example, for |V | ≥ 500 and |E| ≥ 1, 000,
solving (1) via traditional interior-point methods becomes excessively time-consuming
and memory-intensive on today’s computers. (For further details on semidefinite pro-
gramming and the classical interior-point algorithms to solve them, we refer the reader
to [24].) Even though there have been some recent advances in solving (1) for graphs
having more than 1,000 vertices and 100,000 edges using non-traditional approaches
(see, for example, [7, 6, 15]), solving (1) for large-scale instances is still a formidable
challenge.

Besides providing a high-quality upper bound on α(G), can the Lovász theta SDP
(1) be utilized in some way to provide a high-quality lower bound on α(G)? More spe-
cifically, can (1) be exploited to find large stable sets in G? Computational advances in
this direction have been shown, for example, by Benson and Ye [1] and Gruber [13].
Benson and Ye have solved an alternative SDP formulation of the Lovász theta number
ϑ(G) to generate stable sets inG via a Goemans-Williamson-type rounding method (see
[11]), and Gruber has obtained stable sets via a specialized rounding procedure applied
to the optimal solution of (1). Since both of these methods require the solution of an
SDP, it is reasonable to ask whether the quality of stable sets delivered by such methods
can be obtained without the expense of explicitly solving an SDP.

In a recent paper [5], the authors of the present paper have considered another com-
binatorial optimization problem — the Max-Cut problem on G — in a similar context
as we now consider the MSS problem. The SDP relaxation of Max-Cut is well known to
provide both a good upper bound on the maximum cut size as well as the ability to obtain
guaranteed high-quality cuts in G via the Goemans-Williamson randomization scheme.
The focus of [5] was to develop fast methods for finding high-quality cuts in G, and so
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instead of solving the expensive SDP relaxation for Max-Cut, the authors restricted the
rank of the matrix variable of the relaxation to be at most two and applied a modified
Goemans-Williamson scheme to the “rank-two” problem. They provided strong com-
putational evidence showing that this rank-two problem produces higher quality cuts
than the SDP relaxation, while taking much less computer time and storage. A disadvan-
tage of the rank-two approach, however, is that it is a nonconvex relaxation of Max-Cut
(unlike the SDP relaxation) and hence there are many local maximizers that cannot be
guaranteed to provide an upper bound on the size of a maximum cut. Nonetheless, [5]
has shown that the rank-two Max-Cut relaxation is a powerful tool when one wishes to
find high-quality approximate solutions to the Max-Cut problem of large size.

Since the strategy of replacing an expensive convex relaxation by an inexpensive
nonconvex relaxation has worked surprisingly well for approximating the Max-Cut prob-
lem, it is natural to ask whether or not a similar strategy would also work well for the MSS
problem. Hence, in this paper we apply the low-rank restriction strategy to the Lovász
theta SDP and study the resulting issues. In particular, we will show that: (i) restricting
the matrix variable X in (1) to be of low rank (more precisely, to be either rank one or
two) has a meaningful correspondence with the MSS problem; (ii) any feasible solution
of the low-rank problems can be used to obtain a stable set with size at least as large
as the solution’s continuous objective value; and (iii) local optimizers of the low-rank
problems can be obtained quickly, taking advantage of graph structure such as sparsity.

An additional focus of this paper is the application of the ideas of the previous pa-
ragraph to the development and implementation of a class of continuous optimization
heuristics for solving the MSS problem, and it is worth noting that the heuristics intro-
duced here follow in a successful line of continuous optimization heuristics for the MSS
problem. See, for example, [20, 23] for the continuous Motzkin-Straus formulation of
the MSS problem and [3, 9, 10, 16, 19] for several continuous heuristics. In particular,
the recent paper [19] includes computational results on the same set of test graphs that
we study in Section 4. For the general topic of solving discrete optimization problems
using continuous approaches, see [22].

This paper is organized as follows. In Section 2, we develop and analyze the nonlinear
program formed by restricting the matrix variable X of (1) to be rank one. In particular,
we demonstrate how every feasible solution of this rank-one problem naturally leads to
a stable set and also show that the optimal value of the rank-one problem is exactly the
stability number α(G). In Section 3, we show the same results for the problem resulting
from restrictingX to be at most rank two. In Section 4, we discuss an implementation of
the aforementioned heuristics based on the rank-one and rank-two formulations of MSS.
By comparing their performance on a large set of benchmark instances, we conclude
that the rank-two heuristic gives better stable sets than the rank-one formulation even
though it generally requires more computation time. In Section 5, we conclude with a
few final remarks.

2. The rank-one problem

The “rank-one” restriction of (1) is to require that X be a matrix of rank at most one;
that is, to require that X = xxT for some x ∈ �n. Making the substitution X = xxT in
(1) yields the following nonlinear program:
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α1 ≡ max
{
(eT x)2 : x ∈ F1

}
, (2)

where

F1 ≡
{
x ∈ �n : ‖x‖2 = 1, xixj = 0 ∀ (i, j) ∈ E

}
and where ‖ · ‖ denotes the Euclidean norm in �n. The goal of this subsection is to
establish that α1 = α(G) and to characterize all local and global maximizers of problem
(2).

We start by stating two simple technical results. For any x ∈ �n, define

Sx ≡ {i ∈ V : xi �= 0}.
Lemma 1. Suppose that x ∈ �n and S ⊆ V satisfy ‖x‖2 = 1 and Sx ⊆ S. Then
(eT x)2 ≤ |S|, and equality holds if and only if S = Sx and x = ±xS , where

xSi =
{ |S|−1/2, i ∈ S

0 , otherwise

Proof. For any m ≥ 1 and (γ1, . . . , γm) ∈ �m, we have (γ1 + · · ·
+ γm)

2 ≤ m
(
γ 2

1 + · · · + γ 2
m

)
, with equality holding if and only if γ1 = · · · = γm.

The result follows immediately from this observation. ��
Lemma 2. Let x ∈ �n be given such that ‖x‖2 = 1. Then x ∈ F1 if and only if Sx is a
stable set of G, in which case

(eT x)2 ≤ |Sx | ≤ α(G). (3)

Proof. Sx is a stable set if and only if {i, j} �⊂ Sx for all (i, j) ∈ E, or equivalently, if
and only if xixj = 0 for all (i, j) ∈ E. Since we have by assumption that ‖x‖2 = 1, the
latter condition is equivalent to the condition x ∈ F1. The two inequalities in (3) follow
from Lemma 1 and the definition of α(G) as the size of a maximum stable set of G. ��

In the sequel, we will refer to Sx as the stable set induced by x ∈ F1. We are now
ready to characterize the global maximizers of the rank-one problem (2).

Theorem 1. The optimal value of (2) equals the stability number ofG, i.e., α1 = α(G).
Moreover, for x∗ ∈ �n such that ‖x∗‖2 = 1, the following conditions are equivalent:

a) x∗ is a global maximizer of (2);
b) Sx∗ is a maximum stable set of G and (eT x∗)2 = |Sx∗ |;
c) x∗ = ±xS for some maximum stable set S ⊆ V .

Proof. We first prove that α1 = α(G). By Lemma 2, we have (eT x)2 ≤ |Sx | ≤ α(G) for
all x ∈ F1, from which we conclude that α1 ≤ α(G). To show the reverse inequality, let
S be a maximum stable set ofG and let x∗ = ±xS . Clearly Sx∗ = S, and so by Lemma 2,
x∗ ∈ F1. Also, by Lemma 1, (eT x∗)2 = |S| = α(G). These two observations imply
that α1 ≥ α(G), and thus, the relation α(G) = α1 follows. We have also proved that
x∗ is a global maximizer of (2), and hence that the implication (c) ⇒ (a) holds. The
implication (a) ⇒ (b) follows from relation (3) with x = x∗ and the fact that, when (a)
holds, (eT x∗)2 = α1 = α(G). The implication (b) ⇒ (c) follows from Lemma 1. ��
We remark that the relation α1 = α(G) was noted independently by Gruber and Rendl
[14].
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With Theorem 1 giving a characterization of the global maximizers of the rank-
one problem (2), we now turn to the classification of their local maximizers. The main
tool of this analysis is the following auxiliary problem, which is specified by a subset
∅ �= S ⊆ V :

(P 1
S ) : max

{
(eT x)2 : x ∈ FS

}
,

where FS ≡ {x ∈ �n : ‖x‖2 = 1, xi = 0 ∀ i /∈ S}. Observe that the points ±xS ∈ �n

are feasible for (P 1
S ). The following result gives several properties of the problem (P 1

S ).

Lemma 3. Let ∅ �= S ⊆ V be given. The following statements hold:

a) FS ⊆ F1 if and only if S is a stable set of G;
b) the optimal value of (P 1

S ) is |S|, and its set of global maximizers equals {±xS};
c) (P 1

S ) has no local maximizers other than its global maximizers.

Proof. (a): Using Lemma 2 with x = xS , we conclude that S is a stable set if and only
if xS ∈ F1, which in turn is easily seen to be equivalent to the condition that FS ⊆ F1.

(b): It is an immediate consequence of Lemma 1.
(c): Suppose that x̄ is a local maximizer of (P 1

S ). We claim that eT x̄ �= 0. Indeed,
assume for contradiction that eT x̄ = 0. Since x̄ is a local maximizer of (P 1

S ), we have
eT x = 0 for all x ∈ FS sufficiently close to x̄, which implies that x̄ is a stationary point
of the related problem max{eT x : x ∈ FS}. Hence, by the constraint qualification of
linear independence, there exists λ ∈ � and σi ∈ � for each i ∈ V \ S such that

e − 2 λ x̄ −
∑
i∈V \S

σi ei = 0, (4)

where ei denotes the i-th column of the identity matrix. For j ∈ S, the j -th compo-
nent of (4) implies that λ �= 0. Moreover, using the fact that x̄ ∈ FS , (4) shows that
eT x̄ = 2 λ, which contradicts our assumption that eT x̄ = 0. Hence, the claim follows.
Now considering the first-order necessary conditions for (P 1

S ) and noting that the con-
straint qualification of linear independence holds at x̄ �= 0, we conclude that there exists
η ∈ � such that eT x̄ = η x̄i for all i ∈ S. Since eT x̄ �= 0, this implies that η �= 0, and
so x̄i = eT x̄/η for all i ∈ S. In other words, x̄i is constant over all i ∈ S. The constraint
‖x̄‖2 = 1 thus implies that x̄ = ±xS . ��

A maximal stable set S ⊆ V in G is a stable set that is not properly contained in
any other stable set. We are now ready to state the main result concerning the local
maximizers of the rank-one problem (2).

Theorem 2. For x̄ ∈ �n such that ‖x̄‖2 = 1, the following conditions are equivalent:

a) x̄ is a local maximizer of (2);
b) Sx̄ is a maximal stable set of G and (eT x̄)2 = |Sx̄ |;
c) x̄ = ±xS for some maximal stable set S ⊂ V .

Proof. (a) ⇒ (c): Assume that x̄ ∈ F1 is a local maximizer of (2), and let S ≡ Sx̄ . By
Lemmas 2 and 3(a), S is a stable set, and the feasible region FS is contained in F1.
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Since x̄ is clearly in FS , it follows that x̄ is also a local maximizer of (P 1
S ). By (b) and

(c) of Lemma 3, it follows that x̄ = ±xS . To show that S is a maximal stable set, assume
for contradiction that there exists a stable set S̃ ⊆ V that properly contains S. Clearly
x̄ ∈ FS ⊂ F

S̃
⊆ F1, from which it follows that x̄ is also a local maximizer of (P 1

S̃
). By

Lemma 3(b), this implies that x̄ = ±xS̃ , which contradicts the earlier conclusion that
x = ±xS .

(c) ⇒ (b): This implication is obvious.
(b) ⇒ (a): By Lemma 2, x̄ ∈ F1 since Sx̄ is a stable set. Since x̄i �= 0 for all i ∈ Sx̄ ,

there exists a neighborhood Nx̄ of x̄ in �n such that xi �= 0 for all x ∈ Nx̄ and i ∈ Sx̄ ,
or equivalently, Sx ⊇ Sx̄ for all x ∈ Nx̄ . Now, if x is an arbitrary point in Nx̄ ∩ F1,
then Sx = Sx̄ , due to the fact that Sx̄ is a maximal stable set contained in Sx , which in
turn is a stable set by Lemma 2. Using Lemma 1, we conclude that (eT x)2 ≤ |Sx̄ | for
all x ∈ Nx̄ ∩ F1. Since (eT x̄)2 = |Sx̄ | by assumption, it follows x̄ is a local maximizer
of (2). ��

3. The rank-two problem

In this section we consider a “rank-two” formulation of MSS obtained by restricting the
rank of the matrix variable X of the Lovász theta SDP (1) to be at most two, i.e., we
require thatX be equal to xxT +yyT for some x, y ∈ �n. Note that the rank-one formu-
lation of the previous section can be obtained from the rank-two formulation by setting
y to be a multiple of x. A surprising result that we will show in this section is that the
optimal values of the two formulations are equal even though the feasible region of the
rank-two problem is strictly larger than that of the rank-one problem. Moreover, we will
show how global maximizers for the rank-two problem yield maximum stable sets ofG,
and we will give a partial classification of the local maximizers of the rank-two problem.

Making the substitution X = xxT + yyT in the SDP problem (1) and defining

F2 ≡
{
(x, y) ∈ �2n : ‖x‖2 + ‖y‖2 = 1, xixj + yiyj = 0 ∀ (i, j) ∈ E

}
,

we obtain the following rank-two problem:

α2 ≡ max
{
(eT x)2 + (eT y)2 : (x, y) ∈ F2

}
. (5)

An alternative form of the above problem that will also prove useful is

α2 ≡ max

{
f (z) :

n∑
i=1

‖zi‖2 = 1, (zi)T zj = 0 ∀ (i, j) ∈ E

}
, (6)

where z ≡ (z1, . . . , zn), zi ≡ (xi, yi)
T ∈ �2 for all i = 1, . . . , n, and

f (z) = f
(
z1, . . . , zn

)
≡
∥∥∥∥∥

n∑
i=1

zi

∥∥∥∥∥
2

.

Formulation (6) highlights the fact that the rank-two problem has n vector variables in
�2 — one for each node in the graph. (Recall that the rank-one problem has a scalar
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variable for each node.) In the sequel, we will use (x, y) and (z1, . . . , zn) interchange-
ably to denote the variable of the rank-two problem.

It is interesting to note that the level sets of problem (6) are rotationally invariant in
the sense that, if (z1, . . . , zn) is feasible, then so is (Qz1, . . . ,Qzn) for any orthogonal
matrix Q ∈ �2×2, and moreover the objective value is unchanged. Hence, the problem
does not have any strict local maximizers (or minimizers). Later in this section, we will
establish results which show that any non-global local maximizer can be rotated to some
saddle point having the same objective value from which we may further increase the
objective function.

3.1. Global and local maximizers of the rank-two formulation

The main goal of this subsection is to establish that α2 = α1 = α(G) and to characterize
the global maximizers of problem (5). We will also study some properties of the local
maximizers of problem (5) and contrast them with the ones for the local maximizers of
problem (2).

We start by introducing a few definitions. A graph Ḡ = (V̄ , Ē) is bipartite if there
exists a pair of disjoint stable sets V̄1 and V̄2 of Ḡ such that V̄ = V̄1 ∪ V̄2. In such a
case we refer to (V̄1, V̄2) as a bipartition of Ḡ. Also, given a graph G = (V ,E), the
subgraph of G induced by a nonempty subset B of V is the graph GB = (B,EB) where
EB consists of those edges in E having both endpoints in B. We say that B ⊆ V is
bipartite for G if B �= ∅ and GB is bipartite. In such a case, the connected components
of GB , say Gk for k = 1, . . . , p, are also bipartite, and if (Sk, Tk) is a bipartition of
Gk such that |Sk| ≥ |Tk| for all k = 1, . . . , p, the family {(Sk, Tk); k = 1, . . . , p} is
referred to as a component bipartition of GB . (Here we use the convention that Tk = ∅
whenever Gk consists of only one vertex.)

Observation 1. Assume thatB ⊆ V is bipartite forG and let {(Sk, Tk) : k = 1, . . . , p}
denote a component bipartition of GB . Then the following statements hold:

a) every stable set in GB is also a stable set in G;
b) the set S = ∪pk=1Sk is a maximal stable set in GB of size |S| = |S1| + . . .+ |Sp|;
c) other maximal stable sets in GB of the same size can be obtained by interchanging

Sk and Tk whenever |Sk| = |Tk|.
In what follows we will refer to a stable set S of G obtained according to Observation 1
as a stable set induced by B.

We now introduce an auxiliary problem that will play a major role throughout the
analysis of the rank-two problem.Assume thatB ⊆ V is bipartite forG and let {(Sk, Tk) :
k = 1, . . . , p} denote a component bipartition of GB . The auxiliary problem is

(P 2
B) maxz

∥∥∑n
i=1 z

i
∥∥2

s.t.
∑n

i=1 ‖zi‖2 = 1,

zi = 0, ∀ i /∈ B,

zi ⊥ zj , ∀ (i, j) ∈ Sk × Tk, ∀ k = 1, . . . , p.
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Note that the auxiliary problem depends only on B and not on the actual component bi-
partition chosen (see Observation 1(c)). The following result summarizes the important
properties of the auxiliary problem (P 2

B).

Theorem 3. Suppose that B ⊆ V is bipartite for G and that {(Sk, Tk) : k = 1, . . . , p}
is a component bipartition of GB . The following statements regarding problem (P 2

B)

hold:

a) the feasible region of (P 2
B) is contained in F2;

b) the optimal value of (P 2
B) is equal to |S|, where S is a stable set induced by B;

c) a feasible solution z = (z1, . . . , zn) ∈ �2n of (P 2
B) is optimal if and only if there

exist pairs of vectors (uk, vk) ∈ �2 × �2, k = 1, . . . , p, and a unit-length vector
w ∈ �2 such that the following conditions hold for all k = 1, . . . , p:

uk + vk = w/
√

|S|,
|Sk| > |Tk| "⇒ vk = 0,

zi =
{
uk, i ∈ Sk,

vk, i ∈ Tk;

d) (P 2
B) has no local maximizers other than its global maximizers.

Proof. Here, we prove only (a) and (b). The proofs of (c) and (d) will be given in
Appendix A.

(a): Assume that z = (z1, . . . , zn) is a feasible solution of (P 2
B ) and let (i, j) ∈ E

be given. If at least one of the endpoints of (i, j) is not in B, then (zi)T zj = 0 since at
least one of zi and zj is zero. If both endpoints of (i, j) are in B, then either (i, j) or
(j, i) must be in Sk × Tk for some k ∈ {1, . . . , p}, and hence (zi)T zj = 0. We have
thus proved that (zi)T zj = 0 for all (i, j) ∈ E. Clearly, this implies that z ∈ F2.

(b): Let S be a stable set induced by B, and consider the vector z̄ = (z̄1, . . . , z̄n)

defined as

z̄i =
{
w/

√|S|, i ∈ S,

0, i �∈ S,

where w ∈ �2 is an arbitrary unit-length vector. It is easy to verify that z̄ is a feasible
solution of (P 2

B ) such that f (z̄) = |S|, which implies that the optimal value of (P 2
B ) is

at least |S|. To complete the proof of (b), it is then sufficient to show that f (z) ≤ |S| for
every feasible solution z = (z1, . . . , zn) of (P 2

B ). Indeed, let z be as such, and define
the following quantities for all k = 1, . . . , p:

pk ≡
∑
i∈Sk

zi, qk ≡
∑
i∈Tk

zi, (7)

θak ≡
∑
i∈Sk

‖zi‖2, θbk ≡
∑
i∈Tk

‖zi‖2, θk ≡ θak + θbk. (8)
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Using the feasibility of (z1, . . . , zn) and the above identities, it is easy to see thatpk ⊥ qk

for every k = 1, . . . , p, and
∑p

k=1 θk = 1. Furthermore,

‖pk‖2 =
∥∥∥∥∥∥
∑
i∈Sk

zi

∥∥∥∥∥∥
2

≤

∑
i∈Sk

‖zi‖



2

≤ |Sk|

∑
i∈Sk

‖zi‖2


 = θak |Sk|. (9)

Similarly, we can show that

‖qk‖2 ≤ θbk |Tk|. (10)

Using the fact that zi = 0 for all i �∈ B, relation (7), the triangle inequality for norms
and the Pythagorean identity, we obtain∥∥∥∥∥

n∑
i=1

zi

∥∥∥∥∥
2

=
∥∥∥∥∥

p∑
k=1

(pk + qk)

∥∥∥∥∥
2

≤
(

p∑
k=1

‖pk + qk‖
)2

=
(

p∑
k=1

√
‖pk‖2 + ‖qk‖2

)2

.

(11)

Using the two inequalities (9) and (10) and the fact that |Sk| ≥ |Tk| for all k = 1, . . . , p,
we obtain(

p∑
k=1

√
‖pk‖2 + ‖qk‖2

)2

≤
(

p∑
k=1

√
θak |Sk| + θbk |Tk|

)2

≤
(

p∑
k=1

√
θk|Sk|

)2

. (12)

Finally, using the Cauchy-Schwarz inequality and the fact that
∑p

k=1 θk = 1, we have

(
p∑
k=1

√
θk |Sk|

)2

≤
(

p∑
k=1

|Sk|
)(

p∑
k=1

θk

)
= |S|. (13)

Combining inequalities (11), (12) and (13), we conclude that the objective value of
any feasible solution of (7) is bounded above by |S|, which completes the proof of
(b). ��
It is worth mentioning that by considering the necessary and sufficient conditions for the
inequalities (9) through (13) to be satisfied as equalities, we can prove Theorem 3(c).
We postpone its proof, however, until Corollary A.3 in Appendix A since it can also be
obtained as a by-product of our proof of Theorem 3(d).

Given z = (z1, . . . , zn) ∈ �2n, define Bz ≡ {i ∈ V : zi �= 0}. Our next result gives
a characterization for the point z to be in F2, which is related to the bipartiteness of Bz
for G.

Lemma 4. A point z = (z1, . . . , zn) ∈ �2n is in F2 if and only if Bz is bipartite for G
and z is feasible for problem (P 2

B), in which case

f (z) ≤ |S| ≤ α(G), (14)

where S is a stable set induced by B(z).
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Proof. The ‘if’ part of the lemma follows immediately from Theorem 3(a). To show the
‘only if’ part, assume that z ∈ F2. Let

B+
z ≡ {i ∈ Bz : xi = 0 or xiyi > 0} and B−

z ≡ {i ∈ Bz : yi = 0 or xiyi < 0},
where zi = (xi, yi). We claim that GBz is a bipartite graph with bipartition (B+

z , B
−
z ).

Indeed, since zi = (xi, yi) �= 0 for all i ∈ B, we easily see that (B+
z , B

−
z ) is a partition

of B. It remains to verify that B+
z and B−

z are both stable sets of G. We concentrate
only on B+

z since the proof for B−
z is similar. Let i, j ∈ B+

z be given. Consider first the
case in which xi = 0 or xj = 0, which easily implies that both yi and yj are nonzero.
Hence, we have xixj + yiyj = yiyj �= 0. For the other case in which both xi and xj are
nonzero, and hence xiyi > 0 and xjyj > 0, we also have xixj + yiyj �= 0 as one can
easily verify. Now, using the assumption that z ∈ F2, we conclude that (i, j) �∈ E. We
have thus proved that B+

z is a stable set.
Relation (14) is an immediate consequence of Theorem 3(b) and the definition of

α(G) as the size of a maximum stable set in G. ��
For a point z = (z1, . . . , zn) ∈ F2, we refer to a stable set S of G induced by Bz,

which is bipartite for G, as a stable set induced by z. We are now ready to characterize
the global and local maximizers of the rank-two problem (5).

Theorem 4. The optimal value of (5) equals the stability number ofG, i.e., α2 = α(G).
Moreover, z∗ ∈ �2n is a global maximizer of (5) if and only if B ≡ Bz∗ is bipartite for
G, z∗ is an optimal solution of (P 2

B), and any stable set S induced by z∗ is a maximum
stable set, in which case f (z∗) = |S|.
Proof. It follows immediately from Lemma 4 that α2 ≤ α(G). By Theorem 1 and the
fact that problem (5) is a relaxation of problem (2), we have α2 ≥ α1 = α(G). Hence,
α2 = α(G).

To show the ‘only if’ part of the second statement of the theorem, assume that z∗ is
a global maximizer of (5), or equivalently that z∗ ∈ F2 and α(G) = α2 = f (z∗). Then,
it follows from Lemma 4 that B ≡ Bz∗ is bipartite for G and that z∗ is a feasible point
for problem (P 2

B). Since (P 2
B) is a restriction of (5) by Theorem 3, it follows that z∗ is

also a global maximizer of (P 2
B) and hence that f (z∗) = |S| due to Theorem 3(b). We

have thus shown that α(G) = |S|, and hence that S is a maximum stable set of G.
To show the ‘if’part, assume thatB ≡ Bz∗ is bipartite forG, z∗ is an optimal solution

of (P 2
B), and any stable set S induced by z∗ is maximum. It follows from (a) and (b)

of Theorem 3 that z∗ ∈ F2 and that f (z∗) = |S|. Since S is a maximum stable set,
which implies |S| = α(G) = α2, we conclude that f (z∗) = α2. This shows that z∗ is
an optimal solution of (5). ��
Theorem 5. Suppose that z̄ = (z̄1, . . . , z̄n) ∈ �2n is a local maximizer of problem (5).
Then, B ≡ Bz̄ is bipartite forG and z̄ is an optimal solution of (P 2

B). Hence, f (z̄) = |S|
for any stable set S induced by z̄.

Proof. Assume that z̄ is a local maximizer of (5). Then it follows from Lemma 4 that
B ≡ Bz̄ is bipartite for G and that z̄ is a feasible point for problem (P 2

B). Since (P 2
B) is

a restriction of (5) by Theorem 3(a), it follows that z̄ is also a local maximizer of (P 2
B).

By Theorem 3(d), we conclude that z̄ is a global maximizer of (P 2
B). ��
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Unlike the results obtained in Theorem 2 for the rank-one problem, Theorem 5 does
not provide a full characterization for a local maximizer of the rank-two problem. At this
point, it is natural to wonder if a stable set induced by a nonglobal local maximizer of
problem (5) is maximal. It turns out that the answer is negative. An example illustrating
this fact is given in Appendix B. It is also natural to question whether the reverse of
the implication derived in Theorem 5 holds. It turns out that the answer in this case
is also negative even if we assume that the stable set induced by z̄ is maximal. This
is a consequence of a very general result (derived below), which establishes that, for
every non-maximum maximal stable set S in G, there is an easily computable, “canon-
ical” feasible point z = (z1, . . . , zn) for the rank-two problem such that Bz = S and
f (z) = |S|, and yet z is not a local maximizer of the rank-two problem. Note that the
condition f (z) = |S| implies that z is an optimal solution of (P 2

B). This is in direct
contrast with the rank-one problem where the canonical solutions ±xS associated with
S, i.e., the ones that induce S and are optimal solutions of (P 1

S ), are necessarily local
maximizers.

Before stating the result, we first state a lemma that gives conditions under which a
point z ∈ F2 is not a local maximizer.

Lemma 5. Let z̃, ẑ ∈ F2, and suppose that

z̃i = γ̃i w̃, ∀ i = 1, . . . , n, (15)

ẑi = γ̂i ŵ, ∀ i = 1, . . . , n, (16)

for some γ̃i , γ̂i ∈ �, i = 1, . . . , n, and some perpendicular, unit vectors w̃, ŵ ∈ �2. In
addition, let f̃ ≡ f (z̃) and f̂ ≡ f (ẑ). Then, there exists a feasible path in F2 from z̃ to
ẑ along which the objective function f (z) is strictly monotonic if f̃ �= f̂ or is constant
if f̃ = f̂ .

Proof. For each t ∈ [0, 1], define ψ(t) ≡ [(1 − t)2 + t2]−1/2 and

z(t) ≡ ψ(t)
[
(1 − t)z̃+ t ẑ

]
. (17)

We will show that z(t) ∈ F2 and f (z(t)) = f t ≡ ψ(t)2
[
(1 − t)2f̃ + t2f̂

]
, for all

t ∈ [0, 1], from which the result of the lemma clearly follows. To show that z(t) ∈ F2,
we first verify that ‖z(t)‖2 = 1. This follows directly from (17) and the equalities

‖z(t)‖2 = ψ(t)2‖(1 − t)z̃+ t ẑ‖2 = ψ(t)2
[
(1 − t)2‖z̃‖2 + t2‖ẑ‖2

]
= ψ(t)2

[
(1 − t)2 + t2

]
= 1,

where the second equality follows from (15), (16), and the orthogonality of w̃ and ŵ
and the third equality follows from the feasibility of z̃ and ẑ. Next, we show that z(t)
satisfies zi(t) ⊥ zj (t) = 0 for all (i, j) ∈ E and t ∈ [0, 1]. From (17) and the definition
of z(t), we easily see that(
zi(t)

)T (
zj (t)

)
= ψ(t)2

(
(1 − t)z̃i + t ẑi

)T (
(1 − t)z̃j + t ẑj

)

= ψ(t)2
[
(1 − t)2

(
z̃i
)T

z̃j + (1 − t)t

[(
z̃i
)T

ẑj +
(
ẑi
)T

z̃j
]

+ t2
(
ẑi
)T

ẑj
]
,



148 Samuel Burer et al.

Noting that
(
z̃i
)T
z̃j = (ẑi)T ẑj = 0 due to the feasibility of z̃ and ẑ and that

(
z̃i
)T
ẑj =(

ẑi
)T
z̃j = 0 due to (15), (16), and the orthogonality of w̃ and ŵ, we obtain

(
zi(t)

)T
zj (t) = 0, as desired. Hence, z(t) ∈ F2. We now evaluate f (z(t)). Since f (z(t)) =
‖∑n

i=1 z
i(t)‖2, it follows from (17), the orthogonality of

∑n
i=1 z̃

i and
∑n

i=1 ẑ
i (due to

the orthogonality of w̃ and ŵ) and the definition of the objective values f̃ and f̂ that

f (z(t)) = ψ(t)2

∥∥∥∥∥(1 − t)

n∑
i=1

z̃i + t

n∑
i=1

ẑi

∥∥∥∥∥
2

= ψ(t)2


(1 − t)2

∥∥∥∥∥
n∑
i=1

z̃i

∥∥∥∥∥
2

+ t2

∥∥∥∥∥
n∑
i=1

ẑi

∥∥∥∥∥
2



= ψ(t)2
[
(1 − t)2f̃ + t2f̂

]
.

Hence, the result follows. ��
We are now ready to state the result mentioned earlier.

Proposition 1. Let S be a stable set in G, and for any w ∈ �2 with unit-length, define

zi = 1√|S|w ∀ i ∈ S,

zi = 0 ∀ i �∈ S.

Then, z = (z1, . . . , zn) ∈ F2, f (z) = |S|, B(z) = S and S is induced by z. If, in
addition, S is not a maximum stable set, then z is not a local maximizer.

Proof. Let the suggested solution z be called the canonical solution associated with
(S,w). It is easy to show that the first three conclusions of the proposition hold. The
final statement can be shown as follows. Assume S is not maximum, and let S∗ be
a maximum stable set of G. Then Lemma 5 shows that there is a strictly increasing,
feasible path between the canonical solution associated with (S,w) and the canonical
solution associated with (S∗, w⊥), where w⊥ is orthogonal to w. Hence, z is not a local
maximizer of (5). ��

On the surface, the above properties seem to be disadvantages of the rank-two formu-
lation, since one would expect that finding a local maximizer of (5) should correspond
to finding a maximal stable set. However, Proposition 1 actually shows a significant
advantage of the rank-two problem over the rank-one problem. In the rank-one problem,
if one obtains a local maximizer, then the induced stable set S is maximal, but one is
“stuck” at the local maximizer. In the rank-two problem, on the other hand, if one obtains
a local maximizer, the induced stable set S may or may not be maximal, but in either
case one can easily move to a canonical feasible solution associated with S with the
same objective value |S|. From this canonical solution which is not a local maximizer,
it is possible to “escape” to a higher local maximizer corresponding to a larger stable
set. Indeed, when this feature of the rank-two problem is exploited algorithmically, it
allows us to find considerably larger stable sets than does the rank-one problem, as will
be demonstrated in the computational results of the next section.
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3.2. Extension to higher ranks?

Before closing our discussion of the rank-two problem, we address a question that arises
naturally after we see the results for rank-one and rank-two problems. Is the optimal
value of the rank-three problem — for variables x, y, v ∈ �n,

maximize (eT x)2 + (eT y)2 + (eT v)2

subject to ‖x‖2 + ‖y‖2 + ‖v‖2 = 1 (18)

xixj + yiyj + vivj = 0, ∀ (i, j) ∈ E

also equal to α(G)?Although the answer may be “yes” for special classes of graphs (e.g.,
perfect graphs), the general answer is “no,” as the following example demonstrates. Con-
sider the pentagon graph

G = (V ,E) = ({1, 2, 3, 4, 5}, {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)}).
It is then straightforward to verify that the point

x = (1/3, 0, 1/3, 1/3, 0)

y = (0, 1/3, 0, 1/3, 1/3)

v = (0, 0, 1/3, −1/3, 1/3)

is feasible for the rank-three problem with objective value 2 1
9 which is greater than 2 —

the stability number α(G) of the pentagon graph.

4. Computational results

Since the low-rank NLPs (2) and (5) are formulations of the MSS problem, it is natural
to ask whether they can be employed in solving or approximating the MSS problem.
Important are the following two principles that have been established in the previous
sections: every feasible point of each NLP yields (or induces) a stable set in G; and, in
general, the higher the objective of the feasible point, the larger the size of the induced
stable set. Hence, a reasonable approach is to optimize (2) and (5) using standard NLP
techniques, which in turn optimizes the MSS problem, and in this section, we describe
our computational experiences with these ideas. We also seek to characterize the prac-
tical advantages and disadvantages of the rank-one and rank-two formulations in the
context of solving or approximating the MSS problem since we have shown that they
have substantially different theoretical properties.

It is important to remember that both (2) and (5) are NP-Hard to optimize due to their
equivalence with the MSS problem. Hence, using NLP techniques, one can only expect
to “solve” (2) and (5) in the sense of obtaining stationary points or local maximizers.

Since the rank-one problem (2) can be seen as a restriction of the rank-two problem
(5) in which the variable y is set to zero, our discussion of algorithmic techniques focuses
on (5), from which direct applications to (2) are immediately available. In particular, we
discuss an augmented Lagrangian method for obtaining a stationary point of (5) as well
as a technique for extracting stable sets of G from points that are “nearly feasible” for
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(5). Such a technique is necessary since an augmented Lagrangian algorithm will only
produce a feasible point in the limit and since the theoretical discussion of Section 3 has
only described how to obtain a stable set of G from a feasible solution. We conclude the
section with a comparison of three heuristics (one for the rank-one problem and two for
the rank-two problem) on a large set of benchmark instances, and we then discuss the
relative advantages and disadvantages of each method.

4.1. The augmented Lagrangian algorithm

From a nonlinear programming perspective, the edge constraints of the rank-two prob-
lem (5) are difficult to enforce algorithmically, and so we employ the standard technique
of placing these constraints into the objective function via the augmented Lagrangian
function. (The unit-norm constraint, on the other hand, is easier to handle; see the details
below.) The augmented Lagrangian method we will consider is based on the following
maximization for fixed Lagrangian multipliers λ = (λij )(i,j)∈E and fixed penalty pa-
rameter σ > 0, where c(x, y) = (xixj + yiyj )(i,j)∈E represents the edge-constraint
violations:

maximize L(x, y) ≡ (eT x)2 + (eT y)2 +
(
λ− σ

2
c(x, y)

)T
c(x, y)

subject to ‖x‖2 + ‖y‖2 = 1. (19)

Our algorithm to obtain a stationary point of (5) proceeds as detailed in Algorithm AL
(or “Augmented Lagrangian”) below. (See, for example, [21] for a full description of
the standard augmented Lagrangian algorithm). First, however, we give two alternative
sets of equations that are used by Algorithm AL:

λk+1 = λk − σk c(x
k, yk), (20a)

σk+1 = σk, (20b)

vk+1 = v; (20c)

and

λk+1 = λk, (21a)

σk+1 = 10 σk, (21b)

vk+1 = vk. (21c)

We now state the algorithm.

Algorithm AL:
Default Initialization: G = (V ,E), σ1 = 1, v0 = ∞
Input: (x0, y0) ∈ �2n, λ1 ∈ �|E|
For - = 1, 2, . . .

a. Solve (19) with λ = λ- and σ = σ- from the initial point (x-−1, y-−1),
obtaining (x-, y-). Set v = ‖c(x-, y-)‖.

b. If v < 0.25 v-−1, then apply equations (20). Otherwise, apply (21).
End
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A couple of comments are in order. First, Algorithm AL does not have a stopping
criterion as stated. Instead of employing a standard stopping criterion, we will use a
special criterion (see Algorithm AL′ in the next subsection) that is tailored to (5) and the
MSS problem. Second, theory dictates that, under some mild conditions, the augment-
ed Lagrangian algorithm will converge to a stationary point of (5), though in practice
one could expect convergence to a local maximizer. Indeed, we always observe that the
algorithm converges to a point (x̄, ȳ) which, in accordance with Theorem 5, has integer
objective value.

A very important aspect of the algorithm proposed above is the procedure to solve
(19), where “to solve” means to obtain a stationary point or local maximizer. We note
that any (x̂, ŷ) ∈ �2n can be easily scaled to (x, y) ≡ (x̂, ŷ)/(‖x̂‖2 + ‖ŷ‖2)1/2, which
is feasible for (19). Moreover, if ‖x̂‖2 + ‖ŷ‖2 is already close to the feasible value of 1,
then L(x, y) is close to L(x̂, ŷ). These two ideas can be used in the following procedure
that can be iterated to solve (19): given (x, y) feasible for (19) and a direction (dx, dy)
of ascent for L at (x, y), compute the projection (d̄x, d̄y) of (dx, dy) onto the tangent
space of the unit ball at (x, y) and then select α > 0 such that L(xα, yα) is greater than
L(x, y), where

(xα, yα) ≡ (x + α d̄x, y + α d̄y)(‖x + α d̄x‖2 + ‖y + α d̄y‖2
)1/2

is feasible for (19). The procedure can be thought of as a line search on the surface of
the unit sphere in �2n, and it is not difficult to show that a suitable α exists and can be
found with any standard line search strategy. (For example, these same ideas have been
described in [4].) We have implemented the above ideas with a strong Wolfe-Powell line
search and a first-order (or gradient-based) limited-memory BFGS technique for gen-
erating the search directions. The technique is based on the standard limited-memory
BFGS approach for unconstrained optimization but has been adapted in a straightfor-
ward manner to incorporate the ideas of projection and spherical line searches mentioned
above. These adaptations have been developed primarily for testing the feasibility of the
nonlinear formulations presented in this paper, and though they have proven success-
ful, we feel there may be opportunities for further performance improvements by more
carefully considering the best way to incorporate limited-memory BFGS techniques into
problems such as (19).

Finally, we mention that our choice of using a first-order approach for solving (19)
is motivated by the fact that we do not need highly accurate local solutions of (5)
(see the next subsection), that the function and gradient evaluations of the augmented
Lagrangian are very fast especially when |E| is small, and that the computation of second
derivatives is very expensive relative to the computation of first derivatives.

4.2. Extracting stable sets from approximately feasible solutions

In order to implement the ideas presented at the beginning of this section, it is impor-
tant to be able to generate stable sets from the optimization of (5), which, according to
Section 3, requires (x, y) to be feasible. By the very nature of Algorithm AL, however, a
feasible point of (5) will never be readily available. So we need a technique for extracting
stable sets from the approximately feasible solutions that the algorithm does produce.
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Each point obtained by the algorithm will have some or all of its edge constraints
violated, but recall that the augmented Lagrangian algorithm will always maintain the
unit-norm constraint of (5). Of course, as the algorithm progresses, the amount of infea-
sibility will decrease, but this infeasibility nonetheless complicates the computation of
a stable set induced by z = (x, y). Note that by Lemma 4, the set Bz is bipartite if and
only if z ∈ F2. So, it is necessary to introduce an analogue of the set Bz that is always
a stable set for G regardless of whether z ∈ F2 or not. First, given z ∈ �2n, we define

εz ≡ max
(i,j)∈E

|xixj + yiyj |

so that εz is a measure of the largest constraint violation. Next, letting the superscript I
denote the idea of “infeasibility,” we define

BI
z ≡

{
i : xiyi = 0, max(|xi |, |yi |) > ε

1/2
z

}
∪
{
i : min(|xi |, |yi |) > ε

1/2
z

}
.

Note that when εz = 0, i.e., when z/‖z‖ ∈ F (2), the definition of BI
z matches the usual

definition of Bz. We have the following proposition.

Proposition 2. The set BI
z is bipartite for G for every z ∈ �2n.

Proof. To simplify notation, let B ≡ BI
z . In a similar fashion as Lemma 4, we define

B+ ≡ {i ∈ B : xi = 0 or xiyi > 0} and B− ≡ {i ∈ B : yi = 0 or xiyi < 0}.
It is easy to see thatB+ andB− form a bipartition ofB, and we also claim that (B+, B−)
is a bipartition of GB , i.e., B+ and B− are stable sets in GB (or equivalently of G). To
show this in the case of B+, let i, j ∈ B+ be given; we will show that (i, j) �∈ E. Using
the definition of B+, it is straightforward to see that |xixj + yiyj | = |xi ||xj | + |yi ||yj |.
Suppose first that xi = 0 or xj = 0. Then it is easy to see that min{|yi |, |yj |} > ε

1/2
z ,

which implies that

|xixj + yiyj | = |yi ||yj | > ε
1/2
z ε

1/2
z = εz.

Since εz is the largest edge constraint violation, we conclude that (i, j) �∈ E. Now consid-
er the case in which xiyi > 0 and xjyj > 0. It is then easy to see that min{|xi |, |xj |, |yi |,
|yj |} > ε

1/2
z . Hence,

|xixj + yiyj | = |xi ||xj | + |yi ||yj | ≥ εz + εz = 2 εz > ε.

As before, we conclude that (i, j) �∈ E. This completes the proof that B+ is a stable
set, and the proof that B− is a stable set is similar. Overall, we conclude that B is a
bipartition of GB . ��

Since BI
z is bipartite for G, we can define the notion of a stable set induced by

infeasible point z = (x, y) by employing the same kind of construction illustrated in
Observation 1. In fact, this process of extracting a large stable set using BI

z allows us to
define a variant of Algorithm AL that includes a stopping criterion:
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Algorithm AL′:
Default Initialization: G = (V ,E), σ1 = 1, v0 = ∞, flag = 0
Input: (x0, y0) ∈ �2n, λ1 ∈ �|E|
Output: S, λ-

For - = 1, 2, . . . and while flag = 0
a. Solve (19) with λ = λ- and σ = σ- from initial point (x-−1, y-−1),

obtaining (x-, y-). Set v = ‖c(x-, y-)‖.
b. If v < 0.25 v-−1, then apply equations (20). Otherwise, apply (21).
c. Let S be an induced stable set of (x-, y-) and set

flag = 1 if
∣∣f (x-, y-)− |S|∣∣ < 0.01.

End

In words, Algorithm AL′ executes Algorithm AL with an important enhancement. In
particular, after (19) is solved for the point (x-, y-), an induced stable set S of (x-, y-)
is calculated, and if the objective function f (x-, y-) and the size of S are comparable
up to two decimal places (in particular, f (x-, y-) is approximately integer), then the
algorithm is stopped via the use of a simple flag. Although there is no theoretical guar-
antee that Algorithm AL′ will terminate when the sequence of points {(x-, y-)}-≥1 is
converging to a stationary point of (5), the algorithm will terminate if convergence is to
a local maximizer, and in practice, we always observe that Algorithm AL′ terminates.

4.3. Comparison of three heuristics

In this subsection, we present rank-one and rank-two heuristics for finding large stable
sets inG based on the ideas of the previous two subsections as well as — in the rank-two
case — the ideas of escaping from canonical solutions mentioned at the end of Subsec-
tion 3.1. We then present computational results comparing the heuristics and discuss the
relative advantages and disadvantages of each.

The rank-two heuristic we present is motivated by Theorem 5 and Proposition 1 for
the rank-two problem (5). Once Algorithm AL′ has terminated with a large stable set S,
it may be possible to improve upon S by using ideas from Proposition 1. In particular,
Proposition 1 shows that there is a collection of easily computable canonical solutions
associated with S that have objective value |S| but are not local maximizers of (5). Re-
starting Algorithm AL′ at or near one of these points may allow the method to “escape”
from the stable set S to another stable set of larger size.

We propose the following rank-two heuristic based on the above ideas:

MSS Heuristic (rank-two):
Default Initialization: G = (V ,E), S = ∅
Input: K ≥ 1, (x, y) ∈ �2n, λ ∈ �|E|
Output: S
For k = 1, . . . , K

a. Run Algorithm AL′ with input (x0, y0) = (x, y) and λ1 = λ and receive
output S̃ and λ = λ-.

b. If |S̃| > |S|, set S = S̃.
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c. Set (x, y) to be a slight perturbation of a canonical solution of S associated
with a random unit vector w ∈ �2.

End

We stress that there is no theory guaranteeing that an “escape” would always be achiev-
able for the rank-two problem. In fact, although “escapes” were often observed in our
experiments, sometimes the algorithm did fail to escape from a non-maximum stable
set.

Since the idea of escaping is not theoretically applicable to the rank-one problem,
we present a rank-one heuristic that employs Algorithm AL′ by setting the variable y to
zero and achieves a single stable set since improvement is unlikely due to Theorem 2.
We note, however, that in the implementation discussed below, the variable y = 0 is not
explicitly carried in the computations.

MSS Heuristic (rank-one):
Default Initialization: G = (V ,E), S = ∅
Input: x ∈ �n, λ ∈ �|E|
Output: S
Run Algorithm AL′ with input (x0, y0) = (x, 0) and λ1 = λ and receive output S.

We implemented the above heuristics in an ANSI C code which we call “Max-AO”
and have tested it on an SGI Origin2000 with sixteen 300MHz R12000 processors at
Rice University, although we note that Max-AO utilizes only one processor. In order to
test the difference between the rank-one and rank-two formulations and to establish the
effectiveness of the “escaping” procedure, we tested the rank-one heuristic as well as
two realizations of the rank-two heuristic. In particular, we investigated the rank-two
heuristics arising from the choice of parameter K = 1 and K = 5. We refer to the three
resulting heuristics as h1, h21 and h25, respectively.

We ran all three heuristics on a set of 64 graphs obtained from the Center for Discrete
Mathematics and Theoretical Computer Science (DIMACS) [8]. These graphs were used
as test instances for the maximum clique problem in the Second DIMACS Implementa-
tion Challenge. Since the maximum clique problem on a graph is the MSS problem on
the complement graph, we actually run Max-AO on the complements of the 64 graphs.

Since each run of Max-AO is randomized, we have run h1, h21 and h25 ten times
each on all 64 graphs. In Tables 1 and 2, we report the results of these experiments. Each
table has thirteen columns which are divided into four groups. The first group contains
information about the test graphs including the name of the graph, the number of vertices
and edges, and the size of the largest stable set known for the graph, which has been
verified by other researchers to equal α(G) for 55 of the 64 graphs. Note that, if the exact
value of α(G) is unknown, then the previously best known stable set size is prefixed with
an asterisk (∗). The next group of columns gives the size of the largest stable set found
by each of the three heuristics over all ten runs. The third group of columns gives the
average size (rounded to the nearest integer) of the stable sets found by each heuristic
during the ten runs, and the final set of columns gives the average time (in seconds) for
each of the heuristics during the ten runs.

A few comments regarding the data in the tables are in order. First and foremost, the
data shows that each heuristic is capable of finding large stable sets in a short amount
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Table 1. Results of ten runs of each heuristic on the first set of 32 graphs

graph max overall average size average time
name |V | |E| α h1 h21 h25 h1 h21 h25 h1 h21 h25

MANN-a9.co 45 72 16 16 16 16 16 16 16 0 0 0
MANN-a27.co 378 702 126 118 125 126 100 124 126 0 3 24
MANN-a45.co 1035 1980 345 45 45 344 45 45 343 2 2 390
brock200-1.co 200 5066 21 20 21 21 20 21 21 0 2 13
brock200-2.co 200 10024 12 10 11 11 10 11 11 0 3 16
brock200-3.co 200 7852 15 13 14 14 13 13 14 0 2 13
brock200-4.co 200 6811 17 15 16 16 15 16 16 0 3 12
brock400-1.co 400 20077 27 22 24 25 22 24 24 2 12 75
brock400-2.co 400 20014 29 24 25 25 23 24 24 2 11 81
brock400-3.co 400 20119 31 24 25 25 22 24 24 2 17 65
brock400-4.co 400 20035 33 23 24 25 23 24 24 2 13 70
brock800-1.co 800 112095 23 20 21 21 19 20 20 12 104 490
brock800-2.co 800 111434 24 20 20 20 19 19 20 13 815 476
brock800-3.co 800 112267 25 19 21 21 19 20 20 14 92 476
brock800-4.co 800 111957 26 18 21 21 18 20 20 15 78 500
c-fat200-1.co 200 18366 12 12 12 12 12 12 12 0 1 5
c-fat200-2.co 200 16665 24 24 24 24 24 24 24 0 3 10
c-fat200-5.co 200 11427 58 58 58 58 58 58 58 0 1 9
c-fat500-1.co 500 120291 14 14 14 14 14 14 14 5 13 83
c-fat500-2.co 500 115611 26 26 26 26 26 26 26 3 13 81
c-fat500-5.co 500 101559 64 64 64 64 64 64 64 3 22 75
c-fat500-10.co 500 78123 126 126 126 126 126 126 126 3 18 68
hamming6-2.co 64 192 32 32 32 32 31 32 32 0 0 0
hamming6-4.co 64 1312 4 4 4 4 4 4 4 0 0 0
hamming8-2.co 256 1024 128 128 128 128 124 128 128 0 0 0
hamming8-4.co 256 11776 16 16 16 16 15 16 16 0 1 4
hamming10-2.co 1024 5120 512 512 512 512 512 512 512 2 3 4
hamming10-4.co 1024 89600 ∗40 40 40 40 34 35 36 47 185 643
johnson8-2-4.co 28 168 4 4 4 4 4 4 4 0 0 0
johnson8-4-4.co 70 560 14 14 14 14 14 14 14 0 0 0
johnson16-2-4.co 120 1680 8 8 8 8 8 8 8 0 0 0
johnson32-2-4.co 496 14880 16 16 16 16 14 16 16 11 2 12

of time. Second, the “average size” column shows that, on average, h21 finds better
stable sets than h1, which indicates that the rank-two formulation is more useful than
the rank-one formulation, and that h25 finds better stable sets than h21, which indicates
that the escaping procedure works well. Third, even though the ranking of the heuristics
in terms of quality of solutions is h1 (good), h21 (better) and h25 (best), the average
times show that h25 is the most expensive and h1 is the least expensive. Hence, the data
demonstrates the standard trade-off between quality of solution and computation time.

Regarding the “max overall” column, we see that h1 found the maximum stable
set 23 times out of the 55 instances for which the exact value of α is known. Thus,
h1 found a maximum stable set about 42% of the time. The percentages for h21 and
h25 are about 65% and 75%, respectively. Moreover, the three heuristics replicated (or
surpassed, as for the graph p-hat1000-3.co) the best known stable set in 38%, 69%, and
78% of the 64 graphs, respectively. From a general perspective, then, we see that the
heuristics are highly effective in finding large stable sets, although there is much room
for improvement on some graphs — for example, the “brock” instances.

Since there are many varied techniques for the maximum stable set problem (or
equivalently, the maximum clique problem) a direct comparison of the running times of
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Table 2. Results of ten runs of each heuristic on the second set of 32 graphs

graph max overall average size average time
name |V | |E| α h1 h21 h25 h1 h21 h25 h1 h21 h25

keller4.co 171 5100 11 7 11 11 7 10 11 0 3 10
keller5.co 776 74710 27 16 24 27 16 21 25 560 391 1306
p-hat300-1.co 300 33917 8 7 8 8 7 8 8 2 19 64
p-hat300-2.co 300 22922 25 25 25 25 25 25 25 1 22 66
p-hat300-3.co 300 11460 36 35 36 36 35 36 36 1 11 46
p-hat500-1.co 500 93181 9 9 9 9 8 9 9 11 55 192
p-hat500-2.co 500 61804 36 36 36 36 36 36 36 6 83 338
p-hat500-3.co 500 30950 ∗50 48 50 50 48 49 50 4 33 188
p-hat700-1.co 700 183651 11 9 11 11 8 9 10 28 139 1175
p-hat700-2.co 700 122922 44 44 44 44 44 44 44 18 193 850
p-hat700-3.co 700 61640 ∗62 60 62 62 60 62 62 10 117 524
p-hat1000-1.co 1000 377247 10 9 10 10 9 9 10 45 371 1410
p-hat1000-2.co 1000 254701 ∗46 45 46 46 45 46 46 45 599 2580
p-hat1000-3.co 1000 127754 ∗66 63 68 68 63 68 68 21 348 1445
p-hat1500-1.co 1500 839327 12 10 11 11 10 10 10 204 2214 6237
p-hat1500-2.co 1500 555290 ∗65 64 65 65 64 65 65 148 1687 7098
p-hat1500-3.co 1500 277006 ∗94 93 94 94 93 93 94 81 1155 4917
san200-0.7-1.co 200 5970 30 15 30 30 15 24 30 0 1 2
san200-0.7-2.co 200 5970 18 12 18 18 12 15 18 0 2 12
san200-0.9-1.co 200 1990 70 70 70 70 67 70 70 0 0 0
san200-0.9-2.co 200 1990 60 36 60 60 35 60 60 0 0 0
san200-0.9-3.co 200 1990 44 44 44 44 39 40 44 0 1 5
san400-0.5-1.co 400 39900 13 7 9 13 6 8 11 10 22 68
san400-0.7-1.co 400 23940 40 20 40 40 19 22 40 226 72 17
san400-0.7-2.co 400 23940 30 15 19 30 15 16 30 3 11 51
san400-0.7-3.co 400 23940 22 12 18 22 12 15 18 3 185 98
san400-0.9-1.co 400 7980 100 52 100 100 52 100 100 1 2 2
san1000.co 1000 249000 15 8 9 10 7 7 9 391 3401 3090
sanr200-0.7.co 200 6032 18 17 18 18 17 17 18 0 4 18
sanr200-0.9.co 200 2037 ∗42 41 42 42 41 41 42 0 1 8
sanr400-0.5.co 400 39816 13 12 13 13 12 12 13 2 22 102
sanr400-0.7.co 400 23931 ∗21 20 21 21 20 21 21 2 17 86

Table 3. DIMACS processor speed benchmarks (in seconds)

instance r100.5 r200.5 r300.5 r400.5 r500.5
time 0.00 0.16 1.36 8.30 31.57

our heuristics with those of other heuristics is not readily available. Instead, we adopt
a strategy employed by the Second DIMACS Implementation Challenge which is to
provide machine timings of a particular DIMACS computer algorithm on five different
instances of increasing size. By doing so, running times can be somewhat calibrated,
thus allowing solution quality to be compared. Table 3 lists the results for the DIMACS
program on the SGI Origin2000 upon which our code has been run. (Please see [8]
for more information and [17] for other heuristics which use the same technique for
comparison.)

We do, however, believe that it is worth mentioning that the quality of stable sets
produced by our heuristics compares well with other heuristics in the literature; in par-
ticular, those in [17]. For example, our heuristic h25 achieves the same size stable set on
essentially all test instances as the code developed by Balas and Niehaus, which finds
large stable sets using the idea of maximum matchings in bipartite subgraphs of G. In
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addition, our heuristic compares favorably with the heuristic developed in Benson and
Ye [1], which is based on solving an SDP relaxation of the MSS problem that is different
from (1). In their paper, they report the size of the best stable set found by their heuristic
on twelve of the graphs that are listed in Tables 2 and 3. We remark that the size of the
stable set found by our heuristic was at least as large as theirs on all twelve instances.
In particular, our heuristic h25 found stable sets which matched theirs on nine of the
twelve instances and exceeded theirs on the remaining three (sanr200-0.7, 18 versus 11;
sanr200-0.9, 42 versus 34; brock200-1, 21 versus 14).

5. Final remarks

In this paper, we have extended the path laid in [5] by providing yet another example
in which low-rank, nonconvex formulations serve as efficient tools for obtaining high-
quality approximate (and often exact) solutions to NP-hard combinatorial optimization
problems. As is the case in [5] with the Max-Cut problem, our experimental results
with the maximum stable set problem indicate that the semidefinite program (1), or its
equivalents, is unlikely to be a cost-effective vehicle for finding stable sets in the graph
G because of the high computational costs associated with solving such a semidefinite
program. Instead, the rank-one and rank-two formulations are more attractive alterna-
tives for that task. We stress, however, that the upper bound ϑ(G) that (1) provides on
α(G) can be highly valuable in its own right as mentioned in the introduction.

We believe that the ideas developed in this paper can be applied to the maximum
weight stable set problem. In particular, if each node i in the graph G has an associated
weight wi > 0, then the problem of finding a stable set with maximum total weight on
its nodes can still be formulated as (2) and (5) by simply replacing the vector e in the
objective functions by the vector (

√
w1, . . . ,

√
wn) while keeping the constraints un-

changed. For example, in the weighted case the canonical solutions of Lemma 1 become
x = ±xS,w where xS,wi = √

wi/W(S) for i ∈ S (where W(S) is defined as
∑

i∈S wi)
and xS,wi = 0 for i /∈ S.

The continuous formulations and heuristics detailed in this paper add novel tech-
niques to those already available for solving or approximating the MSS problem. We
believe that these new techniques are of particular interest because in our tests they con-
sistently produce high-quality stable sets. Nonetheless, there are still many interesting av-
enues for further improvement. For example, can we devise a more efficient local optimi-
zation method than the augmented Lagrangian method (e.g., a trust-region method)? Can
we obtain better heuristics by combining the continuous heuristics with some discrete
heuristics? Is it possible to escape more reliably from the saddle points corresponding to
sub-optimal stable sets? We believe that these questions deserve further investigations.

Acknowledgements. The authors would like to thank two anonymous referees for providing many valuable
comments and suggestions that have helped improve the paper’s presentation.

A. Complete proof of Theorem 3

Before we give the complete proof of Theorem 3, we wish to point out a simplification
that we have employed in the derivation of the results of this section. In particular, the
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definition of problem (P 2
B) allows that Tk = ∅ for one or more k ∈ {1, . . . , p}, but in

the proofs of this section, we will often implicitly assume that Tk �= ∅ so as to reduce
the complexity of the proofs. Each result, however, is stated to include the cases that
Tk = ∅, and the proofs are valid even when the equations Tk = ∅ are considered. As a
rule of thumb, each result can be interpreted by noting that Tk = ∅ implies, for example,
that |Tk| = 0 or that the variables and constraints corresponding to Tk are nonexistent.

Our first result establishes some characteristics of every local maximizer of (P 2
B).

Lemma 6. Let z̄ ≡ (z̄1, . . . , z̄n) be a local maximizer of (P 2
B). Then, for each k =

1, . . . , p, there exist ūk and v̄k such that

z̄i =
{
ūk, i ∈ Sk,

v̄k, i ∈ Tk.
(22)

Proof. To show the lemma, let k ∈ {1, . . . , p} be given. Note that (22) is obviously
true when |Tk| = 0 since then |Sk| = 1. So assume that |Tk| > 0. Since z̄ is a local
maximizer, the point (z̄i)i∈Uk is a local maximizer of the problem

max



∥∥∥∥∥∥
∑
i∈Uk

zi + ak

∥∥∥∥∥∥
2

: zi ⊥ zj ∀ (i, j) ∈ Sk × Tk,
∑
i∈Uk

‖zi‖2 = δk


 , (23)

where Uk ≡ Sk ∪ Tk , ak ≡ ∑
i �∈Uk z̄

i and δk ≡ 1 −∑i �∈Uk ‖z̄i‖2. Note that if δk = 0

then (22) obviously hold with ūk = v̄k = 0. Hence, we assume that δk �= 0. We now
examine (23) in the three cases in which the span of {z̄i : i ∈ Sk} is either zero-, one- or
two-dimensional.

If the span is zero-dimensional, then z̄i = 0 for all i ∈ Sk , in which case (z̄j )j∈Tk is
a local maximizer of the problem

max



∥∥∥∥∥∥
∑
i∈Tk

zi + ak

∥∥∥∥∥∥
2

:
∑
i∈Tk

‖zi‖2 = δk


 . (24)

Analyzing the first-order necessary conditions of (24) at (z̄j )j∈Tk , we see that there
exists λ ∈ � such that

∑
i∈Tk z̄

i + ak = λz̄j for all j ∈ Tk . If λ �= 0 then it fol-
lows from these conditions that (22) holds with ūk = 0 and v̄k = (

∑
i∈Tk z̄

i + ak)/λ.
Suppose now that λ = 0. Then, we have

∑
i∈Tk z̄

i + ak = 0. Since (z̄j )j∈Tk is a
local maximizer of (24), this implies that the objective function of every feasible solu-
tion sufficiently close to (z̄j )j∈Tk is zero. Thus, (z̄j )j∈Tk is also a local maximizer of
max{∑i∈Tk e

T (zi + ak) :
∑

i∈Tk ‖zi‖2 = δk}. First-order optimality conditions for this
problem then imply the existence of η ∈ � such that e = ηz̄j for all j ∈ Tk . This implies
that when λ = 0, (22) also holds with ūk = 0 and v̄k = e/η.

If the span is two-dimensional, then z̄i = 0 for all i ∈ Tk . Hence, a similar argument
as in the zero-dimensional case shows that z̄i is constant over all i ∈ Sk .

If the span is one-dimensional, then there exist perpendicular unit vectors wa,wb ∈
�2 and scalars γ̄i for all i ∈ Uk such that z̄i = γ̄iw

a for all i ∈ Sk and z̄i = γ̄iw
b for all
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i ∈ Tk . It then follows that (γ̄j )j∈Uk is a local maximizer of the problem that originates
from (23) by adding the extra constraints zi = γiw

a for all i ∈ Sk and zi = γiw
b for

all i ∈ Tk , or equivalently, the following maximization problem whose variables are
(γi)i∈Uk :

max



∥∥∥∥∥∥
∑
i∈Sk

γiw
a +

∑
i∈Tk

γiw
b + ak

∥∥∥∥∥∥
2

:
∑
i∈Uk

γ 2
i = δk


 . (25)

Analyzing the first-order necessary conditions of the above maximization, we see that
there exists λ ∈ � such that

(
wa
)T ∑

i∈Sk
γ̄iw

a +
∑
i∈Tk

γ̄iw
b + ak


 = λγ̄j ∀ j ∈ Sk,

(
wb
)T ∑

i∈Sk
γ̄iw

a +
∑
i∈Tk

γ̄iw
b + ak


 = λγ̄j ∀ j ∈ Tk.

If λ �= 0 then the above conditions imply that γ̄j is constant over j ∈ Sk as well as over
j ∈ Tk . Suppose now that λ = 0. Then the vector ŵ ≡∑i∈Sk γ̄iw

a +∑i∈Tk γ̄iw
b + ak

is perpendicular to both wa and wb. Since wa and wb are themselves perpendicular
nonzero vectors in �2, it follows that ŵ = 0 in which case the objective value of (25)
at (γ̄i)i∈Uk is 0. Using this fact together with an argument very similar to the one used
in the zero-dimensional case above, one can also show for this case that γ̄j is constant
over j ∈ Sk as well as over j ∈ Tk .

Hence, in each of the three cases pertaining to the assumption that |Tk| > 0, we have
shown that z̄i is constant over i ∈ Sk and z̄i is constant over i ∈ Tk , and the lemma
follows. ��

In view of the above lemma, when we identify zi with i ∈ Sk (respectively, i ∈ Tk)
with a single variable uk (respectively, vk), any local maximizer of problem (P 2

B) be-
comes a local maximizer of the problem

maximize g(Z) ≡
∥∥∥∥∥

p∑
k=1

(
|Sk|uk + |Tk|vk

)∥∥∥∥∥
2

subject to
p∑
k=1

(
|Sk| ‖uk‖2 + |Tk| ‖vk‖2

)
= 1, (26)

uk ⊥ vk, ∀ k = 1, . . . , p,

whose variables are Z ≡ (u1, v1, . . . , up, vp).

Lemma 7. Let Z̄ = (ū1, v̄1, . . . , ūp, v̄p) ∈ �2p be a local maximizer of (26). Then
g(Z̄) > 0 and, for every k = 1, . . . , p, at least one of the vectors ūk or v̄k is nonzero.
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Proof. To show that g(Z̄) > 0, assume for contradiction that g(Z̄) = 0. Then, since
g(Z) is a nonnegative function, it follows that g(Z) is zero within a neighborhood of Z̄.
Hence, Z̄ is also a local maximizer of

max

{ p∑
k=1

wT (|Sk|uk + |Tk|vk) :
p∑
k=1

(
|Sk| ‖uk‖2 + |Tk| ‖vk‖2

)
= 1,

uk ⊥ vk ∀ k = 1, . . . , p

}

for an arbitrary nonzero w ∈ �2. Examining the first-order optimality condition for this
problem, we see that there exist λ, λ1, . . . , λp ∈ � such that, for each k = 1, . . . , p,

|Sk|w + 2λ|Sk|ūk + λkv̄
k = 0, |Tk|w + 2λ|Tk|v̄k + λkū

k = 0. (27)

Taking the inner product of each of these equations with ūk and v̄k , respectively, em-
ploying the orthogonality of ūk and v̄k , and then summing over all k, we see that

p∑
k=1

wT (|Sk|ūk + |Tk|v̄k)+ 2λ
p∑
k=1

(
|Sk| ‖ūk‖2 + |Tk| ‖v̄k‖2

)
= 0. (28)

Since
∑p

k=1

(|Sk|ūk + |Tk|v̄k
) = 0 by the assumption that g(Z̄) = 0 and since

p∑
k=1

(
|Sk| ‖ūk‖2 + |Tk| ‖v̄k‖2

)
= 1

by the feasibility of Z̄ for (26), we see from (28) that λ = 0. Now using (27) with the
knowledge that λ = 0, we see that each ūk and v̄k is a nonzero multiple of w. Since
0 �= w ∈ �2 was chosen arbitrarily, however, this implies that ūk and v̄k are nonze-
ro multiplies of every nonzero vector in �2, which is impossible. Hence, we have a
contradiction of our assumption that g(Z̄) = 0.

To show the second claim of the lemma, let l ∈ {1, . . . , p} and assume that v̄l = 0;
we will show ūl �= 0. We have that Z̄ is a local maximizer of the problem formed by
setting vl = 0, i.e.,

maximize

∥∥∥∥∥∥|Sl | ul +
∑
k �=l

(
|Sk|uk + |Tk|vk

)∥∥∥∥∥∥
2

subject to |Sl | ‖ul‖2 +
∑
k �=l

(
|Sk| ‖uk‖2 + |Tk| ‖vk‖2

)
= 1, (29)

uk ⊥ vk, ∀ k �= l

The first-order optimality conditions for this problem reveal that r̄ = η ūl for some
η ∈ �, where

r̄ ≡
p∑
k=1

(
|Sk|ūk + |Tk|v̄k

)
= |Sl | ūl +

∑
k �=l

(
|Sk|ūk + |Tk|v̄k

)
. (30)



Maximum stable set formulations and heuristics based on continuous optimization 161

Since 0 < g(Z̄) = ‖r̄‖2 = η2‖ūl‖2, we conclude that ūl �= 0. By employing an anal-
ogous argument, we may also conclude that ūl = 0 implies v̄l �= 0. Hence, it is not
possible that ūl = v̄l = 0, which proves the second claim of the lemma. ��
Lemma 8. Let Z = (u1, v1, . . . , up, vp) ∈ �2p be a point such that, for all k =
1, . . . , p,

uk + vk = γkw, uk ⊥ vk, (31)

|Sk| > |Tk| > 0 "⇒ uk = 0 or vk = 0, (32)

where w ∈ �2 is a vector of unit-length and γ1, . . . , γp are scalars. Let

K ≡ K(Z) ≡ {k : |Sk| > |Tk| > 0, vk �= 0}. (33)

Then,
p∑
k=1

(|Sk|uk + |Tk|vk) =
(∑
k /∈K

γk|Sk| +
∑
k∈K

γk|Tk|
)
w, (34)

g(Z) =
(∑
k /∈K

γk|Sk| +
∑
k∈K

γk|Tk|
)2

. (35)

Moreover, Z is a feasible solution for problem (26) if and only if∑
k /∈K

|Sk|γ 2
k +

∑
k∈K

|Tk|γ 2
k = 1.

Proof. Using (31), (32) and the definition of K, it is easy to see that for all k = 1, . . . , p,

|Sk|‖uk‖2 + |Tk| ‖vk‖2 =
{ |Sk| ‖uk + vk‖2, k /∈ K,

|Tk| ‖uk + vk‖2, k ∈ K,

|Sk|uk + |Tk|vk =
{ |Sk|(uk + vk), k /∈ K,

|Tk|(uk + vk), k ∈ K.
Hence, we have

p∑
i=1

|Sk| ‖uk‖2 + |Tk| ‖vk‖2 =
∑
k /∈K

|Sk| ‖uk + vk‖2 +
∑
k∈K

|Tk| ‖uk + vk‖2

=
∑
k /∈K

|Sk| ‖γkw‖2 +
∑
k∈K

|Tk| ‖γkw‖2

=
∑
k /∈K

|Sk|γ 2
k +

∑
k∈K

|Tk|γ 2
k

and
p∑
i=1

(|Sk|uk + |Tk|vk) =
∑
k /∈K

|Sk|(uk + vk)+
∑
k∈K

|Tk|(uk + vk)

=
(∑
k /∈K

|Sk|γk +
∑
k∈K

|Tk|γk
)
w.
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The expression for g(Z) and the if-and-only-if statement of the lemma now follow
immediately from the above two identities. ��

We will now give the complete proof of parts (c) and (d) of Theorem 3.

Proof. We start by proving (d). Let z̄ ≡ (z̄1, . . . , z̄n) be a local maximizer of (P 2
B). We

will show that f̄ ≡ f (z̄) = |S1|+ . . .+|Sp|, from which part (d) of the theorem follows
immediately due to Theorem 3(b). Define the point Z̄ ≡ (ū1, v̄1, . . . , ūp, v̄p) whose
two-dimensional vector components satisfy the conditions of Lemma 6. Using the fact
that z̄ is a local maximizer of (P 2

B), one can easily verify that Z̄ is a local maximizer of
problem (26). Now let r̄ be the vector defined as in (30) and note that f̄ = g(Z̄) = ‖r̄‖2.
The first-order optimality conditions that hold at Z̄ are:

|Sk|r̄ = λ|Sk|ūk + λkv̄
k, (36)

|Tk|r̄ = λ|Tk|v̄k + λkū
k, (37)

for all k = 1, . . . , p, where λ, λ1, . . . , λp ∈ � are the Lagrange multipliers. (The con-
straint qualification that the gradients of the constraints of (26) at the point Z̄ are linearly
independent can be easily verified.) By taking the dot product of (36) and (37) with ūk

and v̄k , respectively, then adding the two resultant equations, and finally summing all
such equations over the index k, we easily obtain that λ = f̄ . Hence, in what follows,
we replace λ by f̄ . Now multiplying (36) by |Tk| and (37) by |Sk|, and subtracting the
two resulting equations, we obtain

f̄ |Sk||Tk|
(
ūk − v̄k

)
= λk

(
|Sk|ūk − |Tk|v̄k

)
.

Taking the dot product of the last equation with ūk and v̄k , and using the fact that ūk ⊥ v̄k ,
we obtain respectively that

|Sk|(|Tk|f̄ − λk)‖ūk‖2 = 0, (38)

|Tk|(|Sk|f̄ − λk)‖v̄k‖2 = 0. (39)

By Lemma 7, we know that for all k = 1, . . . , p, at least one of the vectors ūk and v̄k is
nonzero. If ūk �= 0 then by (38) we have λk = |Tk|f̄ , which together with (37) implies
that ūk + v̄k = r̄/f̄ . In a similar manner, using (39) and (36) we conclude that if v̄k �= 0
and |Tk| > 0 then we have λk = |Sk|f̄ and ūk + v̄k = r̄/f̄ . These two observations
clearly imply that for all k = 1, . . . , p, we have

ūk + v̄k = 1

f̄ 1/2

r̄

‖r̄‖ ,

|Sk| > |Tk| > 0 "⇒ either ūk = 0 or v̄k = 0.

Therefore, letting K̄ ≡ K(Z̄) ≡ {k : |Sk| > |Tk| > 0, v̄k �= 0}, it follows from Lemma 8
with γk = f̄−1/2 for all k = 1, . . . , p that

f̄ =
∑
k /∈K̄

|Sk| +
∑
k∈K̄

|Tk|. (40)
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To conclude the proof of assertion (d), it remains to show that K̄ = ∅, in which
case (40) reduces to f̄ = ∑p

k=1 |Sk| = |S|, which in turn implies the proposition by
Theorem 3(b). Indeed, assume for contradiction that K̄ �= ∅ and note that in this case
f̄ < |S|. Consider the point Ẑ = (û1, v̂1, . . . , ûp, v̂p) defined as

ûk =
{
(f̄ /|S|)1/2 Qūk, k /∈ K̄
(|S|f̄ )−1/2 Q r̄, k ∈ K̄ , v̂k =

{
(f̄ /|S|)1/2 Q v̄k, k /∈ K̄

0, k ∈ K̄ ,

where Q ∈ �2×2 is defined as

Q ≡
(

0 −1
1 0

)
.

It is a simple verification to see that, for all k = 1, . . . , p, we have ûk ⊥ v̂k and
ûk + v̂k = w/

√|S|, where w is the unit-length vector w ≡ Q r̄/‖Q r̄‖ = Q r̄/f̄ 1/2.
Moreover, we have that K̂ ≡ K(Ẑ) = ∅, and so it follows that Ẑ is a feasible solution of
(26). Using all these facts along with Lemma 8, we conclude that g(Ẑ) = |S|. Consider
now the path Z : [0, 1] → �2p defined as

Z(t) ≡ ψ(t)
[
(1 − t)Z̄ + tẐ

]
for all t ∈ [0, 1], where ψ(t) ≡ [(1 − t)2 + t2]−1/2. We claim that Z(t) is feasible for
problem (26) for all t ∈ [0, 1]. Indeed, writing Z(t) = (u1(t), v1(t), . . . , up(t), vp(t))

and noting that ûk ⊥ ûk for all k = 1, . . . , p, we have for every k /∈ K̄ that(
uk(t)

)T
vk(t) = ψ(t)2

(
(1 − t)ūk + t v̂k

)T (
(1 − t)v̄k + t ẑk

)
= ψ(t)2 t (1 − t)

((
ūk
)T

v̂k +
(
ẑk
)T

v̄k
)

= ψ(t)2 t (1 − t)
(
f̄ /|S|)1/2

(ūk)T
(
Q+QT

)
v̄k = 0,

since Q+QT = 0. Noting that v̄k = r̄/f̄ for k ∈ K̄ and using the relation r̄T Qr̄ = 0,
we easily see that the above inner product is also zero when k ∈ K̄. Hence, it follows
that uk(t) ⊥ vk(t) for all t ∈ [0, 1]. We also have, using ûk ⊥ ūk and v̂k ⊥ v̄k , that

p∑
k=1

(
|Sk| ‖uk(t)‖2 + |Tk| ‖vk(t)‖2

)

= ψ(t)2
p∑
k=1

(
|Sk| ‖(1 − t)ūk + t v̂k‖2 + |Tk| ‖(1 − t)v̄k + t ẑk‖2

)

= ψ(t)2
p∑
k=1

(
|Sk|

[
(1 − t)2‖ūk‖2 + t2‖ẑk‖2

]
+ |Tk|

[
(1 − t)2‖v̄k‖2 + t2‖ẑk‖2

])

= ψ(t)2

[
(1 − t)2

p∑
k=1

(
|Sk| ‖ūk‖2 + |Tk| ‖v̄k‖2

)
+ t2

p∑
k=1

(
|Sk| ‖ẑk‖2 + |Tk| ‖v̂k‖2

)]

= ψ(t)2
[
(1 − t)2 + t2

]
= 1.
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We have thus established the feasibility of Z(t) with respect to (26) for all t ∈ [0, 1].
We now claim that g(Z(t)) is a strictly increasing function of t ∈ [0, 1]. Note that this
claim implies that Z̄ = Z(0) is not a local maximizer of (26), thereby giving the desired
contradiction. To prove the claim, note that

g(Z(t)) =
∥∥∥∥∥

p∑
k=1

(
|Sk|uk(t)+ |Tk|vk(t)

)∥∥∥∥∥
2

= ψ(t)2

∥∥∥∥∥
p∑
k=1

(
|Sk|

(
(1 − t)ūk + t ûk

)
+ |Tk|

(
(1 − t)v̄k + t v̂k

))∥∥∥∥∥
2

= ψ(t)2

∥∥∥∥∥(1 − t)

p∑
k=1

(
|Sk|ūk + |Tk|v̄k

)
+ t

p∑
k=1

(
|Sk|ûk + |Tk|v̂k

)∥∥∥∥∥
2

= ψ(t)2


(1 − t)2

∥∥∥∥∥
p∑
k=1

(
|Sk|ūk + |Tk|v̄k

)∥∥∥∥∥
2

+ t2

∥∥∥∥∥
p∑
k=1

(
|Sk|ûk + |Tk|v̂k

)∥∥∥∥∥
2



= (1 − t)2f̄ + t2|S|
(1 − t)2 + t2

.

The fourth equality follows from the orthogonality between the vectors
∑p

k=1

(|Sk|ūk +
|Tk|v̄k

)
and

∑p
k=1

(|Sk|ûk + |Tk|v̂k
)
, which is guaranteed by Lemma 8 and the fact that

r̄ is orthogonal to Qr̄ . This completes the proof of part (d) of the theorem.
Part (c) of the theorem can now be easily extracted from the analysis used to prove

part (d). ��

B. An example

We provide an example in which (x, y) is a local maximizer in (5) but the induced stable
set A is not maximal in G. Consider the example having V = {1, 2, 3, 4, 5, 6, 7, 8} and

E = {(1, 2), (1, 5), (1, 8), (2, 6), (2, 7), (3, 4), (3, 5), (3, 7), (4, 6), (4, 8)},
i.e., G is the following graph: Let w ∈ �2 be any vector of unit-length, and consider
any feasible (x, y) satisfying

(x1, y1)+ (x2, y2) = (x3, y3)+ (x4, y4) = 1√
2
w,

(x5, y5) = (x6, y6) = (x7, y7) = (x8, y8) = 0,

and the following: (i) none of xi, yi , i = 1, 2, 3, 4, is zero; and (ii) (xi, yi) and (xj , yj ) are
linearly independent for all non-edges (i, j) in the collection (1, 3), (2, 4), (2, 3), (1, 4).
For example, one could take w = (1/

√
2, 1/

√
2) and

(x1, y1) =
(

1

4
,

1

4
− 1

2
√

2

)
, (x2, y2) =

(
1

4
,

1

4
+ 1

2
√

2

)
,

(x3, y3) =
(

1

4
+ 1

2
√

2
,

1

4

)
, (x4, y4) =

(
1

4
− 1

2
√

2
,

1

4

)
.
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In such a case, it can be easily seen that f (x, y) = 2. In addition, V0 = {5, 6, 7, 8},
which implies p = 2, A1 = {1}, B1 = {2}, A2 = {3} and B2 = {4}.

By continuity, any nearby feasible point (x̂, ŷ) satisfies the following: (a) none of
x̂i , ŷi , i = 1, 2, 3, 4, is zero; and (b) (x̂i , ŷi ) and (x̂j , ŷj ) are linearly independent
for all non-edges (i, j) in the collection (1, 3), (2, 4), (2, 3), and (1, 4). In fact, be-
cause of items (a) and (b) as well as the orthogonality constraints on the edges in the
set E \ {(1, 2), (3, 4)}, it is straightforward to see that (x̂5, ŷ5), (x̂6, ŷ6), (x̂7, ŷ7) and
(x̂8, ŷ8) must all equal 0. Thus, (x̂, ŷ) gives rise to the same set V0 as (x, y), and so
f (x̂, ŷ) ≤ |A1| + |A2| = 2. This implies that f (x̂, ŷ) ≤ f (x, y) for all nearby feasible
points (x̂, ŷ). We conclude that (x, y) is a local maximizer. Even though (x, y) is a local
maximizer, however, its induced stable set A = A1 ∪ A2 is not maximal in G. In fact,
none of its alternate induced stable sets — A1 ∪ A2, A1 ∪ B2, B1 ∪ A2 or B1 ∪ B2 —
are maximal.
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