
Math. Program., Ser. B 95: 329–357 (2003)

Digital Object Identifier (DOI) 10.1007/s10107-002-0352-8

Samuel Burer · Renato D.C. Monteiro

A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization

Received: March 22, 2001 / Accepted: August 30, 2002
Published online: December 9, 2002 – c© Springer-Verlag 2002

Abstract. In this paper, we present a nonlinear programming algorithm for solving semidefinite programs
(SDPs) in standard form. The algorithm’s distinguishing feature is a change of variables that replaces the
symmetric, positive semidefinite variable X of the SDP with a rectangular variable R according to the factor-
ization X = RRT . The rank of the factorization, i.e., the number of columns of R, is chosen minimally so as
to enhance computational speed while maintaining equivalence with the SDP. Fundamental results concerning
the convergence of the algorithm are derived, and encouraging computational results on some large-scale test
problems are also presented.
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1. Introduction

In the past few years, the topic of semidefinite programming, or SDP, has received
considerable attention in the optimization community, where interest in SDP has
included the investigation of theoretically efficient algorithms, the development of prac-
tical implementation codes, and the exploration of numerous applications. In terms of
applications, some of the most intriguing arise in combinatorial optimization where
SDPs serve as tractable, convex relaxations of NP-Hard problems. The progress in this
area, however, has been somewhat slow due to the fact that, in practice, the theoreti-
cally efficient algorithms developed for SDP are actually quite time- and memory-in-
tensive, a fact that is especially true for SDP relaxations of large-scale combinatorial
optimization problems. Attempting to address these issues, a recent trend in SDP has
been the development of practically efficient algorithms that are less likely to have
strong theoretical guarantees. The present paper follows this trend by introducing a new,
experimental nonlinear programming algorithm for SDP that exhibits strong practical
performance.

One of the characteristics of the class of practically efficient algorithms just men-
tioned is the effective exploitation of sparsity in large-scale SDPs by relying only on
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first-order, gradient-based information. In [14], Helmberg and Rendl have introduced a
first-order bundle method to solve a special class of SDP problems in which the trace of
the primal matrix X is fixed. For the special case of the graph-theoretic maximum cut
SDP relaxation, Homer and Peinado have shown in [15] how the change of variables
X = V V T , where V is a real square matrix having the same size as X, allows one to
recast the SDP as an unconstrained optimization problem for which any standard non-
linear method – in particular, a first-order method – can be used. Burer and Monteiro
[4] improved upon the idea of Homer and Peinado by simply noting that, without loss
of generality, V can be required to be lower triangular in accordance with the Cholesky
factorization. Then, in a series of papers [6, 5], Burer, Monteiro, and Zhang showed how
one could apply the idea of Cholesky factorization in the dual SDP space to transform
any SDP into a nonlinear optimization problem over a simple feasible set. They also
provided a globally convergent, first-order log barrier algorithm to solve SDPs via this
method, one of the key features being the preservation of sparsity. Most recently, Fukuda
and Kojima [12] have introduced an interior-point technique based on Lagrangian
duality which solves the class of SDPs studied in [14] and allows the use of first-
order methods in the unrestricted space of Lagrange multipliers.

The current paper follows the path laid by these alternative methods and is specifi-
cally motivated by [15, 4], that is, we consider the use of first-order methods for solving
the nonlinear reformulation of an SDP obtained by replacing the positive semidefinite
variable with an appropriate factorization. We work with the standard-form primal SDP

min{C • X : Ai • X = bi, i = 1, . . . , m, X � 0}, (1)

where the data matrices C and {Ai}mi=1 are n×n real symmetric matrices, the data vector
b is m-dimensional, the operator • denotes the inner product of matrices, and the n × n

matrix variable X is required to be symmetric, positive semidefinite as indicated by the
constraint X � 0. Generally speaking, the constraint X � 0 is the most challenging
aspect of solving (1) since the objective function and constraints are only linear in X.
Hoping simply to circumvent this difficult constraint, we introduce the change of vari-
ables X = V V T where V is a real, n × n matrix (that is not required to be symmetric).
In terms of the new variable V , the resulting nonlinear program

min{C • (V V T ) : Ai • (V V T ) = bi, i = 1, . . . , m} (2)

is easily seen to be equivalent to (1) since every X � 0 can be factored as V V T for some
V . Since the positive semidefiniteness constraint has been eliminated, (2) has a signifi-
cant advantage over (1), but this benefit has a corresponding cost: the objective function
and constraints are no longer linear – but instead quadratic and in general nonconvex.

Is it practical to optimize (2) in place of (1)? The answer is certainly not an immediate
“yes” as there are several important questions that should be addressed:

Q1 The number of variables in V is n2. Can this large number of variables be managed
efficiently?

Q2 What optimization method is best suited for (2)? In particular, can the optimization
method exploit sparsity in the problem data?

Q3 Since (2) is a nonconvex programming problem, can we even expect to find a global
solution in practice?
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To answer Q1, we appeal to a theorem of Barvinok [1] and Pataki [21] that posits
the existence of an optimal solution X∗ of (1) having rank r satisfying the inequality
r(r + 1)/2 ≤ m. In terms of the reformulation (2), the existence of X∗ implies the
existence of some V ∗ satisfying X∗ = V ∗(V ∗)T and having its last n − r columns
equal to zero. The idea to manage the n2 variables of V is then simply to set the last
n − r̄ columns of V to zero, where r̄ is taken large enough so as to not eliminate all
optimal solutions. In other words, we ignore the last n − r̄ columns in the optimization.
As a consequence, the resulting optimization is equivalent to the original SDP while
having far fewer variables. In answering Q2, we develop an effective limited memory
BFGS augmented Lagrangian algorithm for solving (2) whose major computations re-
quire computer time and space that are directly proportional to the number of nonzeros
in the data matrices C and {Ai}mi=1. For Q3, we present computational results which
show that the method finds optimal solutions to (2) quite reliably. Although we are able
to derive some amount of theoretical justification for this, our belief that the method is
not strongly affected by the inherent nonconvexity of (2) is largely experimental. Finally,
after positively addressing these three questions, the primary conclusion of this paper is
that optimizing (2) in place of (1) is indeed practical, especially for large, sparse SDPs.

We briefly mention two papers in which the idea of using low-rank positive semi-
definite matrices have been used within optimization algorithms, although we stress
that the scope and aims of the two papers are quite different from the current paper. In
[3], Bentler proposes a Gauss-Seidel-type minimization method to minimize a problem
involving low-rank positive semidefinite matrices in statistical minimum trace factor
analysis (see Shapiro [23] for a brief introduction), and in [18], Lu and Klein use tech-
niques of [20] to reduce the rank of the positive semidefinite variable while solving the
maximum cut SDP relaxation (see Section 4.2) in polynomial-time; note that the method
of Lu and Klein is theoretical in nature and no computational results are presented in
[18].

The paper is organized as follows. In Section 2, we discuss in detail the standard form
SDP (1) as well as its nonlinear reformulation (2). In particular, we analyze optimal-
ity conditions and the consequences of the low-rank factorization theorem mentioned
above. Then in Section 3, we describe our optimization technique for (2), focusing in
particular on how to exploit sparsity in the data. In Section 4, we discuss and dem-
onstrate an implementation of the proposed algorithm on two classes of large-scale
SDPs. We compare our method with one of the classical interior-point methods as
well as with the algorithm of Helmberg and Rendl [14] and conclude that our meth-
od outperforms both of the other methods in terms of time and solution quality. Last-
ly, in Section 5, we conclude the paper with a few final remarks and ideas for future
research.

1.1. Notation and terminology

We use �, �p, and �p×q to denote the space of real numbers, real p-dimensional col-
umn vectors, and real p × q matrices, respectively. We use ‖ · ‖ to denote the Euclidean
norm for vectors. By Sp we denote the space of real p × p symmetric matrices, and we
define Sp

+ and Sp
++ to be the subsets of Sp consisting of the positive semidefinite and
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positive definite matrices, respectively. For a matrix A ∈ Sp, we write A � 0 and A � 0
to indicate that A ∈ Sp

+ and A ∈ Sp
++, respectively. We let trace(A) denote the trace

of a matrix A ∈ �n×n, i.e. the sum of the diagonal elements of A. For A, B ∈ �p×q ,
we define A • B ≡ trace(AT B). Let Diag : �p → �p×p be the operator defined by
Diag(u) = U , where U is the diagonal matrix having Uii = ui for all i = 1, . . . , p, and
let diag : �p×p → �p be defined as diag(U) = u, where ui = Uii for all i = 1, . . . , p.
For a matrix A, we let Ai· and Aij denote the i-th row and the (i, j)-th entry of A,
respectively.

2. The nonlinear formulation

In this section, we explore the standard-form primal SDP (1) and its nonlinear for-
mulation (2) in more detail. We first highlight some of the most important features of
semidefinite programming problems and state our assumptions on (1). We then consider
the consequences of the “low-rank” theorem mentioned in the introduction and finally
derive various optimality conditions for (2).

2.1. The SDP problem and its low-rank reformulation

As stated in the introduction, the standard form primal SDP (1) is specified by data
C ∈ Sn, {Ai}mi=1 ⊂ Sn, and b ∈ �m. Its variable X is an n × n symmetric matrix
that is required to be positive semidefinite, that is, X ∈ Sn+ or X � 0. We assume that
the constraint matrices {Ai}mi=1 are linearly independent, and since Sn has dimension
n(n + 1)/2, this means in particular that m ≤ n(n + 1)/2.

Associated with the primal SDP is the following dual SDP, with variables (S, y) ∈
Sn+ × �m:

max

{
bT y : S = C −

m∑
i=1

yiAi, S � 0

}
. (3)

We assume that (1) and (3) have nonempty optimal solution sets with zero duality
gap, that is, we assume the existence of feasible solutions X∗ and (S∗, y∗) such that
C • X∗ = bT y∗. (We remark that the survey paper [24] by Vandenberghe and Boyd
gives an SDP instance having nonempty primal and dual optimal solutions sets but pos-
itive duality gap.) The following fundamental proposition (whose proof can be found
for example in Corollary 2.1 of [19]) will be useful to us in our analysis of the nonlinear
reformulation of the primal SDP.

Proposition 1. Feasible solutions X and (S, y) are simultaneously optimal if and only
if X • S = 0, or equivalently, XS = SX = 0.

Since every X ∈ Sn+ can be factored as X = V V T for some V ∈ �n×n, the primal
SDP (1) can be reformulated as the nonlinear program (2) in terms of the unrestricted
variable V . Note that variations of (2) can be obtained by requiring structure on the
factorization X = V V T . For example, we could impose the requirement that V be
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lower triangular with nonnegative diagonal elements, in which case the factorization
would represent the Cholesky factorization. Another possibility is to require that V be
symmetric positive semidefinite making V the matrix square root of X. In fact, any
type of factorization that is valid for all feasible X can be used in place of the generic
factorization to reformulate the SDP.

A slightly different perspective on reformulating the SDP through factorization is
the following: instead of using a factorization that is valid for all feasible solutions, use
one that is valid for some or all optimal solutions. Such a reformulation will clearly
have an optimal solution set which is – via the factorization – a subset of the SDP opti-
mal solution set. Pursuing this idea, consider the following theorem, which was proven
concurrently in Barvinok [1] and Pataki [21]:

Theorem 1. If the feasible set of (1) contains an extreme point, then there exists an
optimal solution X∗ of (1) with rank r satisfying the inequality r(r + 1)/2 ≤ m.

We remark that all of the specific SDPs that we consider in this paper satisfy the hypoth-
esis of Theorem 1.

Since a matrix X ∈ Sn+ with rank r can be factored as X = V V T for some V ∈ �n×n

having its last n − r columns equal to zero, we can use the above theorem to impose
a structure on the factorization X = V V T that is valid for some of the SDP optimal
solutions (but not valid for all feasible solutions). In particular, if we define

r∗ = min{rank(X∗) : X∗ is optimal for (1) }, (4)

r̄ = max{r ≥ 0 : r(r + 1)/2 ≤ m}, (5)

then r∗ ≤ r̄ ≤ n, and so the nonlinear program

min{C • (V V T ) : Ai • (V V T ) = bi, i = 1, . . . , m, V·j = 0, j = r̄ + 1, . . . , n}
(6)

is equivalent to the SDP (1) in the sense of the previous paragraph. The advantage of
(6) over (2) is clear: the number nr̄ of variables in (6) can be (and is typically) much
smaller than the number n2 in (2).

We will find it useful to discuss the above ideas in a slightly more general context and
using slightly different notation. For this, we introduce the following nonlinear program,
dependent upon a positive integer r ≤ n:

(Nr) min{C • (RRT ) : Ai • (RRT ) = bi, i = 1, . . . , m, R ∈ �n×r}.
Note that the distinguishing feature of (Nr) is the rectangular shape of the matrix R,
which has n rows but only r columns. Note also that (Nn) is equivalent to (2) and (Nr̄ )

is equivalent to (6).

2.2. Optimality conditions

We wish to analyze the optimality conditions of the nonlinear program (Nr) for a fixed
r , and so we define the usual Lagrangian function

L(R, y) = C • (RRT ) −
m∑

i=1

yi(Ai • (RRT ) − bi), (7)
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where y ∈ �m is the vector of unrestricted Lagrange multipliers for the equality con-
straints of (Nr). Introducing the auxiliary variable S ∈ Sn defined by

S = C −
m∑

i=1

yiAi, (8)

the Lagrangian can be rewritten more simply as

L(R, y) = S • (RRT ) + bT y.

It is important to the note the relationship of the dual SDP with the Lagrange multipliers
y and the auxiliary variable S. Comparing (8) and (3), we see that, in both cases, the
relationship between y and S is the same. Moreover, in the case of the Lagrangian, if
S happens to be positive semidefinite, then (S, y) constitutes a feasible solution of the
dual SDP.

Consider the following easily derived formulas:

∇R

(
Ai • (RRT ) − bi

)
= 2 AiR,

∇RL(R, y) = 2 SR, (9)

L′′
RR(R, y)[D, D] = 2 S • (DDT ) for D ∈ �n×r .

Combining these formulas with standard results from nonlinear programming, we have
the following proposition concerning the local minimizers of (Nr).

Proposition 2. Let R∗ be a local minimum of (Nr), and suppose that R∗ is a regular
point, i.e., the gradients {2 AiR

∗}mi=1 of the constraints at R∗ are linearly independent.
Then there exists a unique Lagrange multiplier vector y∗ ∈ �m and corresponding S∗
such that

S∗R∗ = 0. (10)

Moreover, the inequality

S∗ • (DDT ) ≥ 0 (11)

holds for all matrices D ∈ �n×r satisfying

AiR
∗ • D = 0 ∀ i = 1, . . . , m. (12)

Proposition 2 states the first- and second-order necessary conditions for a feasible
point R to be a local minimizer of (Nr). It is also possible to formulate the standard suf-
ficient conditions for R to be a strict local minimum. It is easy to see, however, that (Nr)

has no strict local minima. To see this, let R be any feasible point, and let Q ∈ �r×r be
an arbitrary orthogonal matrix (hence, QQT = QT Q = I ) . Then the point RQ is also
feasible, and its objective value equals that of R, as the following equations demonstrate:

Ai • ((RQ)(RQ)T ) = Ai • (RQQT RT ) = Ai • (RRT ) = bi,

C • ((RQ)(RQ)T ) = C • (RQQT RT ) = C • (RRT ).
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Since Q can be chosen so that RQ is arbitrarily close to R, it follows that R cannot be
a strict local minimum.

Even though the standard sufficiency conditions are not relevant in the current con-
text, there are some interesting sufficient conditions for a feasible point R of (Nr) to
yield an optimal SDP solution X = RRT , and it is interesting to point out that these
conditions, which are given in the next two propositions, are irrespective of the integer r .

Proposition 3. Let R∗ be a stationary point of (Nr), i.e., there exists y∗ ∈ �m such
that ∇RL(R∗, y∗) = 0. If the associated matrix S∗ ∈ Sn is positive semidefinite, then
X∗ = R∗(R∗)T and (S∗, y∗) are optimal for (1) and (3), respectively.

Proof. First note that X∗ is feasible for (1) since R∗ is feasible for (Nr) and that S∗ is
feasible for (3) since it is related to y∗ by (8) and is also positive semidefinite. Second,
the condition ∇RL(R∗, y∗) = 0 can be rewritten as the equation S∗R∗ = 0 according
to (9). From this we easily that S∗R∗(R∗)T = S∗X∗ = 0. The claim of the proposition
now follows by combining the facts just derived with Proposition 1.

Proposition 4. Let r < n, and suppose that R∗ ∈ �n×r satisfies the hypotheses of Prop-
osition 2 for (Nr) with associated (S∗, y∗). Let R̂ be the injection of R∗ into �n×(r+1).
If R̂ is a local minimum of (Nr+1), then X∗ = R∗(R∗)T and (S∗, y∗) are optimal for
(1) and (3), respectively.

Proof. The linear independence of {AiR
∗}mi=1 implies the linear independence of

{AiR̂}mi=1 since AiR̂ is simply the injection of AiR
∗ into �n×(r+1). Then, since R̂

is a local minimum of (Nr+1), R̂ satisfies the hypotheses of Proposition 2 for (Nr+1),
and so there exists a unique ŷ ∈ �m and an associated Ŝ that fulfill the conclusions
of Proposition 2. Using the same proposition as it applies to R∗ and (Nr), we see that
S∗R∗ = 0. Since R̂ is simply R∗ with an additional zero column appended, we see that
S∗R̂ = 0. Thus, using the uniqueness of ŷ, we conclude that ŷ = y∗ and Ŝ = S∗.

Since the (r + 1)-st column of R̂ is zero, we have that the (r + 1)-st column of AiR̂

is zero for all i = 1, . . . , m. It follows that any matrix D ∈ �n×(r+1) having its first r

columns equal to zero satisfies AiR̂ • D = 0 for all i, and from Proposition 2, we have
that Ŝ • (DDT ) ≥ 0 for all such D. In particular, let d ∈ �n be an arbitrary vector, and
consider the matrix D ∈ �n×(r+1) formed by replacing the (r +1)-st column of the zero
matrix with d . We then have

Ŝ • (DDT ) = Ŝ • (ddT ) = dT Ŝd ≥ 0.

Since d is arbitrary, the above inequality proves that Ŝ is positive semidefinite.
So S∗ = Ŝ is positive semidefinite. Thus, the conclusion of the proposition follows

from Proposition 3.

Proposition 3 has a special significance when we consider how to solve the primal
SDP practically using the reformulations (Nr). For example, suppose we attempt to solve
the formulation (Nr) using an algorithm that computes a local minimum by explicitly
computing the Lagrange multipliers y. Once a local minimum is obtained, if the current
S is positive semidefinite, we can conclude by Proposition 3 that the current X = RRT
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and (S, y) are optimal primal-dual SDP solutions. It is important to note, however, that
the choice of r must be large enough so that at least one SDP optimal solution X has
rank r , that is, r must be at least as big as r∗ defined in (4). Otherwise, (Nr) would not
be equivalent to the SDP (1), implying that S could never be positive semidefinite at a
stationary point.

Proposition 4 also presents an intriguing algorithmic possibility. Suppose that, be-
fore solving (1), we know the exact value of r∗. Then it is best to solve (Nr) for r = r∗.
More specifically, if we choose r < r∗, then (Nr) is not equivalent to (1), and if we
choose r > r∗, then we are solving a larger program than necessary. Of course, since we
do not know the value of r∗ ahead of time, Theorem 1 guarantees that by solving (Nr)

for r = r̄ ≥ r∗, we will solve the SDP. Nonetheless, if r̄ happens to be much bigger than
r∗, we would be solving a much larger program than necessary. Proposition 4, however,
suggests a scheme to solve the SDP which avoids solving (Nr) for r > r∗:

0. Choose r small and compute a local minimum R of (Nr).
1. Use an optimization technique either (a) to determine that the injection R̂ of R into

�n×(r+1) is a local minimum of (Nr+1) or (b) to compute a better local minimum R̃

of (Nr+1).
2. If (a) holds, then X = RRT is SDP optimal by Proposition 4; otherwise, repeat step

1 with R = R̃ and r = r + 1.

We remark that in step 1, if R̂ is not a local minimum, then it is a saddle point and hence
can be escaped from. The goal of this scheme is to solve the SDP when (Nr) first is
equivalent to (1), i.e., when r first equals r∗. There are, of course, some theoretical and
computational considerations with such a scheme (for example, the linear independence
assumptions of Proposition 4 and the optimization technique of step 1), but in Section
4, we show that an adaptation of this scheme allows us to solve the SDP much faster
than just solving (Nr̄ ) directly.

3. The optimization method

In this section, we describe a practical algorithm for obtaining a local minimizer of the
nonlinear program (Nr). The key features of the algorithm are its ability to handle the
nonconvex equality constraints of (Nr) and its exploitation of sparsity in the problem
data via first-order search directions.

3.1. The augmented Lagrangian algorithm

As mentioned in the introduction, the price we pay for the elimination of the difficult
constraint X � 0 in (1) via the factorization X = RRT (or X = V V T ) is the intro-
duction of the difficult constraints Ai • (RRT ) = bi . Since we assume no structure on
Ai ∈ Sn, these constraints are in general nonconvex. Hence, any optimization method
we choose for solving (Nr) must address these difficult constraints.

The nonlinear programming method that we believe is a good candidate for solving
(Nr) is the augmented Lagrangian method (also called the method of multipliers). The
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basic idea behind the method is the idea of penalization, i.e., the method ignores the con-
straints all together and instead optimizes an objective which includes additional terms
that penalize infeasible points. Penalization alone, however, can lead to ill-conditioning
in the optimization, and so a feature of the augmented Lagrangian method is to intro-
duce explicit Lagrange multipliers yi , one for each constraint, that help to balance the
ill-conditioning induced by the penalization. In addition to mitigating the penalization,
the multipliers also can serve as a test for optimality (as discussed at the end of Section 2)
and as a direct connection to the dual problem (3).

In the following description of the augmented Lagrangian algorithm for solving
(Nr), we assume that r has been chosen so that (Nr) is feasible.

A key component of the augmented Lagrangian algorithm is the following function,
called the augmented Lagrangian function:

L(R, y, σ ) = C • (RRT ) −
m∑

i=1

yi(Ai • (RRT ) − bi) + σ

2

m∑
i=1

(Ai • (RRT ) − bi)
2,

(13)

where the variables R ∈ �n×r and y ∈ �m are unrestricted and the parameter σ ∈ �
is positive. Comparing (13) with (7), we see that the augmented Lagrangian function
L differs from the usual Lagrangian L only in the addition of the term involving σ .
This term measures the Euclidean norm of the infeasibility of R with respect to (Nr)

and is scaled by the real number σ . As such, σ is called the penalty parameter. The
motivation for using the augmented Lagrangian algorithm is that, for an appropriate,
fixed choice (y∗, σ∗), an optimal solution R∗ of (Nr) can be found by simply min-
imizing the function L(·, y∗, σ∗) with respect to R (see for example [11] for more
details).

Of course, the trick is to determine (y∗, σ∗), and the augmented Lagrangian algorithm
attempts to do so by forming a sequence {(yk, σk)}k≥0 that converges to some suitable
(y∗, σ∗). (The actual value of (y∗, σ∗) will depend on the specifics of the implemen-
tation – for example, the choice of algorithm parameters.) This is done by minimizing
L(·, yk, σk) with respect to R in order to find its optimal solution Rk and then using
(Rk, yk, σk) to determine a new pair (yk+1, σk+1), from which the process is continued.
The exact method by which (yk, σk) is updated to (yk+1, σk+1) is an important theoreti-
cal and practical detail of the algorithm. In implementations, the update rule is typically
given as follows: parameters γ > 1 and η < 1 are given and an auxiliary scalar vk is
introduced; then

(i) compute v = ∑m
i=1(Ai • (Rk(Rk)T ) − bi)

2;
(ii) if v < η vk , then set

yk+1
i = yk

i − σk(Ai • (Rk(Rk)T ) − bi) for all i,

σk+1 = σk,

vk+1 = v;
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(iii) otherwise, set

yk+1
i = yk

i for all i,

σk+1 = γ σk,

vk+1 = vk.

In words, the quantity v represents the infeasibility of Rk , and the quantity vk is the
best infeasibility obtained by some point R during prior iterations of the algorithm. The
hope is that v is smaller than η vk , meaning that Rk has obtained a new best infeasibil-
ity. If v is in fact smaller than η vk , then item (ii) details how to update the Lagrange
multipliers and the penalty parameter (which stays the same), and then vk+1 carries the
new best infeasibility v. If, on the other hand, v ≥ η vk , then item (iii) increases the
penalty parameter by a factor of γ and keeps the other parameters fixed, all with the goal
of reducing the infeasibility to the target level η vk . We remark that typical choices for
γ and η are 10 and 1/4, respectively. In addition, some methods choose to update the
parameters γ and η dynamically during the course of the algorithm. This is actually the
approach that we take in our numerical experiments (see Section 4 for more details).

Under suitable assumptions, the sequence {(yk, σk)}k≥0 converges to {(y∗, σ∗)},
and the sequence {Rk}k≥0 also converges to R∗. However, since obtaining the exact
optimal solution Rk of L(·, yk, σk) is unlikely in a practical implementation, if the se-
quence {Rk}k≥0 is instead replaced with a sequence of stationary points {R̄k}k≥0 (or
even approximate stationary points), then it can be proven that {R̄k}k≥0 will converge
to a stationary point R̄∗ instead (see for example [11]). In practice, we could probably
expect R̄∗ to be not just a stationary point, but rather a local minimum of (Nr). In fact,
the computational results that we present in the next section demonstrate that R̄∗ is likely
to be a global solution of (Nr).

The method used to perform the unconstrained minimization of L(·, yk, σk) with
respect to R naturally plays a critical role in the overall efficiency of the augmented
Lagrangian algorithm. For this, we have chosen a first-order, limited memory BFGS
approach that employs a strong Wolfe-Powell line search (see for example [11]), and
the number of limited memory BFGS updates that we store is three. We prefer a gradi-
ent-based algorithm because the function and gradient evaluations of L(·, yk, σk) can be
performed very quickly, especially when r is small and the data matrices are very sparse
(as detailed in the next subsection). In addition, it is not difficult to see that computing
and factoring the Hessian of L(·, yk, σk) (as in the application of Newton’s method)
would consume large amounts of space and time.

3.2. The function and gradient evaluations

Since one of the stated goals of our optimization of (Nr) is the ability to exploit sparsity
and problem structure, we now wish to discuss briefly how the augmented Lagrangian
algorithm can do exactly this. The main computational work of the algorithm lies in the
solution of the subproblems min{L(R, yk, σk) : R ∈ �n×r}, and the limited memory
BFGS algorithm that we have chosen to perform this unconstrained minimization uses
function and gradient evaluations as its main computational engine. Hence, we focus
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our attention on the work involved in computing the function value and gradient (with
respect to R) of the augmented Lagrangian function L(·, y, σ ), where y ∈ �m and
σ > 0 are fixed.

From (13), it is not difficult to see that the main work involved in evaluating
L(R, y, σ ) is in the computation of the quantities C • (RRT ) and Ai • (RRT ) for
i = 1, . . . , m. In particular, once these m + 1 quantities are computed, the function
value can easily be obtained in roughly O(m) additional flops. So how can these dot
products be performed efficiently? We will consider two cases that arise in the example
SDPs of the section concerning computational results.

First, suppose all of the data matrices are sparse but have arbitrary structure. Letting
W represent any one of the data matrices, we have

W • (RRT ) =
n∑

i=1

n∑
j=1

Wij [RRT ]ij =
∑

Wij �=0

Wij

r∑
k=1

RikRjk. (14)

The final summation clearly shows that the work needed to compute W • (RRT ) is
proportional to the number of nonzeros of W times the work involved in computing the
dot product of the i-th and j -th rows of R, i.e., the work involved is O(|W |r). Hence, the
augmented Lagrangian function value can be computed in O((|C|+|A1|+· · ·+|Am|)r)
flops. This quantity, however, represents some redundant computations. In particular, if
two or more of the data matrices share a nonzero position (i, j), then the dot product
between the i-th and j -th rows of R will have been computed more than once. To fix
this, we first compute and store [RRT ]ij for any (i, j)-th entry that is nonzero for some
data matrix. Then, for each data matrix W , W • (RRT ) can be computed in O(|W |)
additional flops. Since, the nonzero pattern of the matrix S defined by (8) is precisely
the combined nonzero patterns of the data matrices, we have the following proposition.

Proposition 5. When the data matrices are arbitrary, the time required to evaluate the
augmented Lagrangian function L(R, y, σ ) is O(|S|r + |C| + |A1| + · · · + |Am|).

Second, suppose each of the data matrices is a rank-one matrix, i.e., each data matrix
W equals wwT for some w ∈ �n. In this case, W may not be sparse but is nonethe-
less very structured. Again, the main work in evaluating the function is in computing
W • (RRT ), which can arranged as

W • (RRT ) = (wwT ) • (RRT ) = ‖RT w‖2.

Since ‖RT w‖2 can be calculated in O(nr) flops, we have the following proposition.

Proposition 6. When the data matrices have rank equal to one, the time required to
evaluate the augmented Lagrangian function L(R, y, σ ) is O(mnr).

A couple of remarks concerning the two above propositions are in order. First, the
two propositions can be joined in a straightforward way to handle the case when some
of the data matrices are sparse and arbitrary while others are rank-one. Second, it can be
easily seen that the space requirements of the function evaluation beyond that needed for
the data matrices and the point R are on the order of O(|S|) for arbitrary data matrices
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and O(mr) for rank-one matrices (if the r-vectors RT w are stored as will be convenient
for the gradient computation).

Now turning to the gradient evaluation, we first point out that the formula for the
gradient of L(R, y, σ ) with respect to R is

∇RL(R, y, σ ) = 2 CR − 2
m∑

i=1

yiAiR + 2 σ

m∑
i=1

(Ai • (RRT ) − bi)AiR = 2 S̃R,

(15)

where, if we let ỹi = yi − σ(Ai • (RRT ) − bi),

S̃ = C −
m∑

i=1

yiAi + σ

m∑
i=1

(Ai • (RRT ) − bi)Ai

= C −
m∑

i=1

[
yi − σ(Ai • (RRT ) − bi)

]
Ai = C −

m∑
i=1

ỹiAi .

Notice that ỹi can be computed directly if we make the reasonable assumption that the
function value at R has already been computed.

In the case that the data matrices have arbitrary structure, a reasonable approach to
compute the gradient is simply to form S̃ and compute the gradient according to (15),
making sure to take advantage of the sparsity that S̃ inherits from the data matrices. This
procedure of forming S̃ and then computing the matrix product can easily be seen to
cost O(|S|r + |C| + |A1| + · · · + |Am|) flops. In the case that the data matrices each
have rank one, for each data matrix W , WR can be computed in O(n2) flops according
to the formula WR = w(wT R), assuming that RT w has been stored from the function
evaluation. Because of this, the most practical way to form the gradient is to first compute
WR for each data matrix W , and then to combine the resulting matrices according to the
linear combination of matrices defining S̃. Such a procedure gives an overall flop count
of O(mn2 + mnr). Putting both cases together, we have the following proposition.

Proposition 7. When the data matrices are arbitrary, the time required to evaluate
the gradient of the augmented Lagrangian function L(R, y, σ ) with respect to R is
O(|S|r + |C| + |A1| + · · · + |Am|). When the data matrices have rank equal to one, the
time is O(mnr + mn2).

Once again, we remark that the space requirements are not excessive and, in particular,
can be managed to be O(|S| + nr) in the case of arbitrary matrices and O(nr) in the
case of rank-one matrices.

3.2.1. How the gradient can preserve zeros in the iterates. We now wish to draw at-
tention to a characteristic of the gradient which can potentially have undesirable effects
for the augmented Lagrangian algorithm but can be handled so as to cause little trouble.
The problem arises from the following observation: the pattern of zeros in R and S̃

can propagate a pattern of zeros in the gradient L(R, y, σ ) = 2 S̃R, which can in turn
propagate a pattern of zeros in points R̃ obtained by performing a gradient-based line
search from R.
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For example, suppose the augmented Lagrangian algorithm for (Nr) is initialized
with a point R ∈ �n×r having its final column equal to zero. Then the gradient 2 S̃R will
also have its final column equal to zero. Hence, any point R̃ obtained from R by perform-
ing a line search along the gradient will also have a zero final column. Continuing the
algorithm in this way, it is not difficult to see that the limited memory BFGS algorithm,
which uses combinations of gradients to compute its search directions, will also ensure
that the final column of each ensuing iterate is zero. Thus, though the algorithm was
meant to solve (Nr), it is in fact solving (Nr−1).

The net effect of this zero-preserving characteristic of the gradient is that we may
be imposing an unintended structure on the iterates, which can in turn mean that we are
solving a restriction of (Nr). A practical way to alleviate this problem is to initialize the
algorithm with an R which has no zeros at all.

4. Computational results

In this section, we describe our computational experiences with the low-rank augmented
Lagrangian approach. For comparison, we also present computational results from the
spectral bundle method of Helmberg and Rendl [14] as well as the dual-scaling inte-
rior-point method of Benson, Ye, and Zhang [2]. The implementation of our method
was written in ANSI C, and all experiments for each code were performed on an SGI
Origin2000 with 16 300MHz R12000 processors and 10 Gigabytes of RAM. We stress,
however, that none of the three codes is parallel, that is, each code uses only one pro-
cessor.

Before beginning the detailed discussion of the computational results, a few com-
ments regarding the relevance of the computational results are in order.

First and foremost, the comparisons will be made between three strikingly different
methods. Our method is a primal method that only attains feasibility in the limit, while
each of the other two methods is a feasible dual method. (Note also that the dual-scaling
interior-point method also produces feasible primal solutions as a byproduct of its algo-
rithm.) As a result, for a particular SDP application, one method may be more valuable
based solely on the type of solution it provides. For example, the dual methods are much
more valuable than our primal method when using an SDP relaxation to obtain valid
bounds on the optimal value of an NP-hard discrete problem because any dual feasible
solution provides a valid bound, whereas one must solve the primal problem exactly to
guarantee a bound. On the other hand, for some applications a primal approach may be
favored – one example being the calculation of approximately optimal primal solutions
to the maximum cut SDP relaxation for use in the Goemans-Williamson approximation
algorithm (see Section 4.2).

Keeping the above considerations in mind, we will present results that compare the
three methods directly based on the time needed to solve the SDP, where “solving the
SDP” means obtaining an optimal (or nearly optimal) solution to either the primal or
dual problem. Again, for a particular application, speed may not be the most important
characteristic of a given algorithm.

Second, we do not know a priori that the amount of infeasibility (usually about
10−5) that we obtain for our primal iterates is sufficient to claim that the corresponding
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objective values are upper bounds for the optimal values of the SDPs (in minimization
form). Moreover, it is likely that requiring much more accuracy would increase the time
needed to solve the SDPs. Nonetheless, after much experimentation, we feel that 10−5

is a reasonable amount of infeasibility to require. For example, nowhere in our compu-
tational results did we observe a primal objective value that passed below a dual lower
bound.

4.1. The Lovász theta SDP

The first set of computational results that we present are for the Lovász theta SDP, which
was introduced by L. Lovász in the seminal paper [17]. Given a simple, undirected graph
G = (V , E), the Lovász theta number ϑ of G is defined as the negative of the optimal
value of the Lovász theta SDP

min
{
−(eeT ) • X : trace(X) = 1, Xij = 0 ∀ (i, j) ∈ E, X � 0

}
, (16)

where e ∈ �|V | is the vector of all ones and X has dimension |V | × |V |. (Note that
the Lovász theta SDP is usually stated as a maximization, implying that ϑ is simply
the optimal value, but we have chosen to state the SDP as a minimization in standard
form.) One of the most interesting properties of ϑ is that it satisfies the inequality
α = ω(Ḡ) ≤ ϑ ≤ χ(Ḡ), where α, ω(Ḡ), and χ(Ḡ) are the stability number of G,
the maximum clique number of the complement graph Ḡ, and the chromatic number of
Ḡ, respectively. In this regard, ϑ is a polynomial-time computable number which lies
between two numbers that are NP-Hard to compute.

In terms of the semidefinite program (1), n = |V |, m = |E| + 1, C = −eeT , the set
{Ai}mi=1 consists of the identity matrix I as well as |E| matrices of the form eie

T
j + ej e

T
i

(where ek ∈ �n has a 1 in position k and 0 elsewhere), and the vector b ∈ �m has one
entry equal to 1 and all other |E| entries 0. In the computations, we will treat C as a
rank-one matrix while all other data matrices we will be handled as arbitrary, sparse ma-
trices. Hence, we can tailor Propositions 5–7 to the case at hand, obtaining the following
proposition.

Proposition 8. For the Lovász theta SDP, the function and gradient evaluations of the
augmented Lagrangian L(R, y, σ ) of (Nr) can be performed in O(|E|r + nr) and
O(|E|r + nr + n2) flops, respectively.

To optimize the Lovász SDP, we apply the augmented Lagrangian algorithm as stated
in Section 3 to the problem (Nr̄ ), where r̄ is defined by (5). (In this case, the approxi-
mate value of r̄ is

√
2(|E| + 1).) In particular, we do not employ the idea of dynamically

increasing the rank as described at the end of Section 2. There are two reasons for this.
Firstly, we cannot guarantee that the regularity assumption of Proposition 4 holds at an
arbitrary stationary point R of (Nr) obtained by the algorithm, and as such, the theoret-
ical base for dynamically changing the rank is not strong. Secondly, our computational
experience shows that the problem (Nr) corresponding to the Lovász SDP is difficult to
solve for small values of r . In particular, the convergence of our method on problems
with r � r̄ is not very strong, while the convergence for r = r̄ is quite good. As a
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result, we find computationally that the potential benefits of using (Nr) for small r are
not realized due to slow convergence.

In addition, we have chosen not to test optimality by checking the positive semidef-
initeness of S during the algorithm. The reason for this is two-fold: firstly, we desired to
test our own stopping criterion (described below); and secondly, an efficient routine for
testing positive semidefiniteness was not readily available. In particular, we remark that
the Cholesky factorization, a typical way to test S � 0, can still require a large amount
of computational work if the nonzero fill-in of the Cholesky factor is large.

In our numerical tests for the Lovász theta SDP, we found it very important to mon-
itor the increase of the penalty parameter σ . In early testing, we found that σ had a
tendency to increase to a high level which resulted in ill-conditioning of the augmented
Lagrangian function and consequently poor overall performance of the algorithm. In an
attempt to alleviate this problem, we also tested a version of our algorithm in which each
penalty was assigned its own penalty parameter, but even the individual parameters were
likely to increase to high values. In the end, we chose to use a single penalty parameter
for all constraints and to handle the ill-conditioning by a more aggressive strategy for up-
dating the Lagrange multipliers. Indeed, we observed that the progress of the Lagrange
multipliers y towards the optimal y∗ was extremely important for the overall efficiency
of the method. So in order to deemphasize the penalty parameter while emphasizing the
multipliers, we chose the penalty update factor γ to be

√
10 (as opposed to the usual

value of 10), and we dynamically updated the infeasibility reduction parameter η so as
to allow the updating of y while still requiring a moderate amount of reduction in the
infeasibility.

A fundamental property of (16) is that its optimal value lies between −n and −1.
With this in mind, we would like to initialize the augmented Lagrangian algorithm with
a specific (R, y) so that X = RRT is primal-feasible with objective value −1 and so
that (S, y) is dual-feasible with objective value −n. For the primal, the matrix R ∈ �n×r̄

having 1/
√

r̄ in each diagonal position and zeros elsewhere would certainly suffice, but
this matrix is not an appropriate choice since it has a large pattern of zeros that can cause
problems for the algorithm according to Section 3.2.1. So we alter the suggested matrix
by perturbing it by a dense matrix of small norm. In particular, the initial R0 ∈ �n×r̄

that we choose is defined by

R0
ij =

{
(1/r̄)1/2 + (1/nm)1/2 if i = j ,
(1/nm)1/2 otherwise.

For the initial choice of (S, y), we first note that the dual SDP of (16) can be written as
follows:

max


y0 : S = −eeT − y0I −

∑
(i,j)∈E

yij (eie
T
j + ej e

T
i ), S � 0


 .

Here, we have departed from our usual notation of denoting the Lagrange multipliers
by a vector y ∈ �m. Instead, we let y0 denote the multiplier for the trace constraint and
yij denote the multiplier for the constraint on edge (i, j). We choose the components
y0

0 = −n and y0
ij = −1 to comprise our initial Lagrange multiplier y0, and S0 is then
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given by (8). From this it can be seen that the objective value at (S0, y0) is −n, and
moreover, if we make the assumption that G has no isolated nodes (a reasonable as-
sumption in the context of computing the Lovász theta number of graph), then it is easy
to see that S0 is diagonally dominant with each diagonal entry equal to n − 1 and each
off-diagonal entry equal to either −1 or 0. Hence S0 is positive definite, and so (S0, y0)

constitutes a feasible solution of the dual SDP having objective value −n, as desired.
As stated in Section 3, the augmented Lagrangian algorithm does not have a stopping

criterion. In the computational results below, the stopping criterion we have chosen is as
follows: the algorithm is terminated once points R∗ and (y∗, σ∗) are obtained such that

|L(R∗, y∗, σ∗) − C • (R∗(R∗)T )|
max(|L(R∗, y∗)|, 1)

< 10−5.

In other words, the algorithm stops when the relative difference between the augmented
Lagrangian function and the regular objective function is sufficiently small.

In the following discussion, the low-rank augmented Lagrangian algorithm will be
referred to as LR, and we will compare this method with two other methods – the spec-
tral bundle method (SBmethod version 1.1.1) of Helmberg, Rendl and Kiwiel and the
dual-scaling interior-point method (DSDP version 3.2) of Benson, Ye, and Zhang. The
spectral bundle method, or simply “SB,” is a dual ascent method, that is, it maximizes the
dual of (16) by computing a sequence of feasible points whose objective values mono-
tonically approach the optimal value. The dual-scaling algorithm, or simply “DSDP,”
on the other hand, maintains both primal and dual feasibility and obtains optimality by
forcing the primal and dual objective values to converge to one another. Both SB and
DSDP are run with their default parameters.

Firstly, we compare the four methods on a set of six graphs which were used in the
Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization
Problems [8]; their characteristics are listed in Table 1. In the table, we give the graph
name, the number of vertices, the number of edges, and the edge density of the graph,
which is also the nonzero density of the dual matrix S. In addition, the last column of
Table 1 gives the value of r̄ for each graph.

In Table 2, we list the objective values obtained by each method on each of the six
problems. Note that there are two columns for DSDP: DSDP-p gives DSDP’s primal
objective value, and DSDP-d gives its dual objective value. Note also that DSDP was
unable to run efficiently on four of the six graphs, and so those results are not available as
indicated by the symbol “n/a.” Table 3 helps to interpret the objective values by provid-
ing estimates of the accuracy of each method. The first column gives the Euclidean norm

Table 1. The hamming theta graphs

graph |V | |E| dens % rank r̄

hamming-9-8 512 2304 1.76 68
hamming-10-2 1024 23040 4.40 215
hamming-11-2 2048 56320 2.69 336
hamming-7-5-6 128 1792 22.05 60
hamming-8-3-4 256 16128 49.41 180
hamming-9-5-6 512 53760 41.10 328



A nonlinear programming algorithm 345

Table 2. Objective values for the hamming theta graphs

graph LR SB DSDP-p DSDP-d

hamming-9-8 −224.000 −224.000 −223.795 −224.005
hamming-10-2 −102.400 −102.400 n/a n/a
hamming-11-2 −170.665 −170.667 n/a n/a
hamming-7-5-6 −42.667 −42.667 −42.642 −42.669
hamming-8-3-4 −25.600 −25.600 n/a n/a
hamming-9-5-6 −85.333 −85.333 n/a n/a

Table 3. Accuracies for the hamming theta graphs

graph LR feas LR-SB DSDP

hamming-9-8 4.8e-05 4.0e-07 9.4e-04
hamming-10-2 4.3e-05 2.7e-06 n/a
hamming-11-2 1.7e-04 1.1e-05 n/a
hamming-7-5-6 2.1e-05 2.3e-08 6.3e-04
hamming-8-3-4 4.9e-05 3.1e-07 n/a
hamming-9-5-6 4.1e-05 4.7e-07 n/a

Table 4. Times in seconds for the hamming theta graphs
Note: for each graph, SB took an atypical one iteration.

graph LR SB DSDP

hamming-9-8 17.0 0.8 250.5
hamming-10-2 978.4 50.7 n/a
hamming-11-2 3420.2 159.2 n/a
hamming-7-5-6 3.5 0.3 59.3
hamming-8-3-4 223.2 9.9 n/a
hamming-9-5-6 454.6 4.9 n/a

totals 5096.9 225.8 n/a

of the final infeasibility obtained by the augmented Lagrangian algorithm and in partic-
ular shows that LR was able to obtain points that were very nearly feasible. The second
column compares the objective values found by LR and SB in a relative sense, i.e., the
absolute value of the difference of the two numbers is divided by the larger (in absolute
value) of the two numbers. Since LR is a primal method while SB is a dual method,
the numbers indicate that each of the two methods computed a highly accurate optimal
value. Finally, the last column compares DSDP-p with DSDP-d in a similar way, and
the numbers in this column indicate that DSDP also obtained an accurate optimal value.

Finally, in Table 4, we give the times (in seconds) taken by each method on each
problem, and in the final row, we give the total time for each method. The table shows
that SB outperformed both LR and DSDP on this class of graphs. It should be noted,
however, that these “hamming” graphs have a particular structure that allows SB to
solve each of them in one iteration. This type of performance is actually quite atypical
as demonstrated by Tables 5 through 7 (see next paragraph).
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Table 5. The Gset and second DIMACS theta graphs

graph |V | |E| dens % rank r̄

G43 1000 9990 2.00 142
G44 1000 9990 2.00 142
G45 1000 9990 2.00 142
G46 1000 9990 2.00 142
G47 1000 9990 2.00 142
G48 3000 6000 0.13 110
G49 3000 6000 0.13 110
G50 3000 6000 0.13 110
G51 1000 5909 1.18 109
G52 1000 5916 1.18 109
G53 1000 5914 1.18 109
G54 1000 5916 1.18 109
MANN-a27.co 378 702 0.99 38
brock200-1.co 200 5066 25.46 101
brock200-4.co 200 6811 34.23 117
brock400-1.co 400 20077 25.16 201
c-fat200-1.co 200 18366 92.29 192
hamming6-4.co 64 1312 65.08 52
hamming8-4.co 256 11776 36.08 154
johnson16-2-4.co 120 1680 23.53 58
johnson8-4-4.co 70 560 23.19 34
keller4.co 171 5100 35.09 102
p-hat300-1.co 300 33917 75.62 261
san200-0.7-1.co 200 5970 30.00 110
sanr200-0.7.co 200 6032 30.31 110

In Tables 5 through 7, we give computational results for LR and SB on an additional
set of 25 graphs that come from two sources: the so-called Gset collection of graphs
introduced by Helmberg and Rendl in [14] and the Second DIMACS Implementation
Challenge on the maximum clique (or maximum stable set) problem [16]. The data in
the tables is organized in a similar way as for Tables 1–4. Regarding Table 7, note that
each method was given an upper limit of ten hours (or 36,000 seconds) for computation
time on a single instance. The tables support the following conclusion: each method is
accurate but LR outperforms SB by a large margin in terms of time.

4.2. The maximum cut SDP relaxation

The maximum cut problem on a simple, undirected, edge-weighted graphG = (V , E, W)

is the problem of partitioning the vertices into two sets V1 and V2 so that the total weight
of all edges crossing between V1 and V2 is maximized. The maximum cut problem is
often referred to simply as “maxcut.” We assume that V = {1, . . . , n} and that W is an
n × n symmetric matrix such that entry wij is the weight on edge (i, j), where wij = 0
if (i, j) �∈ E. The following SDP relaxation of the maxcut, which was preceded by the
work of Donath and Hoffman [9, 10] and Poljak and Rendl [22] on eigenvalue approach-
es for graph partitioning, was used by Goemans and Williamson in [13] to develop their
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Table 6. Objective values and accuracies for the Gset and second DIMACS theta graphs

graph LR SB LR feas LR-SB

G43 −280.576 −280.629 3.1e-05 1.9e-04
G44 −280.485 −280.588 6.5e-06 3.7e-04
G45 −280.142 −280.190 1.7e-06 1.7e-04
G46 −279.782 −279.843 1.2e-04 2.2e-04
G47 −281.858 −281.899 8.5e-07 1.5e-04
G48 −1499.973 −1500.000 4.1e-05 1.8e-05
G49 −1499.982 −1500.000 9.3e-06 1.2e-05
G50 −1494.050 −1497.037 2.5e-05 2.0e-03
G51 −349.000 −349.023 7.2e-06 6.7e-05
G52 −348.387 −348.515 1.8e-06 3.7e-04
G53 −348.348 −348.386 2.1e-06 1.1e-04
G54 −341.000 −341.014 6.0e-06 4.0e-05
MANN-a27.co −132.753 −132.764 2.9e-05 8.8e-05
brock200-1.co −27.454 −27.459 8.0e-05 1.6e-04
brock200-4.co −21.290 −21.296 1.5e-04 2.5e-04
brock400-1.co −39.652 −39.710 1.4e-04 1.5e-03
c-fat200-1.co −12.000 −12.003 1.4e-05 2.8e-04
hamming6-4.co −5.333 −5.333 4.0e-05 2.7e-05
hamming8-4.co −16.000 −16.001 2.6e-04 8.5e-05
johnson16-2-4.co −8.000 −8.000 8.7e-05 3.3e-06
johnson8-4-4.co −14.000 −14.000 3.6e-05 7.1e-08
keller4.co −14.005 −14.013 2.3e-05 6.3e-04
p-hat300-1.co −10.068 −10.109 1.3e-05 4.1e-03
san200-0.7-1.co −30.000 −30.000 1.3e-05 4.4e-06
sanr200-0.7.co −23.810 −23.838 5.4e-05 1.2e-03

celebrated approximation algorithm for maxcut:

min

{
1

4

[
W − Diag(We)

] • X : diag(X) = e, X � 0

}
. (17)

Here, e ∈ �n is the vector of all ones. (Note also that we state the maxcut SDP relaxation
as a minimization in accordance with (1) as opposed to a maximization as in [13].) In
terms of the SDP (1), n = |V |, m = n, C = 1

4

[
W − Diag(We)

]
, and Ai = eie

T
i for

i = 1, . . . , n, where ei ∈ �n is the vector with a 1 in position i and 0 elsewhere. Notice
that the sparsity pattern of C is exactly that of the graph G. For the full details on the
maxcut SDP relaxation, we refer the reader to [13].

In terms of the nonlinear reformulation (Nr) of the maxcut SDP relaxation (17), the
constraint diag(X) = e becomes the following: ‖Ri·‖2 = 1 for all i = 1, . . . , m. In
words this means that a point R is feasible for (Nr) if and only if each row of R has
norm equal to one. Since these “norm-one” constraints are separable, it is easy to see
that (Nr) can be reformulated as an unconstrained problem having objective function

f (R) =
n∑

i=1

n∑
j=1

cij

〈
Ri·, Rj ·

〉
‖Ri·‖ ‖Rj ·‖ =

∑
(i,j)∈E

cij

〈
Ri·, Rj ·

〉
‖Ri·‖ ‖Rj ·‖ (18)

Because of the simplicity of handling the constraints, we choose to optimize (Nr) using
this unconstrained formulation rather than using the augmented Lagrangian algorithm
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Table 7. Times in seconds for the Gset and second DIMACS theta graphs

graph LR SB

G43 980.1 36000.0
G44 961.3 36000.1
G45 899.8 36000.6
G46 917.6 36000.3
G47 884.1 36000.1
G48 338.9 1.6
G49 405.7 1.6
G50 4255.4 3.2
G51 3125.1 5682.6
G52 7023.2 3399.7
G53 7530.6 27718.2
G54 2402.0 1313.4
MANN-a27.co 30.7 1689.4
brock200-1.co 259.1 36000.2
brock200-4.co 791.6 36000.2
brock400-1.co 2027.6 36000.2
c-fat200-1.co 741.7 36000.2
hamming6-4.co 1.2 7589.6
hamming8-4.co 73.2 36000.0
johnson16-2-4.co 3.6 3.0
johnson8-4-4.co 1.7 0.2
keller4.co 153.2 36000.0
p-hat300-1.co 8052.4 36000.4
san200-0.7-1.co 17.4 34.6
sanr200-0.7.co 396.1 36000.2

totals 42273.3 515439.6

of Section 3. The advantage is that, by applying the limited memory BFGS algorithm
to this unconstrained problem, we obtain a feasible descent method that can still exploit
the sparsity of C (as is evident by the final expression in (18)).

In our implementation of the maxcut SDP relaxation, we are able to test the idea
of dynamically increasing the rank r as discussed at the end of Section 2. In the spe-
cific case of the maxcut SDP relaxation, it is easy to see that the constraint gradients
{2 eie

T
i R}mi=1 are linearly independent for all R ∈ �n×r , and so the linear independence

assumption of Proposition 4 will always be satisfied. Moreover, if we obtain a local
minimum of the unconstrained problem (18), this will clearly give us a corresponding
local minimum of (Nr) which then satisfies the hypotheses of Proposition 4. Hence, the
maxcut SDP relaxation is an ideal case for testing the idea of dynamically increasing
the rank.

Our procedure for testing the dynamic update of r is a slight modification of the
ideas presented in Proposition 4. Recall that r̄ , which is given by (5), is the smallest
rank r that theoretically guarantees the equivalence of (Nr) with the SDP. (In this case,
r̄ is approximately equal to

√
2|V |.) Our procedure then is to define rj = �(j/5)r̄� for

j = 1, . . . , 5 and to solve (Nr1) through (Nr5) successively, terminating the process
either when the difference of two successive optimal values is sufficiently small or when
(Nr5) itself has been solved. (We note that r5 = r̄ .) The problem (Nr1) is initialized with
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R0 ∈ �n×r1 that is defined by normalizing the rows of the matrix

R̃0
ij =




1 + (1/nm)1/2 if i = j ,
1 + (1/nm)1/2 if i > j and j = r1,
(1/nm)1/2 otherwise.

As with the Lovász theta SDP, the motivation behind this choice in starting point is to
obtain a reasonable initial objective value while avoiding a structured pattern of zeros in
the initial point. In a similar manner, once (Nr1) has been solved and a local minimum
R1 obtained, the initial point for (Nr2) is computed by appending r1 − r2 columns of
small norm to R1 and then normalizing. Initial points for (Nr3), (Nr4), and (Nr5) can be
calculated similarly (if necessary).

In our tests, a problem (Nrj ) is considered solved once a point R∗ satisfying

‖∇fj (R
∗)‖

max(|fj (R∗)|, 1)
< 10−5,

is obtained, where fj is the objective function (18) in the space �n×rj . In addition,
we consider the difference between two successive optimal values f ∗

j and f ∗
j+1 to be

“sufficiently small” if

f ∗
j − f ∗

j+1

max(|f ∗
j+1|, 1)

< 10−5.

For comparison with the idea of dynamic rank, we also test solving (Nr̄ ) directly.
The initial point chosen for this computation is chosen similarly as for (Nr1) above, and
the overall stopping criterion is also as above, namely that the algorithm is terminated
once a point R∗ is obtained whose relative gradient norm is less than 10−5.

In the following discussion, the two methods described above will be referred to
as LR5 and LR1, respectively. We will compare these two methods with the same two
methods used for comparison in the previous subsection–the spectral bundle method
SB and the dual-scaling interior-point method DSDP. As stated previously, SB is a dual
ascent method, while DSDP maintains both primal and dual feasibility.

We first compare the four methods on a set of four graphs which were used in the
Seventh DIMACS Implementation Challenge on Semidefinite and Related Optimization
Problems [8]. They are the so called “torus” problems and their characteristics are listed
in Table 8. (The format of Table 8 follows that of Table 1.)

Tables 9 and 10 provide objective values and accuracies for the four methods. The
last three columns of Table 10 are similar to the last two columns of Table 3 – each

Table 8. The torus maxcut graphs

graph |V | |E| dens % rank r̄

toruspm3-8-50 512 1536 1.17 33
toruspm3-15-50 3375 10125 0.18 83
torusg3-8 512 1536 1.17 33
torusg3-15 3375 10125 0.18 83
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Table 9. Objective values for the torus maxcut graphs

graph LR5 LR1 SB DSDP-p DSDP-d

toruspm3-8-50 −527.807 −527.805 −527.813 −527.509 −527.813
toruspm3-15-50 −3475.072 −3475.064 −3475.159 −3474.523 −3475.136
torusg3-8 −457.358 −457.357 −457.361 −456.932 −457.369
torusg3-15 −3134.517 −3134.443 −3134.592 −3132.688 −3134.572

Table 10. Accuracies for the torus maxcut graphs

graph LR5-LR1 LR5-SB LR1-SB DSDP

toruspm3-8-50 3.5e-06 1.1e-05 1.4e-05 5.8e-04
toruspm3-15-50 2.3e-06 2.5e-05 2.7e-05 1.8e-04
torusg3-8 2.3e-06 7.4e-06 9.7e-06 9.6e-04
torusg3-15 2.4e-05 2.4e-05 4.8e-05 6.0e-04

Table 11. Times in seconds for the torus maxcut graphs

graph LR5 LR1 SB DSDP

toruspm3-8-50 2.7 5.7 9.9 13.1
toruspm3-15-50 25.7 154.4 288.2 2311.8
torusg3-8 3.3 3.9 9.2 10.9
torusg3-15 54.8 119.2 391.7 3284.3

totals 86.5 283.2 699.1 5620.1

compares a primal method with a dual method. The first column, on the other hand,
compares the two primal versions LR5 and LR1 (using the scaled difference between
the two numbers). As a result, the first column indicates that the values found by LR5
and LR1 do not differ significantly, which indicates that both LR5 and LR1 converged
to the same value as predicted by theory. Overall, the conclusion of Tables 9 and 10 is
that each method was able to compute accurate solutions.

Finally, in Table 11, we give the times taken by each method. The table shows that
LR5 outperforms all other methods. In particular, we can conclude that the idea of dy-
namically increasing the rank works well since LR5 outperforms LR1. In addition, we
see that both of the low-rank methods outperform SB and DSDP and that DSDP is an
order of magnitude slower than SB.

In Tables 12 through 14, we give computational results for LR5, LR1, and SB on an
additional set of 25 graphs that come from an extended version of the Gset collection of
graphs mentioned in the previous subsection. (Graphs G55 and higher were generated
and contributed to Gset by Choi and Ye in [7].) The data in the tables is organized in a
similar way as for Tables 8–11, and the tables support the same conclusions as above,
namely that each method is accurate but that LR5 outperforms LR1 which outperforms
SB. In particular, one can see that LR5 and LR1 have much stronger performance on
the largest graphs. For example, in the case of G81, a graph having 20,000 vertices and
40,000 edges, LR5 is almost 500 times faster than SB.
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Table 12. The Gset maxcut graphs

graph |V | |E| dens % rank r̄

G01 800 19176 6.00 41
G11 800 1600 0.50 41
G14 800 4694 1.47 41
G22 2000 19990 1.00 64
G32 2000 4000 0.20 64
G35 2000 11778 0.59 64
G36 2000 11766 0.59 64
G43 1000 9990 2.00 45
G48 3000 6000 0.13 78
G51 1000 5909 1.18 45
G52 1000 5916 1.18 45
G55 5000 12498 0.10 101
G57 5000 10000 0.08 101
G58 5000 29570 0.24 101
G60 7000 17148 0.07 119
G62 7000 14000 0.06 119
G63 7000 41459 0.17 119
G64 7000 41459 0.17 119
G65 8000 16000 0.05 127
G66 9000 18000 0.04 135
G67 10000 20000 0.04 142
G70 10000 9999 0.02 142
G72 10000 20000 0.04 142
G77 14000 28000 0.03 168
G81 20000 40000 0.02 201

Table 13. Objective values and accuracies for the Gset maxcut graphs

graph LR5 LR1 SB LR5-LR1 LR5-SB LR1-SB

G01 −12082.937 −12083.134 −12083.273 1.6e-05 2.8e-05 1.2e-05
G11 −629.157 −629.160 −629.173 4.5e-06 2.5e-05 2.0e-05
G14 −3191.559 −3191.545 −3191.589 4.2e-06 9.6e-06 1.4e-05
G22 −14135.718 −14135.750 −14136.039 2.3e-06 2.3e-05 2.0e-05
G32 −1567.617 −1567.621 −1567.655 2.4e-06 2.4e-05 2.1e-05
G35 −8014.556 −8014.616 −8014.796 7.4e-06 3.0e-05 2.2e-05
G36 −8005.919 −8005.931 −8006.020 1.5e-06 1.3e-05 1.1e-05
G43 −7032.190 −7032.091 −7032.254 1.4e-05 9.1e-06 2.3e-05
G48 −5999.965 −5999.893 −6000.000 1.2e-05 5.9e-06 1.8e-05
G51 −4006.251 −4006.191 −4006.286 1.5e-05 8.8e-06 2.4e-05
G52 −4009.604 −4009.510 −4009.669 2.3e-05 1.6e-05 4.0e-05
G55 −11039.200 −11038.721 −11039.851 4.3e-05 5.9e-05 1.0e-04
G57 −3885.370 −3885.368 −3885.520 6.4e-07 3.9e-05 3.9e-05
G58 −20135.842 −20134.731 −20136.327 5.5e-05 2.4e-05 7.9e-05
G60 −15221.909 −15220.476 −15222.803 9.4e-05 5.9e-05 1.5e-04
G62 −5430.739 −5430.721 −5430.950 3.3e-06 3.9e-05 4.2e-05
G63 −28243.390 −28240.765 −28244.623 9.3e-05 4.4e-05 1.4e-04
G64 −10465.820 −10465.145 −10465.972 6.4e-05 1.5e-05 7.9e-05
G65 −6205.282 −6205.286 −6205.591 7.4e-07 5.0e-05 4.9e-05
G66 −7076.909 −7076.917 −7077.266 1.1e-06 5.1e-05 4.9e-05
G67 −7744.070 −7744.071 −7744.497 7.7e-08 5.5e-05 5.5e-05
G70 −9861.247 −9860.081 −9861.723 1.2e-04 4.8e-05 1.7e-04
G72 −7808.196 −7808.160 −7808.600 4.6e-06 5.2e-05 5.6e-05
G77 −11045.093 −11045.058 −11045.771 3.2e-06 6.1e-05 6.5e-05
G81 −15655.148 −15655.162 −15656.282 8.9e-07 7.2e-05 7.2e-05
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Table 14. Times in seconds for the Gset maxcut graphs

graph LR5 LR1 SB

G01 11.9 15.2 21.0
G11 3.0 7.1 67.9
G14 11.1 10.5 31.5
G22 22.8 32.1 89.3
G32 9.7 31.8 286.0
G35 40.1 51.1 211.0
G36 61.7 65.8 250.4
G43 10.1 14.3 21.9
G48 17.1 49.0 0.3
G51 19.1 12.1 48.1
G52 13.8 11.6 50.6
G55 50.4 189.1 25356.4
G57 54.4 185.1 2438.1
G58 316.8 239.8 3023.1
G60 67.8 267.4 57132.8
G62 94.7 463.1 3582.1
G63 296.7 660.9 7561.3
G64 485.0 1140.7 5960.4
G65 114.4 577.2 9014.0
G66 152.7 795.4 9465.6
G67 194.1 653.4 16044.8
G70 304.8 439.1 88540.0
G72 195.1 645.2 10505.9
G77 287.4 1003.1 39523.6
G81 500.8 1644.2 245992.8

totals 3335.5 9204.3 525218.9

4.3. The minimum bisection SDP relaxation

The minimum bisection problem on a simple, undirected, edge-weighted graph G =
(V , E, W) is similar to the maxcut problem except that the partition of vertices into V1
and V2 is required to satisfy |V1| = |V2|. In particular, the number of vertices n = |V |
must be even. The minimum bisection problem can be relaxed as

min

{
1

4

[
Diag(We) − W

] • X : diag(X) = e, eT Xe = 0, X � 0

}
, (19)

where all scalars, vectors, and matrices are as in (17). In fact, the only difference between
(19) and (17) is the negated objective function and the additional constraint eT Xe = 0.

To solve (19), we handle the constraint diag(X) = e as we handled it for (17), that
is, we alter the objective function and thereby eliminate the constraint. We handle the
additional constraint eT Xe = 0 using the augmented Lagrangian techniques of Section
3. In addition, we test the idea of dynamically changing the rank as with the maxcut
SDP relaxation. (It can be easily checked that the regularity assumptions hold for the
reformulation (Nr) of the minimum bisection SDP.) Choices of various parameters and
stopping criteria are made similarly as was done for the Lovász theta SDP and the maxcut
SDP relaxation.

Tables 15 through 18 are organized similarly as in the previous subsection, and
they show the performance of the four algorithms on a collection of three minimum
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Table 15. The minimum bisection graphs

graph |V | |E| dens % rank r̄

bm1 882 4711 1.21 43
biomedP 6514 629839 2.97 115
industry2 12637 798219 1.00 159

Table 16. Objective values for the minimum bisection graphs

graph LR5 LR1 SB DSDP-p DSDP-d

bm1 23.440 23.440 23.439 23.423 23.415
biomedP 33.600 33.602 33.599 n/a n/a
industry2 65.631 65.646 64.398 n/a n/a

Table 17. Accuracies for the minimum bisection graphs

graph LR5 feas LR1 feas LR5-LR1 LR5-SB LR1-SB DSDP

bm1 3.7e-04 2.1e-04 0.0e-00 4.3e-05 4.3e-05 3.4e-04
biomedP 3.3e-04 3.3e-04 6.0e-05 3.0e-05 8.9e-05 n/a
industry2 6.4e-04 6.5e-04 2.3e-04 1.9e-02 1.9e-02 n/a

Table 18. Times in seconds for the minimum bisection graphs

graph LR5 LR1 SB DSDP

bm1 22.1 45.2 69.1 520.1
biomedP 3291.4 8548.5 18586.6 n/a
industry2 8291.9 25253.3 36046.6 n/a

totals 11605.4 33847.0 54702.3 n/a

bisection SDPs obtained from the Seventh DIMACS Implementation Challenge. As
with the maxcut SDP, the results demonstrates that LR5 outperforms each of the other
methods.

A few remarks concerning the tables are in order. First, DSDP was unable to perform
satisfactorily on two of the three problems; this is indicated by the symbol “n/a.” Second,
LR5, LR1, and SB were each given an upper bound of ten hours running time on each
instance. Third, it is important to note that this time limit affects the accuracies in Table
17 as it seems SB was not able to converge in the given time.

4.4. Initial versus final progress of SB method

Since SB is a first-order method, one may expect that most progress towards the optimal
solution will be made in the initial iterations of the algorithm and that little progress will
be made in the final iterations. In light of this, it is reasonable to ask how effectively SB
used its time in the computational results of the previous subsections.
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Table 19. Objective values of truncated SBMethod for a subset of the theta graphs

graph LR SB′ SB

G43 −280.576 −280.695 −280.629
G45 −280.142 −280.257 −280.190
G47 −281.858 −281.966 −281.899
G51 −349.000 −349.055 −349.023
G53 −348.348 −348.493 −348.386
MANN-a27.co −132.753 −132.898 −132.764
brock200-1.co −27.454 −27.538 −27.459
brock400-1.co −39.652 −39.786 −39.710
c-fat200-1.co −12.000 −12.068 −12.003
hamming6-4.co −5.333 −7.875 −5.333
keller4.co −14.005 −14.122 −14.013
p-hat300-1.co −10.068 −10.170 −10.109
sanr200-0.7.co −23.810 −23.906 −23.838

Table 20. Objective values of truncated SBMethod for a subset of the maxcut graphs

graph LR5 SB′ SB

G55 −11039.200 −11137.663 −11039.851
G57 −3885.370 −3962.752 −3885.520
G58 −20135.842 −20174.218 −20136.327
G60 −15221.909 −15400.561 −15222.803
G62 −5430.739 −5505.547 −5430.950
G63 −28243.390 −28341.503 −28244.623
G64 −10465.820 −10515.027 −10465.972
G65 −6205.282 −6318.206 −6205.591
G66 −7076.909 −7201.882 −7077.266
G67 −7744.070 −7849.374 −7744.497
G70 −9861.247 −10204.182 −9861.723
G72 −7808.196 −7925.086 −7808.600
G77 −11045.093 −11270.229 −11045.771
G81 −15655.148 −16026.773 −15656.282

Recall that SB was run with its default parameters except that an upper limit of ten
hours was imposed on its running time, and in several instances, the time used by SB
exceeded that used by LR (or its variants). As a way of testing how effectively SB used
its time, we give in Tables 19 and 20 a measurement of the progress of SB at the point
in time that LR terminated. In each table, the first column gives the final objective value
achieved by LR, and the second column, labeled SB′, gives the objective value obtained
by SB in the amount of time equal to the total amount used by LR. The third column
gives the final value obtained by SB at its own termination.

Table 19 shows that the initial progress of SB for the theta graphs is strong. In most
cases, by the time LR had terminated, SB had come within a relative accuracy of about
10−4 of its final value. Clearly, SB had made most of its progress by the time LR had
terminated. On the other hand, Table 20 shows that SB had only reached a relative ac-
curacy of about 10−2 for the maxcut problems, showing that a fair amount of progress
was still needed.
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5. Final remarks

In this paper, we have introduced a new nonlinear algorithm for solving semidefinite
programs in standard form. The algorithm combines several ideas, namely (i) the fac-
torization of positive semidefinite matrices, (ii) the rank of optimal SDP solutions, and
(iii) first-order nonlinear optimization algorithms. Each of these three ideas contributes
to the success of the algorithm. In particular, item (i) allows us to eliminate the difficult
constraint X � 0; item (ii) allows us to greatly reduce the number of variables; and item
(iii) allows us to take advantage of sparsity in the problem data.

Regarding optimality conditions for the low-rank nonlinear formulation (Nr), we
have developed some interesting sufficient conditions and have shown how they can be
incorporated into a practical algorithm for solving SDPs. In addition, the practical be-
havior of the augmented Lagrangian algorithm and its variants indicate the likelihood of
convergence to a global optimal solution even though the underlying nonlinear program
is nonconvex.

The algorithm proposed in this paper also compares very favorably with other effi-
cient algorithms for solving SDPs. In particular, the low-rank approach outperformed
both the spectral bundle method and the dual-scaling interior-point method, two of the
most successful codes for solving large-scale SDPs. For the maxcut SDP, we feel that the
performance of our algorithm LR5 is very strong, and we believe that LR5 will make the
solution of maxcut SDPs for sparse graphs with tens of thousands of vertices a routine
activity. The performance of our algorithm on the Lovász theta SDP is also very strong;
to the best of our knowledge, the computational results in this paper represent the best
progress made on solving the Lovász SDP to date.

There are many ways that we can try to improve our method. One of the most impor-
tant areas for improvement is the solution of the augmented Lagrangian subproblems
(as for the Lovász theta SDP and the minimum bisection SDP). Currently, the subprob-
lems are converging somewhat slowly, and if this convergence could be improved, then
the overall method would benefit greatly. Another area for improvement is the theoret-
ical convergence of the augmented Lagrangian algorithm to an optimal SDP solution.
Although we have some theoretical justification that explains the observed practical
convergence, we do not currently have a formal convergence proof. One idea would
be to combine our method with a dual approach that guarantees the dual feasibility of
the pair (S, y) used in the algorithm. Finally, another way to improve our algorithm is
to extend it to solve other classes of SDPs, for example those having inequality con-
straints.

It may also be possible to derive analogs of our method for solving other versions
of the SDP problem. For example, in [21], Pataki gives results that extend Theorem 1
to the case of semidefinite programs having several semidefinite variables as well as
additional free variables. Moreover, the same paper [21] also establishes the existence
of an optimal solution (S∗, y∗) of the dual SDP (3) for which the rank s of S∗ satisfies
s(s + 1)/2 ≤ n(n + 1)/2 − m. For problems for which m is large and hence s is small,
this result may lead to a practical low-rank approach for solving the dual SDP.
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