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Abstract. The authors of this paper recently introduced a transformation [4] that converts a class of semidef-
inite programs (SDPs) into nonlinear optimization problems free of matrix-valued constraints and variables.
This transformation enables the application of nonlinear optimization techniques to the solution of certain
SDPs that are too large for conventional interior-point methods to handle efficiently. Based on the transfor-
mation, we proposed a globally convergent, first-order (i.e., gradient-based) log-barrier algorithm for solving
a class of linear SDPs. In this paper, we discuss an efficient implementation of the proposed algorithm and
report computational results on semidefinite relaxations of three types of combinatorial optimization prob-
lems. Our results demonstrate that the proposed algorithm is indeed capable of solving large-scale SDPs and
is particularly effective for problems with a large number of constraints.

Key words. semidefinite program – semidefinite relaxation – nonlinear programming – interior-point
methods – limited memory quasi-Newton methods.

1. Introduction

It is well-known in optimization that first-order methods, i.e., those that use only gradient
information to calculate their iterates, typically require a large number of iterations to
reach a high accuracy, while second-order methods, i.e., those that also use Hessian in-
formation, attain the same accuracy in far fewer iterations. On the other hand, iterations
of first-order methods are typically much faster than those of the second-order methods.

For many problems, second-order approaches are favored over first-order approaches
since a small number of expensive iterations may be less expensive in total than a large
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number of inexpensive iterations. For other problems, the reverse is true. Clearly, the
relative advantages and disadvantages of the two should be determined on a case-by-case
basis.

For semidefinite programming, the second-order interior-point methods (either pri-
mal-dual or dual-scaling) have proven to be very robust for solving small- to medium-
sized problems to high accuracy. On large-scale problems, however, their performance
has been mostly discouraging because the cost per iteration for those methods increases
dramatically with the problem size. In fact, on many problems these methods are in-
appropriate for obtaining even low accuracy solutions. In contrast, first-order methods
have proven capable of obtaining moderate accuracy in a reasonable amount of time for
large-scale problems [2, 15, 16].

Based on a nonlinear transformation, we recently proposed a first-order, log-barrier
method for solving a class of large-scale SDPs and established its global convergence [4].
The main purpose of this paper is to study the implementation issues for this algorithm
and to report our computational results.

This paper is organized as follows. In Section 2, we introduce the class of SDPs to
be considered and describe three types of such SDPs that will be used to test the perfor-
mance of our algorithm. In Section 3, we will introduce the aforementioned nonlinear
transformation, describe the log-barrier algorithm, and state essential theoretical results
obtained in [4] that are necessary for understanding the properties of the algorithm. In
Section 4, we discuss issues involved in our implementation and experimentation, and
report our numerical results. Finally, we conclude the paper in Section 5.

1.1. Preliminary notation and terminology

In this paper, �, �n, and �n×n denote the space of real numbers, real n-dimensional
column vectors, and real n×n matrices, respectively. By Sn we denote the space of real
n×n symmetric matrices, and we define Sn+ and Sn++ to be the subsets of Sn consisting
of the positive semidefinite and positive definite matrices, respectively. We write A � 0
and A � 0 to indicate that A ∈ Sn+ and A ∈ Sn++, respectively. We let tr(A) denote the
trace of a matrix A ∈ �n×n, namely tr(A) denotes the sum of the diagonal elements of
A. Moreover, for A, B ∈ �n×n, we define A • B ≡ tr(AT B). If I is a finite set, we let
|I| denote its cardinality, that is, the number of elements of I. Ln denotes the space of
real n × n lower triangular matrices, and Ln++ are the subset of Ln consisting of those
matrices with positive diagonal entries. In addition, we define Ln

0 ⊂ Ln to be the set of
all n × n strictly lower triangular matrices.

2. The SDP problem and three examples

In this section, we introduce the class of SDP problems to be studied in this paper and
describe three subclasses arising from semidefinite relaxations of combinatorial opti-
mization problems. Test instances will be chosen from these three subclasses to test
the performance of our algorithm. The key characteristic of the class under consider-
ation is that the diagonal of the primal variable X is fixed. We note that the SDP problem
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considered here is slightly more general than the class studied in [4]. With some minimal
adjustments, however, all the results in [4] still apply in the current context.

2.1. The primal-dual SDP pair

Consider the primal SDP

(P ) max {C • X : diag(X) = d, A(X) = b, G(X) ≤ h, X � 0} ,

where the variable is X ∈ Sn and the data consist of the matrix C ∈ Sn, the vectors
d ∈ �n+, b ∈ �m, and h ∈ �p, and the linear maps A : Sn → �m and G : Sn → �p.
It is well-known that there exist unique matrices A1, . . . , Am ∈ Sn and G1, . . . , Gp ∈
Sn such that, for all X ∈ Sn, there hold [A(X)]i = Ai • X for i = 1, . . . , m and
[G(X)]j = Gj •X for j = 1, . . . , p. Aside from the primal inequality constraints, (P )

differs from the standard form primal SDP only by the constraint diag(X) = d.
The dual to (P ) is the problem

(D) min
{
dT z + bT y + hT u : Diag(z)+A∗(y)+G∗(u)−C = S, u ≥ 0, S � 0

}
,

where (z, y, u, S) ∈ �n×�m×�p×Sn are the dual variables and where A∗ : �m → Sn

and G∗ : �p → Sn are the adjoints of the operators A and G, which in terms of the
matrices {Ai}mi=1 and {Gj }pj=1 are given by A∗(y) = ∑m

i=1 yiAi for all y ∈ �m and

G∗(u) = ∑p
j=1 ujGj for all u ∈ �p.

We denote by F0(P ) and F0(D) the sets of interior feasible solutions for problems
(P ) and (D), respectively, i.e.,

F0(P ) ≡ {X ∈ Sn
++ : diag(X) = d, A(X) = b, G(X) < h},

F0(D) ≡ {(z, y, u, S) ∈ �n × �m × �p
++ × Sn

++ :

Diag(z) + A∗(y) + G∗(u) − C = S}.

Note that F0(D) is nonempty since, for any y and any u > 0, z can be chosen so that
the resulting matrix S is positive definite. In addition, the term Diag(z) found in the
equality constraint of problem (D) can be rewritten as

∑n
i=1 zi(eie

T
i ), where ei ∈ �n

is the vector having all zeros except a one in the i-th position. We make the following
assumptions throughout our presentation.

Assumption A.1. F0(P ) �= ∅.

Assumption A.2. The matrices {eie
T
i }ni=1∪{Aj }mj=1∪{G�}p�=1 are linearly independent.

As mentioned above, problem (P ) is specialized from the usual standard form prob-
lem by the constraint diag(X) = d. Nonetheless, this constraint arises naturally from
semidefinite relaxations of quadratic integer programs in binary (or ±1) variables. Given
an n-dimensional variable x such that xi ∈ {−1, 1} for each i = 1, . . . , n, the products
xixj for all pairs (i, j) can be conveniently represented as the elements of the rank-one
matrix xxT ∈ Sn+ for which diag(xxT ) = e, where e ∈ �n is the vector of all ones.
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A semidefinite relaxation is then obtained by replacing xxT with the variable matrix
X ∈ Sn+ and requiring diag(X) = e, i.e., by dropping the rank-one restriction.

Numerous combinatorial optimization problems can be cast as quadratic integer pro-
grams in ±1 variables, and in particular, many graph theoretic optimization problems
can be stated in this way. Each such problem thus has a semidefinite relaxation in the
form of (P ), and in this paper, we focus on three specific examples of SDP relaxations
of graph optimization problems.

For the examples below, let G = (V , E) be an undirected graph with vertex set
V = {1, . . . , r} and edge set E ⊆ V × V , and let W ∈ Sr be a weight matrix for
G such that wij = wji is the weight associated with edge (i, j) ∈ E. For those edges
(i, j) �∈ E, we assume wij = wji = 0. In addition, we define the Laplacian matrix of
G with weight matrix W as

L(G, W) ≡ Diag(We) − W. (1)

2.2. Maximum cut relaxation

The maximum cut problem on G is to find a bipartition (V1, V2) of V that maximizes the
sum of the weights of the edges with one vertex in V1 and the other in V2. The maximum
cut problem (or simply “maxcut,” for short) is a well-known NP hard combinatorial
optimization problem that can be cast as a quadratic integer program in ±1 variables.
Its SDP relaxation, which was first given by Goemans and Williamson in [13], is

max

{
1

4
L(G, W) • X : diag(X) = e, X � 0

}
, (2)

which is in the form of (P ) with n = r and A and G nonexistent. Note that Assumption
A.1 is satisfied for the maxcut SDP relaxation since the n×n identity matrix I is strictly
feasible. In addition, Assumption A.2 is trivially satisfied.

2.3. Maximum stable set relaxation

The maximum stable set problem on G is to find a subset V0 ⊆ V of maximum size
such that no two vertices in V0 are adjacent. The maximum stable set problem can also
be formulated as an NP hard quadratic integer program in ±1 variables. The number
of binary variables in the integer program is r + 1, i.e., one more than the number of
vertices in the graph, and hence the SDP relaxation has a matrix variable X of size
(r + 1) × (r + 1). Let

C = 1

4

[
2Ir e

eT 0

]
∈ Sr+1,

where Ir is the identity matrix of dimension r and e is the vector of all ones in �r , and
let Aij = (ei + ej + er+1)(ei + ej + er+1)

T where e� is the �-th coordinate vector in
�r+1. Then the SDP relaxation of the maximum stable set problem is given by

max{C • X : diag(X) = e, Aij • X = 1 ∀ (i, j) ∈ E, X � 0}, (3)
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which is in the form of (P ) with n = r +1 and m = |E| (see [18]). The optimal value of
the above SDP relaxation is called the Lovász theta number of G and is denoted by ϑ(G).
Therefore, the SDP (3) is called a Lovász theta SDP (there are other equivalent forms).
The SDP also satisfies Assumption A.1 (see Theorem 1 of [1]) and clearly satisfies A.2.

2.4. Frequency assignment relaxation

Frequency assignment problems arise in wireless communication networks (see [9, 10],
for example). Given a network represented by a graph G and an edge-weight matrix W ,
a certain type of frequency assignment problem on G can be formulated as the following
maximum k-cut problem (see [11, 20]):

max

[(
k − 1

2k

)
L(G, W) − 1

2
Diag(We)

]
• X (4)

s.t. − Eij • X ≤ 2/(k − 1) ∀ (i, j)

− Eij • X = 2/(k − 1) ∀ (i, j) ∈ U ⊆ E

diag(X) = e, X � 0, rank(X) = k,

where k > 1 is an integer, L(G, W) is the Laplacian matrix as defined in (1), and
Eij = eie

T
j + ej e

T
i . In this k-cut problem, nodes incident to a given edge subset U must

be partitioned into different sets.
The above maximum k-cut problem can be relaxed into the following SDP:

max

[(
k − 1

2k

)
L(G) − 1

2
Diag(We)

]
• X (5)

s.t. − Eij • X ≤ 2/(k − 1) ∀ (i, j) ∈ E \ U

− Eij • X = 2/(k − 1) ∀ (i, j) ∈ U ⊆ E

diag(X) = e, X � 0,

where the rank restriction and the inequality constraints for the non-edges are dropped.
The resulting SDP (5) is in the form of (P ) with n = |V |, m = |U | and p = |E \ U |. It
is a property of this SDP that one may assume wij = 0 for all (i, j) ∈ U . Moreover, it is
clear that (5) satisfies Assumption A.2, and it is also known that Assumption A.1 is not
satisfied in general, that is, (5) does not necessarily have an interior feasible solution.
It can be proven [8], however, that if the subgraph H = (V , U) of G is (k − 1)-color-
able, then an interior feasible solution does exist. We note that all the instances of the
frequency assignment problem used in our computational experiments in Section 4 do
have interior feasible points.

3. A first-order log-barrier algorithm

In this section, we introduce the framework of our first-order, log-barrier algorithm
based on a special nonlinear transformation that converts the dual SDP to a nonlinear
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program with very simple constraints. We will also state the gradient formulas and a
global convergence result for this algorithm. All the stated theoretical results have es-
sentially been proven in [4]. We include them here in order to make the present paper
reasonably self-contained.

3.1. Standard log-barrier subproblems

Under Assumptions A.1 and A.2, it is well-known that for any ν > 0 the standard dual
log-barrier subproblem for (D),

(Dν) min


dT z + bT y + hT u − ν log(det S) − ν

p∑
j=1

log uj : (z, y, u, S) ∈ F0(D)


 ,

and the standard primal log-barrier subproblem for (P ),

(Pν) max


C • X + ν log(det X) + ν

p∑
j=1

log(hj − Gj • X) : X ∈ F0(D)


 ,

have unique optimal solutions (zν, yν, uν, Sν) ∈ F0(D) and Xν ∈ F0(P ), respectively.
Moreover, together they satisfy

XνSν = νI and uν ∗ (h − G(Xν)) = ν e,

where the operation ∗ defines the Hadamard product and e ∈ �p is the vector of all ones.
The paths {(zν, yν, uν, Sν) : ν > 0} and {Xν : ν > 0} are called dual and primal central
paths, respectively, and each tends to a dual and a primal optimal solution, respectively,
as ν goes to zero.

A classic dual log-barrier algorithm is one that approximately solves a sequence of
dual log-barrier subproblems (Dν) corresponding to a set of decreasing ν values.

3.2. The nonlinear programming formulation

Our log-barrier algorithm is a dual algorithm. However, instead of solving (D) di-
rectly, we will first employ a nonlinear transformation to map the interior feasible set
F0(D) ⊂ �n × �m × �p

++ × Sn++ into the set �n++ × �m × �p
++, and then apply the

log-barrier approach to the resulting nonlinear optimization problem in the transformed
space. These ideas were first introduced in [4] and [3]. Recall the definition of the interior
feasible set for (D):

F0(D)≡{(z, y, u, S) ∈ �n × �m × �p
++×Sn

++ : Diag(z)+A∗(y)+G∗(u) − C = S}.
The transformation from (D) to a nonlinear optimization problem consists of two

stages. The first stage is derived from the well-known fact that every S ∈ Sn++ can be
uniquely factored into the product LLT , where L is an n × n lower triangular matrix
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with a positive diagonal, i.e., L ∈ Ln++. Applying this idea to the equality constraint of
(D), we easily see that F0(D) is in bijective correspondence with the set

{(z, y, u, L) ∈ �n × �m × �p
++ × Ln

++ : Diag(z) + A∗(y) + G∗(u) − C = LLT },
(6)

where the numbers of variables and equations remain unchanged after the change of
variables from S to L. In order to describe the second stage of the transformation, we
decompose the variable L ∈ Ln++ into

L = Diag(w) + L0,

where w ∈ �n++ and L0 ∈ Ln
0 (i.e., it is strictly lower triangular). As such, the set (6)

can be rewritten as

{(z, y, u, w, L0) ∈ �n × �m × �p
++ × �n

++ × Ln
0 :

Diag(z) + A∗(y) + G∗(u) − C = (Diag(w) + L0)(Diag(w) + L0)
T }.
(7)

Counting the number of variables and equations in the symmetric equality system of
(7), we see that there are a total of n + m + p + n(n + 1)/2 variables and n(n + 1)/2
equations. A fundamental observation is that the n(n+1)/2 equations in (7) can be used
to eliminate n(n + 1)/2 variables, leaving n + m + p variables and no equations. More
specifically, through the equations in (7) the variables z and L0 can be explicitly defined
as functions of the variables w, y and u. Consequently, the sets (7) and F0(D) are in
bijective correspondence with the set �n++ × �m × �p

++.
The key results of the two-stage transformation just described are given in the fol-

lowing theorem.

Theorem 1. The following statements hold:

(a) for each (w, y, u) ∈ �n++ × �m × �p
++, there exists a unique (z, L0) ∈ �n × Ln

0
such that

Diag(z) + A∗(y) + G∗(u) − C = (Diag(w) + L0) (Diag(w) + L0)
T ; (8)

(b) the functions L0(w, y, u) and z(w, y, u) defined according to (8) are each infinitely
differentiable on their domain �n++ × �m × �p

++;
(c) the sets �n++ ×�m ×�p

++ and F0(D) are in bijective correspondence according to
the assignment (w, y, u) �→ (z, y, u, S) where z ≡ z(w, y, u) and S ≡ S(w, y, u)

and where S(w, y, u) = L(w, y, u)L(w, y, u)T and L(w, y, u) ≡ Diag(w) +
L0(w, y, u).

As an immediate consequence of Theorem 1, the problem obtained from (D) by
restricting the feasible region to the set F0(D) can be recast as the nonlinear program

(NLD) inf{f (w, y, u) : (w, y, u) ∈ �n
++ × �m × �p

++},
where f : �n++ × �m × �p

++ → � is defined by

f (w, y, u) = dT z(w, y, u) + bT y + hT u. (9)
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The transformed dual problem (NLD) differs from the original dual problem (D) in
that the nonlinearity has been shifted from the constraints to the objective function. As a
result, the feasible region for the transformed problem becomes extremely simple. This
shift is likely to have a significant impact on the behavior of the log-barrier approach.

We note that problems (D) and (NLD) have the same optimal values as was shown
in [4], but (NLD) has an open feasible set and in general does not have an optimal solu-
tion. In fact, it can be easily seen that if (d, b, h) �= 0, then all optimal solutions of (D)

lie in the boundary of F0(D), and in this case (NLD) does not have an optimal solution.
This is not a practical limitation, however, since the algorithm for (NLD) described in
this paper maintains its iterates in the open set �n++ ×�m ×�p

++, only approaching the
boundary of the feasible set in the limit.

3.3. The transformed dual log-barrier subproblem

After the transformation, the dual log-barrier subproblem (Dν) becomes the following
“nonlinear” dual log-barrier subproblem:

(NLDν) min

f (w, y, u) − 2ν

n∑
i=1

log wi − ν

p∑
j=1

log uj : (w, y, u) ∈ �n
++ × �m × �p

++



 ,

where we have used the equalities det(S) = det(LLT ) = (det(L))2 = (
∏n

i=1 wi)
2.

The following theorem is proven in [4] which details the relationship between the
transformed dual log-barrier subproblem (NLDν) and the original dual log-barrier sub-
problem (Dν). It indicates that, although convexity may have been lost during the trans-
formation, the benefits of convexity are basically intact.

Theorem 2. For each ν > 0, problem (NLDν) has a unique minimum (wν, yν, uν),
which is also its unique stationary point. This minimum (wν, yν, uν) is equal to the in-
verse image of the minimum (zν, yν, uν, Sν) of (Dν) under the bijective correspondence
of Theorem 1. In particular, we have z(wν, yν, uν) = zν and S(wν, yν, uν) = Sν .

Theorem 2 ensures in a theoretical sense that a log-barrier algorithm based on solving
a sequence of (NLDν) will be well-behaved.

3.4. Gradient formulas and more

Since our algorithm will need to use the first derivative information of the function f ,
we restate the formulas for the gradient of f which were derived in [4]. In particular, we
show that, for each (w, y, u) ∈ �n++ × �m × �p

++, the gradient formula ∇f (w, y, u)

is based on a certain symmetric matrix X(w, y, u) that serves as a primal estimate for
the problem (P ).

Associated with a point (w, y, u) ∈ �n++ × �m × �p
++, as in Theorem 1 we define

L(w, y, u) ≡ Diag(w) + L0(w, y, u) ∈ Ln
++, (10)

S(w, y, u) ≡ L(w, y, u)L(w, y, u)T ∈ Sn
++. (11)
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In the following theorem, we summarize the main results of [4] concerning the first
derivative of f (w, y, u).

Theorem 3. Let (w, y, u) ∈ �n++ × �m × �p
++ be given and define L ≡ L(w, y, u).

Then the system of linear equations

diag(X) = d, [XL]ij = 0 ∀ i > j,

has a unique solution in Sn, which we denote by X(w, y, u). Moreover, the matrix
X ≡ X(w, y, u) satisfies

(a) ∇wf (w, y, u) = 2 diag(XL),
(b) ∇yf (w, y, u) = b − A(X),
(c) ∇uf (w, y, u) = h − G(X).

The following corollary of Theorem 3, which is a slight adaptation of Lemma 5
and Theorem 5 of [4], shows that the matrix X(w, y, u) plays the role of a (possibly
infeasible) primal estimate for any feasible point (w, y, u).

Corollary 1. Let (w, y, u) ∈ �n++ × �m × �p
++, and define L ≡ L(w, y, u), S ≡

S(w, y, u), X ≡ X(w, y, u) and ∇f ≡ ∇f (w, y, u). Then:

(a) X is positive semidefinite (definite) if and only if ∇wf is nonnegative (positive);
(b) A(X) = b if and only if ∇yf = 0;
(c) h − G(X) is nonnegative (positive) if and only if ∇uf is nonnegative (positive);
(d) 2 X • S = wT ∇wf ;
(e) uT (h − G(X)) = uT ∇uf .

Moreover, if (wν, yν, uν) solves (NLDν), then X(wν, yν, uν) solves (Pν).

For each (w, y, u) ∈ �n++ × �m × �p
++, parts (a), (b) and (c) of Corollary 1

clearly give necessary and sufficient conditions for X(w, y, u) to be a feasible or strictly
feasible solution for (P ), and these conditions are based entirely on the gradient ∇f ≡
∇f (w, y, u). Moreover, if ∇wf ≥ 0 and ∇uf ≥ 0, then the quantities X • S and
uT (h − G(X)) are both nonnegative, and hence one can measure the closeness to op-
timality of (w, y, u) by the magnitude of ∇yf , wT ∇wf and uT ∇uf , which, accord-
ing to parts (c), (d) and (e) of Corollary 1, are a measure of the complementarity of
the primal-dual solution (X, z, y, u, S), where X ≡ X(w, y, u), z ≡ z(w, y, u) and
S ≡ S(w, y, u).

The reader may have noticed that the definition of X ≡ X(w, y, u) implies that
X will be dense in general. Since we have claimed that the algorithm of this paper is
designed for solving large-scale SDPs, it is reasonable to question how the gradient
∇f (w, y, u) can be computed efficiently when its computation is dependent upon the
dense matrix X. As it turns out, X is not necessary for computing the gradient. In fact,
we have proved in [4] the existence of a sparse analogue of X which can be used as an
alternative to X in the computation of the gradient.

We briefly describe the sparse analogue of X as follows. Let V ≡ {1, . . . , n}, and
define

F ≡ {(i, j) ∈ V × V : i ≥ j and Lij �= 0 for some L ≡ L(w, y, u)}.
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In other words, F is the collection of nonzero elements of the function L(·, ·, ·). Alter-
natively, F can be described as the fill-in resulting from the Cholesky factorization of
S(w, y, u). Defining

F̄ ≡ {(i, j) ∈ V × V : i ≥ j and (i, j) �∈ F},
we have the following theorem that describes the sparse analogue of X.

Theorem 4. Let (w, y, u) ∈ �n++ × �m × �p
++ be given and define L ≡ L(w, y, u).

Then the system of linear equations

diag(X̂) = d, X̂ij = 0 ∀ (i, j) ∈ F̄, [X̂L]ij = 0 ∀ (i, j) ∈ F,

has a unique solution X̂ ∈ Sn, which we denote by X̂(w, y, u). Moreover, the matrix X̂

satisfies

(a) ∇wf (w, y, u) = 2 diag(X̂L),
(b) ∇yf (w, y, u) = b − A(X̂),
(c) ∇uf (w, y, u) = h − G(X̂).

3.5. A log-barrier framework and global convergence

We now give a generic log-barrier algorithm based on the nonlinear programming for-
mulation (LND), followed by a global convergence result.

Algorithm GLB:
Let σ ∈ (0, 1) and ν1 > 0 be given, and set k = 1.
For k = 1, 2, 3, . . . , do

1. Use an unconstrained minimization method to solve (NLDνk
)

approximately, obtaining (wk, yk, uk) ≈ (wνk
, yνk

, uνk
).

2. Set νk+1 = σνk , increment k by 1, and return to step 1.
End

In order to state a global convergence result for the above algorithm, we need to
specify in Step 1 of the algorithm how accurate the iterate (wk, yk, uk) should be as an
approximate solution to (NLDνk

). For this, let constants γ1 ∈ [0, 1), γ2 > 1 and γ3 > 0
be given, and for each ν > 0 define N (ν) ⊂ �n++ × �m × �p

++ to be the set of all
points (w, y, u) satisfying

2 γ1 ν e ≤ w ∗ ∇wf ≤ 2 γ2 ν e, ‖∇yf ‖ ≤ γ3 ν, γ1 ν e ≤ u ∗ ∇uf ≤ γ2 ν e,

(12)

where ∇f ≡ ∇f (w, y, u) and e is the vector of all ones of appropriate dimension. It
was shown in [4] that for any ν > 0 the unique minimizer (wν, yν, uν) of (NLDν) is in
N (ν), and we will require that our approximate solution (wk, yk, uk) be in N (νk) for k

sufficiently large.
The following global convergence result for the generic nonlinear log-barrier al-

gorithm was proven in [4] in a slightly different form. For each k, we define ∇f k ≡
∇f (wk, yk, uk), zk ≡ z(wk, yk, uk), Lk ≡ L(wk, yk, uk), Sk ≡ S(wk, yk, uk) and
Xk ≡ X(wk, yk, uk).
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Theorem 5. Let {(wk, yk, uk)}k≥1 be the sequence of points produced by the log-barrier
algorithm. If there exists some k0 > 0 such that (wk, yk, uk) ∈ N (νk) for all k > k0,
then

(a) ∇wf k ≥ 0 and ∇uf
k ≥ 0 for all k ≥ k0;

(b) limk→∞(wk)T ∇wf k = 0, limk→∞ ∇yf
k = 0 and limk→∞(uk)T ∇uf

k = 0;
(c) the sequences {Xk}, {(zk, yk, uk, Sk)}, {Lk, wk} and {∇wf k, ∇uf

k} are bounded;
(d) any accumulation points of {Xk} and {(zk, yk, uk, Sk)} are optimal solutions of (P )

and (D), respectively.

3.6. The implemented algorithm

In practice, we of course stop the iterations once some stopping criterion is met. More-
over, we will use a first-order, or gradient based, unconstrained minimization algorithm
for the task of solving the log-barrier subproblems in Step 1. The following is a more
specific and more realistic version of our algorithm, where we define

φk(w, y, u) ≡ f (w, y, u) − 2νk

n∑
i=1

log wi − νk

p∑
j=1

log uj (13)

to be the objective function of (NLDνk
).

Algorithm LB:
Let σ ∈ (0, 1), ε, ν1 > 0 be given, and set k = 1.
For k = 1, 2, 3, . . . , until νk ≤ ε, do

1. Use a version of the limited-memory BFGS algorithm to
solve (NLDνk

) approximately, obtaining (wk, yk, uk)

such that ‖∇φk(w
k, yk, uk)‖ ≤ εk for a selected εk > 0.

2. Set νk+1 = σνk , increment k by 1, and return to step 1.
End

It is easy to verify that for any γ1, γ2 and γ3 in the definition of the neighbor-
hood N (ν) (see (12)), there exists εk > 0 such that ‖∇φk(w, y, u)‖ ≤ εk implies that
(w, y, u) ∈ N (νk). Consequently, global convergence will be ensured by Theorem 5.
In our implementation, however, we will select εk based primarily on practical consid-
erations rather than theoretical ones.

4. Computational results

In this section, we describe our computational experiences with the first-order log-barrier
algorithm of Section 3.6. In particular, we discuss our method for exploiting sparsity
of the problem data within the evaluations of f and ∇f . We then consider a number
of implementation details and conclude with some computational results showing the
effectiveness of our method on a variety of large-scale SDPs.



370 Samuel Burer et al.

4.1. Function and gradient evaluations

Effectively exploiting sparsity in the data of semidefinite programming is a major con-
cern for any algorithm designed to solve large-scale instances of (P ) and (D), and we
now discuss how Algorithm LB proposed in Section 3.6 is able to use the sparsity of the
problem to its advantage when evaluating f and ∇f .

Let us fist consider the evaluation of f (w, y, u) for any (w, y, u) ∈ �n++ × �m ×
�p

++. As was shown in [4], the main work in calculating f (w, y, u) is the computation
of L0(w, y, u), and this provides a key opportunity to exploit the sparsity of the problem.
Indeed, using the standard symbolic Cholesky factorization (see [12], for example), it is
possible to determine in polynomial time the nonzero positions of L0(w, y, u) by ana-
lyzing the nonzeros of S(w, y, u). Since the nonzeros of S(w, y, u) do not exceed the
aggregate nonzeros of the data matrices {C}∪ {Ai}mi=1 ∪{Gj }pj=1, disregarding possible
cancellations the nonzeros of L0(w, y, u) can be considered as independent of (w, y, u)

so that each L0(w, y, u) shares the same set, say F , of nonzeros. Assuming that F has
been computed once and is readily available for each evaluation of L0(·, ·, ·), it is not
difficult to see that the computation of L0(w, y, u) can be performed in a similar fashion
to a sparse Cholesky factorization that accesses only the nonzeros of L0(w, y, u) and
the off-diagonal nonzeros of S(w, y, u). (See also Lemma 1 of [4].)

The evaluation of the objective function serves as the primary motivation for exploit-
ing sparsity in Algorithm LB. This sparsity, however, carries over into the evaluation
of the gradient as well, as exemplified by Theorem 4 in which the formula for ∇f is
expressed in terms of the sparse matrix X̂ ≡ X̂(w, y, u). From Theorem 4, it is easy
to see that, once X̂ has been computed, forming the gradient is a simple computation
that can exploit the sparsity of the data. So it seems sensible (perhaps necessary) to
compute X̂ first and then to compute the gradient. Hence, our implementation efforts
have focused on an efficient method for computing X̂.

From the definition of X̂ in Theorem 4, it is not difficult to develop a straightforward
technique for computing X̂ in a right-to-left column-by-column fashion. (See the proof
of Lemma 3 in [4], for example.) Such an algorithm may not necessarily be the most
efficient, however, since the computations should allow for the exploitation of both the
sparsity of X̂ and the sparsity of L(w, y, u) (upon which X̂ is defined via the linear
system of Theorem 4). In our implementation, we have arranged the computation of
X̂ in such a way that sparsity is exploited to the fullest extent. As a result the overall
computation of ∇f is often quicker than the evaluation of f .

4.2. Special considerations

There are, of course, many details that contribute to the successful implementation of a
given algorithm, and so in this subsection we list and discuss several details concerning
our implementation of Algorithm LB.

As with most iterative algorithms, the choice of starting point is a crucial element
affecting the performance of Algorithm LB. We believe that the point (w0, y0, u0) =
(e, 0, e), where — with a slight abuse of notation — e ∈ �n and e ∈ �p are vectors of all
ones, is a good generic starting point for Algorithm LB. (If either of the vectors y or u are
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nonexistent, then the corresponding components are dropped.) The primary motivation
for this starting point is that, with w0 = e and u0 = e, the value of the function bT y and
the value of the log-barrier function are both equal to zero, thus ensuring a good initial
balance between the two objective values.

Before we discuss the choice of the initial barrier parameter ν1, we first discuss a
slight variation of the log-barrier algorithm that we have found carries with it some
practical advantages. Recall that in the theoretical development of Algorithm LB, we
have introduced the nonlinear program (NLDν), where ν > 0 is the “weight,” or barrier
parameter, assigned to the barrier terms

−2
n∑

i=1

log wi and −
p∑

j=1

log uj .

In particular, we have assigned a single barrier parameter to both terms. There is, how-
ever, no reason why two separate barrier parameters, say νw > 0 for the first term and
νu > 0 for the second, cannot be used. In fact, it is not difficult to prove that the resulting
nonlinear program, called (NLDνwνu), has a unique minimizer and that this minimizer
corresponds to the unique minimizers of the analogous SDP problem (Dνwνu) (whose
definition should be self-evident) in a manner similar to that described by Theorem 2.
A straightforward, convergent variant of Algorithm LB which takes into account the
different choices of barrier parameters νw and νu can then be easily developed.

To help ensure strong practical performance, we suggest that the above scheme be
implemented with different values for νw and νu. In particular, in our implementation
we set νw

1 = 1 and then let νu
1 be calculated as the minimizer of the strictly convex

program

min
νu∈�

‖∇uf
0 − νu(u0)−1‖2,

where (w0, y0, u0) is the initial starting point and ∇f 0 ≡ ∇f (w0, y0, u0). In other
words, νu

1 should be chosen so as to minimize the initial norm of the gradient of the
barrier with respect to u. We remark, however, that since the unique minimizer of the
above program may not be positive, it may be necessary to override the above choice
and set νu

1 to a safe value such as 1. Nonetheless, in our experiments with the frequency
assignment problems, the minimizer was positive in every case and consequently helped
to ensure good convergence of the overall algorithm.

The separation of the barrier parameter ν into two parameters νw and νu brings
up another issue besides just that of initial values. Namely, we must decide when and
how to update each of the parameters. Recall that, after the presentation of Algorithm
LB, we defined a neighborhood N (νk) and updated the parameter ν once the iterates
entered the neighborhood (at least for the later stages of the algorithm). In the case of
two parameters, the definition of the neighborhood can certainly be generalized to a new
neighborhood N (νw

k , νu
k ), and so we have the following theoretical update rule: once

the iterates have entered the neighborhood N (νw
k , νu

k ), update the parameters νw and νu

by multiplying them with the same parameter σ = 0.1.
The above update rule ensures the theoretical convergence of the log-barrier al-

gorithm, but in our experimentation, we found that it was advantageous to replace the
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theoretical neighborhood N (νw
k , νu

k ) with a more practical neighborhood, one consisting
of all points (w, y, u) for which ‖∇φk(w, y, u)‖ is “small” as given in Algorithm LB.
(Note that this practical neighborhood certainly contains the unique minimizer of the
log-barrier function.) In other words, with this practical neighborhood we update the
parameters by σ once the norm of the gradient of the barrier function passes below a
certain threshold (usually 10−1 for early stages of the algorithm and 10−2 for later stages
of the algorithm).

4.3. Results of the log-barrier algorithm

We implemented the log-barrier algorithm as described in the two previous subsections,
and the results are presented in this section. To solve the log-barrier subproblems, we
chose a limited-memory BFGS algorithm with strongWolfe-Powell line-search and three
limited-memory vector updates (see [5] for example). Our sparse data structures were
similar to those commonly found in the literature, and in order to increase the sparsity
of the Cholesky factor L(w, y, u) in our algorithm, we employed the sparse symmetric
matrix reordering subroutines of the external code Metis 4.0.1 [17].

We implemented our code in ANSI C and compared it with the first-order spectral
bundle method (SBmethod v1.1.1) of Helmberg, Rendl, and Kiwiel [15, 14]. The default
parameters for the spectral bundle method were used, and all tests were run on an SGI
Origin2000 with 16 300MHz R12000 processors and 10 Gigabytes of RAM at Rice
University, although each code used only one processor.

We decided to compare our method with the spectral bundle method mainly based
on two considerations: (1) it is the only other first-order method currently available that
can solve a wide range of combinatorial SDPs; and (2) like our method, it is a dual-fea-
sible and descent method, and therefore is highly comparable with our method. Also,
we chose not to compare with any second-order method since our goal was to show the
performance of our method on truly large-scale problems (which is the case for nearly
all test problems presented in this paper) that are currently out of reach for second-order
methods.

Since both methods solve the dual problems of the maximization problems given
in Sections 2.2, 2.3 and 2.4, we note that, in evaluating the quality of an approximate
solution, the smaller the objective value is, the better.

4.3.1. Results on maxcut relaxations The first set of test problems consists of thirteen
instances of the maxcut SDP relaxation (see Section 2.2). Of these thirteen, the first nine
come from the so-called Gset of randomly generated graphs first introduced in [15],
and the last four come from the recent Seventh DIMACS Implementation Challenge on
Semidefinite and Related Optimization Problems[7].

In Table 1, we give information concerning the thirteen problems, namely the prob-
lem name, the value of n for our formulation (note that m = p = 0), the density of
non-zeros in the lower part of the matrices S(·, ·, ·) and in L(·, ·, ·) (including the di-
agonal entries), and the optimal value of the SDP relaxation wherever it is known to
us. We note that, for the maxcut SDP relaxation, n equals the number of vertices in the
underlying graph, and the density of S represents roughly the density of edges present
in the graph.
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Table 1. Problem Statistics for the Maxcut Comparison

name n dens% S dens% L SDP opt
G01 800 6.23 76.80 —
G11 800 0.75 2.64 —
G14 800 1.71 16.32 —
G22 2000 1.10 52.53 —
G32 2000 0.30 1.78 —
G35 2000 0.69 14.11 —
G43 1000 2.20 54.61 —
G48 3000 0.20 1.39 6000
G51 1000 1.38 15.70 —
toruspm3-08-50 512 1.56 14.09 527.808663
toruspm3-15-50 3375 0.24 6.02 —
torusg3-08 512 1.56 14.09 457.358179
torusg3-15 3375 0.24 6.02 —

Table 2 gives the performance of the spectral bundle method (SB) and our method
(BMZ) on the thirteen maxcut test graphs. Each method was given an upper bound of ten
hours (or 36,000 seconds) of computation time on each instance, although on only one
problem (G22 for our method) was this time limit relevant. Our method was terminated
once the barrier parameter νw achieved the value 10−4. (Again, note that p = 0 and
so νu is nonexistent for this class of problems.) We remark that both methods solve
the dual formulation of the maxcut SDP and moreover that each method is a feasible
descent method. Hence, the objective values given in the second and third columns are
directly comparable. The times given in the fourth and fifth columns are in seconds,
and the iterations given in the last two columns represent the total number of “serious
steps” for the spectral bundle method (see [15]) and the number of inner iterations of
our algorithm.

From the table, it is not difficult to see that, for most problems, SB achieves higher
accuracy in less time than BMZ. Interestingly, for those problems in which the times
for BMZ are relatively close to those for SB, the density of L is not much larger than
the density of S, i.e., for these case, the fill-in of the Cholesky factorization is small.
On the other hand, when the fill-in is great, there is a great disparity between the times of
the two methods. Since the spectral bundle method works only with S while our method
works with both S and L, these results seem to indicate that BMZ is most negatively
affected by the fill-in of the Cholesky factorization. Of course, the results also indicate
that SB converges very well on the maxcut problems, obtaining good accuracy in just a
few iterations on most problems.

4.3.2. Results on maximum stable set relaxations The next set of test problems con-
sists of thirty-one Lovász theta SDPs (see Section 2.3), with the first twelve coming from
the same Gset collection as above, the next thirteen coming from the Second DIMACS
Challenge on the Maximum Clique problem [6] (for which the Lovász theta number
represents an upper bound on the size of a maximum clique), and the final six coming
from the Seventh DIMACS Implementation Challenge as mentioned above. The data in
Table 3 are similar to those in Table 1, though here we point out that n (the size of the
matrices in our formulation) equals one plus the number of vertices of the underlying
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Table 2. Comparison of the Two Methods on the Maxcut Graphs

Problem Obj Value Time Iter
name sb bmz sb bmz sb bmz

G01 12083.2730 12083.2390 21 15831 14 1737
G11 629.1730 629.1761 68 20 31 567
G14 3191.5894 3191.5887 31 1214 29 1895
G22 14136.0390 14136.2130 89 36010 19 1944
G32 1567.6548 1567.6601 286 264 45 1017
G35 8014.7961 8014.7731 211 12495 35 1419
G43 7032.2542 7032.2482 22 17252 16 1740
G48 6000.0000 6000.0010 0 68 1 106
G51 4006.2862 4006.2727 48 1683 25 1500
toruspm3-08-50 527.8130 527.8177 10 85 22 711
toruspm3-15-50 3475.1585 3475.1557 288 13550 41 1605
torusg3-08 457.3611 457.3657 9 144 27 1139
torusg3-15 3134.5923 3134.5894 392 10241 53 1167

graph, m (the number of additional primal constraints) equals the number of edges, and
the density of S roughly represents the density of edges in the graph. Also, p = 0 for
this formulation.

Table 4 gives the performance of SB and BMZ on the thirty-one theta test graphs.
As before, each method was given an upper bound of ten hours of computation time
on each instance. Our method was terminated once νw became 10−6, and again, both
methods are dual feasible descent methods. The objective values, times, and iterations
are given just as in Table 2 for the maxcut instances. However, under each category, there
are three columns: the first two columns, SB and BMZ, corresponding to SB and BMZ
applied to the maximum stable set relaxation (3), respectively, and the third column
SB2 corresponding to SB applied to a different formulation of the Lovász theta SDP;
that is,

max{(eeT ) • X : tr(X) = 1, Xij = 0 ∀ (i, j) ∈ E, X � 0}, (14)

where e ∈ �n is the vector of all ones. The spectral bundle method is applicable to this
formulation, but our method is not (see [3], however, for an extension of our method).
We note that although the two formulations are different, the methods are working with
approximately the same size of matrices and the same number of constraints.

A comparison of the results in the columns SB and BMZ in Table 4 indicates that
BMZ outperforms SB on the formulation (3), obtaining a better objective value in less
time on all but two problems. On these two problems (G50 and hamming-9-8), SB seems
to have terminated prematurely.

We now compare the results in the columns BMZ and SB2, i.e., BMZ applied to
(3) and SB applied to (14). It is worth noting that on ten of the tested problems, SB
computed the theta function in just one iteration. This seems to indicate that SB’s rou-
tine for choosing a starting point performed extraordinarily well on these problems. As
such, these results may not reflect the general performance of SB. Also, on one problem,
namely G50, SB seems not to have converged, attaining a value of 1497.0372 when the
optimal value is clearly no greater than the value obtained by BMZ, 1494.0997. On the
remaining twenty problems, it is difficult to draw clear conclusions from the data as
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Table 3. Problem Statistics for the Theta Comparison

name n m dens% S dens% L SDP opt

G43 1001 9990 2.39 55.10 —
G44 1001 9990 2.39 54.42 —
G45 1001 9990 2.39 56.51 —
G46 1001 9990 2.39 54.46 —
G47 1001 9990 2.39 55.30 —
G48 3001 6000 0.27 1.46 1500
G49 3001 6000 0.27 1.34 1500
G50 3001 6000 0.27 1.30 —
G51 1001 5909 1.58 15.58 —
G52 1001 5916 1.58 15.32 —
G53 1001 5914 1.58 15.91 —
G54 1001 5916 1.58 15.64 —
MANN-a27.co 379 702 2.03 3.12 —
brock200-1.co 201 5066 26.93 84.68 —
brock200-4.co 201 6811 35.53 90.31 —
brock400-1.co 401 20077 25.90 91.33 —
c-fat200-1.co 201 18366 92.44 99.82 —
hamming-6-4.co 65 1312 67.18 97.48 —
hamming-8-4.co 257 11776 37.07 92.42 —
johnson8-4-4.co 71 1680 27.43 75.23 14
johnson16-2-4.co 121 560 26.03 75.34 8
keller4.co 172 5100 36.58 83.51 —
p-hat300-1.co 301 33917 75.95 98.67 —
san200-0.7-1.co 201 5970 31.38 68.68 —
sanr200-0.7.co 201 6032 31.69 88.51 —
hamming-9-8 513 2304 2.53 17.98 224
hamming-10-2 1025 23040 4.77 38.54 102.4
hamming-11-2 2049 56320 2.88 36.92 170 2

3
hamming-7-5-6 129 1792 24.44 73.71 42 2

3
hamming-8-3-4 257 16128 50.19 93.34 25.6
hamming-9-5-6 513 53760 41.55 92.74 85 1

3

to which method performed better. On the Gset problems, SB seems to have the edge,
achieving a better objective value in ten hours for problems G43–G47 and calculating a
slightly worse objective value in less time for problems G51–G54. On the Second DI-
MACS Challenge graphs, however, BMZ performs better with higher accuracy in less
time. Interestingly, the disparity between the densities of S and L still exist for these
problems just as they did for the maxcut problems, but in these cases, there seems to be
less of a consequence on the running times of the two methods. Perhaps this is a reflec-
tion of the higher number of iterations that SB tends to perform on the theta problems
as compared with the maxcut problems.

We mention that since the SB and BMZ methods apply different transformations to
an SDP problem, it is not possible to start the two methods from an identical or even
“equivalent” initial point, thus making a more rigorous comparison difficult. We also
note that for the test problems c-fat200-1.co and hamming8-4.co, the stability numbers
are 12 and 16, respectively. For these two problems, by solving the SDP relaxations we
obtained sufficiently tight upper bounds that deliver the stability numbers due to their
integrality, even though we are still uncertain of the exact optimal values for these two
SDP relaxations.
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Table 4. Comparison of the Two Methods on Theta Graphs

Problem Obj Value Time Iter
name sb bmz sb2 sb bmz sb2 sb bmz sb2

G43 313.0560 280.6894 280.6294 36002 36009 36000 85 3277 54
G44 312.9946 280.6140 280.5877 36001 36007 36000 89 3594 55
G45 312.7823 280.2505 280.1899 36002 36003 36001 84 3202 56
G46 313.2684 279.8673 279.8427 36001 36006 36000 88 3500 49
G47 315.2982 281.9578 281.8987 36002 36008 36000 87 3433 52
G48 1507.0761 1500.0000 1500.0000 3600 564 1 386 610 1
G49 1504.5145 1500.0000 1500.0000 5317 361 1 385 546 1
G50 1686.4673 1494.0997 1497.0372 206 35058 3 11 46818 6
G51 349.1676 349.0034 349.0235 36000 7239 5683 72 6322 67
G52 348.6703 348.4026 348.5148 36001 14015 3400 74 12441 57
G53 348.7891 348.3755 348.3856 36001 36000 27718 75 26955 60
G54 341.1159 341.0013 341.0135 36000 6136 1313 82 5403 61
MANN-a27.co 132.7672 132.7632 132.7642 13562 15 1689 117 1655 44
brock200-1.co 28.5799 27.4584 27.4585 36000 3596 36000 72 20944 61
brock200-4.co 23.9297 21.2959 21.2955 36000 4865 36000 102 24142 58
brock400-1.co 47.0865 39.7045 39.7104 36001 36000 36000 63 24362 64
c-fat200-1.co 19.0317 12.0003 12.0033 36001 3657 36000 65 13811 57
hamming-6-4.co 5.4111 5.3349 5.3335 36000 113 7590 123 10170 51
hamming-8-4.co 25.2189 16.0013 16.0013 36000 6526 36000 72 15967 57
johnson8-4-4.co 14.0022 14.0009 14.0000 30047 24 0 83 3435 1
johnson16-2-4.co 8.7894 8.0010 8.0000 36000 72 3 140 2345 1
keller4.co 17.2862 14.0164 14.0135 36000 6156 36000 98 52737 57
p-hat300-1.co 25.4711 10.0735 10.1091 36000 20159 36000 52 25130 71
san200-0.7-1.co 30.0002 30.0000 30.0001 164 108 35 36 1033 20
sanr200-0.7.co 25.8951 23.8377 23.8379 36000 4187 36000 94 22891 59
hamming-9-8 228.6400 224.0025 224.0000 286 3179 1 108 17546 1
hamming-10-2 121.1150 102.4255 102.4000 36002 36004 51 60 7927 1
hamming-11-2 223.0563 171.6680 170.6667 36006 36003 159 62 947 1
hamming-7-5-6 42.6676 42.6680 42.6667 15133 322 0 57 8613 1
hamming-8-3-4 30.3151 25.6055 25.6000 36000 15200 10 43 31467 1
hamming-9-5-6 85.6523 85.3504 85.3333 36000 36001 5 30 9815 1

4.3.3. Results on frequency assignment relaxations Finally, we compare the two meth-
ods on a set of twelve frequency assignment relaxations (see Section 2.4) that were
obtained from A. Eisenblätter, one of which, fap09, was used in the Seventh DIMACS
Implementation Challenge. The statistics for the problems are given in Table 5, and we
point out that n is the number of edges in the underlying graph and that the sum of m

and p is the number of edges. In addition, the density of S corresponds to the density of
the edges in the graph.

We recall that in deriving the SDP relaxation (5) we dropped constraints on the (i, j)

pairs for non-edges. To distinguish this type of relaxations with the ones that keep a
constraint for each (i, j) pair (whether edge or non-edge), we append the symbol “.sup”
to the problem names where “sup” stands for “support”, meaning that the constraints
are supported only on the edge set.

Table 6 gives the performance of both methods on the twelve FAPs. Each method
was given an upper bound of fifty hours computation time (or 180,000 seconds) on each
problem, and our method was stopped once νw had reached the value 10−7. (Recall that
νw and νu are linked in that they are always updated simultaneously and by the same
factor σ = 0.1, and so the given rule is equivalent to stopping once νu reaches a value
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Table 5. Problem Statistics for the Frequency Assignment Comparison

name n m p dens% S dens% L

fap01.sup 52 166 1160 100.00 100.00
fap02.sup 61 204 1601 98.68 100.00
fap03.sup 65 243 1837 100.00 100.00
fap04.sup 81 194 3046 100.00 100.00
fap05.sup 84 223 3263 100.00 100.00
fap06.sup 93 281 3997 100.00 100.00
fap07.sup 98 614 4139 100.00 100.00
fap08.sup 120 472 6668 100.00 100.00
fap09.sup 174 1026 14025 100.00 100.00
fap10.sup 183 542 13754 86.00 97.99
fap11.sup 252 765 23275 76.20 93.88
fap12.sup 369 1683 24410 38.76 60.12

Table 6. Comparison of the Two Methods on Frequency Assignment Problems

Problem Obj Value Time Iter

name sb bmz sb bmz sb bmz

fap01.sup −0.0327907 −0.0328360 180000 117 91 19370
fap02.sup −0.0005313 −0.0007109 180000 85 89 8756
fap03.sup −0.0491999 −0.0493589 180000 274 85 26191
fap04.sup −0.1746284 −0.1746702 180000 844 86 47285
fap05.sup −0.3080811 −0.3081169 180000 659 89 31225
fap06.sup −0.4590581 −0.4591657 180000 921 88 32013
fap07.sup −2.1165139 −2.1165397 180000 1903 94 53940
fap08.sup −2.4354640 −2.4360202 180000 1742 80 25940
fap09.sup −10.7942300 −10.7971610 180000 11904 79 54897
fap10.sup −0.0029943 −0.0095547 180000 18194 89 93791
fap11.sup −0.0118932 −0.0296136 180000 39038 87 86135
fap12.sup −0.2151594 −0.2733099 180000 44984 82 81119

that is 10−7 times its initial value.) Once again, both methods are dual-feasible, descent
methods.

The objective values reported in the table for the FAP problems are calculated under
the assumption that the weights corresponding to (i, j) ∈ U are zero. This represents a
constant shift in the objective values if those weight are not all zeros, but otherwise will
not change the solution of the problems. Since both the SB code and our code apply this
same scheme, the objective values from the two codes are completely comparable.

In each of the twelve problems, BMZ terminated before the fifty-hour time limit with
an objective value that was better than that obtained by SB after fifty hours. In some
cases, the time taken and the objective value achieved by BMZ were considerably better
than those by SB. Overall, the results seem to indicate much stronger performance by
BMZ on FAPs of these sizes. Note also that the issue of the differences between the
densities between S and L are not relevant for most of the problems but also do not seem
to affect fap12, a problem for which the density of S is notably less than the density of
L. As with the theta problems, this may be a consequence of the relatively large number
of iterations performed by SB.
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The seventh DIMACS Implementation Challenge problem set contains two larger
instances of the FAP relaxations, called fap25 and fap36. We did not run our code on
these two problems. An independent benchmarking by Mittelmann [19] showed that
both our code and the SB code did not solve either of these two instances to prescribed
accuracies within a large amount of allocated time, though both codes made substantial
and similar progresses towards optima. We refer to [20] for the information on these two
problems, and to [19] for the detailed benchmarking results.

5. Final remarks

Our numerical results have shown that the transformation introduced in [4] is indeed
a viable approach to solving some large-scale SDPs from combinatorial optimization.
In fact, at present many of the tested problems in our numerical experiments can only
be solved, within a reasonable amount of time, by our method and the spectral bundle
method [15]. These two methods both have their advantages and disadvantages, depend-
ing on problem characteristics, and our method appears to be particularly effective for
problems with a large number of constraints.

Recently, we have extended the application of our transformation to general SDP
problems [3] where the diagonal of the primal matrix variable need not to be fixed.
Preliminary numerical results in [3] indicate that the approach also holds promise for
general SDP problems.

Our software package used in this study is currently undergoing further development.
A public release is planned in a near future through the internet.
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