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Abstract. The standard quadratic program (QPS) is minx∈� xT Qx, where �⊂�n is the sim-
plex �={x �0 | ∑n

i=1 xi =1}. QPS can be used to formulate combinatorial problems such as
the maximum stable set problem, and also arises in global optimization algorithms for gen-
eral quadratic programming when the search space is partitioned using simplices. One class
of ‘d.c.’ (for ‘difference between convex’) bounds for QPS is based on writing Q=S −T ,
where S and T are both positive semidefinite, and bounding xT Sx (convex on �) and
−xT T x (concave on �) separately. We show that the maximum possible such bound can be
obtained by solving a semidefinite programming (SDP) problem. The dual of this SDP prob-
lem corresponds to adding a simple constraint to the well-known Shor relaxation of QPS.
We show that the max d.c. bound is dominated by another known bound based on a copos-
itive relaxation of QPS, also obtainable via SDP at comparable computational expense. We
also discuss extensions of the d.c. bound to more general quadratic programming problems.
For the application of QPS to bounding the stability number of a graph, we use a novel
formulation of the Lovasz ϑ number to compare ϑ , Schrijver’s ϑ ′, and the max d.c. bound.

1. Introduction

Consider the quadratic program on the simplex

QPS : min xT Qx

s.t. x ∈�,

where Q is symmetric, �={x ∈�n
+ | eT x =1}, �n

+ denotes the non-negative
orthant, and e is the vector of ones. The problem QPS is often refered to
as the standard quadratic program. It is easy to show that in the general
case QPS is NP-Hard; for example the problem of computing the maxi-
mum stable set in a graph can be posed as an instance of QPS. QPS also
arises naturally in global optimization algorithms for general quadratic pro-
gramming when simplices, rather than upper and lower bounds on vari-
ables, are used to partition the search space.

A number of recent papers have considered the construction of approxi-
mate solutions and/or lower bounds for QPS. Let vQPS denote the solution
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value in QPS, and let v̄QPS = maxx∈� xT Qx. Nesterov [7] constructs an
approximate solution x satisfying

xT Qx −vQPS � ε(v̄QPS −vQPS) (1)

for some 0� ε � 1. In [7] two approaches yield approximations with ε = 2
3

and ε = 1
2 . Bomze and de Klerk [2] consider families of linear program-

ming (LP) and semidefinite programming (SDP) relaxations of QPS based
on approximations of the cone of copositive matrices. For r =0,1, . . . either
approach obtains a lower bound vr�vQPS such that

vQPS −vr �
1

r +1
(v̄QPS −vQPS). (2)

In [2] it is also shown that a discretization of �, closely related to the LP
bound, obtains a feasible solution x ∈� satisfying (1) with ε = 1

r+2 .
Bomze [1] suggests the use of ‘d.c.’ (for ‘difference between convex’)

bounds for QPS, based on writing Q=S −T , where S �0, T �0. It is then
obvious that a lower bound for QPS is given by

v(S, T )=min
x∈�

xT Sx +min
x∈�

−xT T x, (3)

where the first minimization is convex and the second is concave. For any
(S, T ) the value of v(S, T ) is efficiently computable; in fact obtainable in
polynomial time in the case where the entries of Q are rational [8]. Bomze
considers several approaches for choosing a good (S, T ), including maxi-
mizing a certain SDP approximation of v(S, T ).

In this paper we describe further results for the d.c. bounds considered
by Bomze [1]. In the next section we show that for a given Q the bound
v(S, T ) can be directly maximized by solving an SDP, resulting in an opti-
mal bound of this type. The required SDP is no more complex than that
used as an approximation of v(S, T ) in [1]. We also show that the dual of
the SDP that gives the max d.c. bound has a surprising interpretation as
a strengthening of the well-known Shor relaxation of QPS. In Section 3
we show that the optimal d.c. bound is itself dominated by the r = 0 SDP
bound from [2], which can be obtained at comparable computational effort.
In Section 4 we discuss the extension of the results obtained for QPS to
the general quadratic programming problem over linear constraints. In Sec-
tion 5 we consider in more detail the application of QPS to bound the size
of the maximum stable set in a graph. We give a novel formulation of the
Lovasz ϑ number that illustrates the relationship between ϑ , Schrijver’s ϑ ′,
and the max d.c. bound. In the last section we give some computational
results, using a set of test problems considered in [2].
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Notation. All matrices are symmetric. For matrices A and B we use A �
B to denote that A − B is positive semidefinite, and A� 0 to denote
that A is componentwise nonnegative. The matrix inner product is writ-
ten A•B = tr(AB), where tr(·) denotes the trace. For a matrix A, λ(A) and
λ(A) denote the minimal and maximal eigenvalues, respectively. We use e

to denote a vector of arbitrary dimension with each component equal to
one, and E = eeT . If A is a matrix and a is a vector, then diag(A) is the
vector of diagonal components of A, and Diag(a) is the diagonal matrix
with diag(Diag(a))=a. The nonnegative orthant in �n is denoted �n

+, and
Sn

+ is the cone of n×n symmetric positive semidefinite matrices.

2. An Optimal D.C. Bound

The class of ‘d.c.’ bounds for QPS considered in [1] is based on writing Q =
S −T , where S �0 and T �0. A lower bound on vQPS is then given by v(S, T ),
from (3). In [1] it is suggested that to obtain a good choice of (S, T ) one could
use the fact that

v(S, T )�v′(S, T )= 1
n

λ(S)−λ(T ).

The problem of maximizing v′(S, T ) can be posed as an SDP. This SDP
can be approximately solved to yield matrices S � 0 and T � 0 which can
then be used to compute v(S, T ).

In this section we will show that the use of v′(·, ·) as a surrogate for
v(·, ·) is unnecessary, and instead v(·, ·) can be directly maximized by solv-
ing an SDP. To obtain the required SDP we will use the fact that if Q�0,
then QPS is equivalent to the Shor relaxation

SQPS : min Q•X

s.t.
(

1 xT

x X

)

�0

x ∈�.

(Note that if Q �� 0 then the solution value in SQPS is −∞.) By first
expressing SQPS in a standard conic linear formulation min{cT u : Au =
b, u ∈ K}, where K is a closed, convex cone, the dual of SQPS may be
expressed as max{bT w : AT w + s = c, s ∈ K∗}, where K∗ is the polar cone
of K. In the case of SQPS we have K = K∗ = �n

+ × S(n+1)
+ , and it is not

difficult (but somewhat tedious) to show that the dual of SQPS is

DQPS : max µ−σ

s.t.
(

σ sT

s Q

)

�0

2s +µe � 0.
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For any Q� 0 the solution values of SQPS and DQPS are equal, and are
both attained, since SQPS is equivalent to QPS and satisfies a Slater con-
dition [8].

Now suppose that Q=S −T , where S �0, T �0. Then the first term in
(3) can be expressed using DQPS, with S in place of Q, and the second
is simply equal to min{−tii | i = 1, . . . , n} = max{−θ | θ � tii , i = 1, . . . , n}.
Combining the two terms written as maximizations, and considering S to
be a variable, we arrive at the optimal d.c. bound

DQPSDC: sup µ−σ − θ

s.t.
(

σ sT

s S

)

�0

2s +µe � 0

S �Q, θe � diag(S −Q).

The dual of DQPSDC has a surprisingly simple interpretation as a
strengthening of the Shor relaxation SQPS. Again applying the duality the-
ory of conic linear programs, it is not difficult to show that the dual of
DQPSDC is

min Q•X

s.t.
(

1 xT

x X

)

�0

X 	Diag(y)

x ∈�, y ∈�.

Note that if (X, x, y) are feasible in this problem, then

1= eT (xxT )e � eT Xe � eT Diag(y)e=1, (4)

and therefore eT (X −xxT )e= eT (Diag(y)−X)e=0. It follows that Xe= x

and Xe = y, so x = y and the dual of DQPSDC can be written in the
simplified form

SQPSDC: min Q•X

s.t.
(

1 xT

x X

)

�0

X 	Diag(x)

x ∈�.

Thus the optimal d.c. bound corresponds exactly to adding the constraint
X 	 Diag(x) to SQPS. Note that if x ∈ � then xxT 	 Diag(x) holds (for
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example through an application of the Gerschgorin circle theorem), so
this added constraint is certainly valid. The objective value in DQPSDC is
bounded (because SQPSDC is feasible) and the feasible region satisfies a
Slater condition, so the optimal values of SQPSDC and DQPSDC are equal
and the value is attained in SQPSDC. However SQPSDC does not satisfy a
Slater condition, because Xe=x implies that

(
1 xT

x X

)(−1
e

)

=0, (5)

for any feasible solution. Note that it is obvious that the level sets in
DQPSDC are unbounded, since v(S +λE,T +λE)=v(S, T ) for any λ� 0.

3. Comparison with a Copositive Bound

In this section we will show that the optimal d.c. bound obtained in the
previous section is dominated by another known bound for QPS. Consider
a second semidefinite relaxation of QPS,

SQPS0
CP: min Q•X

s.t. E •X =1

X ∈K∗
0,

where K∗
0 = {X |X � 0,X � 0}. A problem of the form SQPS0

CP is some-
times referred to as the ‘strengthened Shor relaxation’ of QPS. The dual of
SQPS0

CP is

DQPS0
CP: max λ

s.t. Q−λE ∈K0,

where K0 = {X = S + P |S � 0, P � 0}. The solution values in SQPS0
CP and

DQPS0
CP are equal, and are both attained, since the feasible region in

SQPS0
CP is compact and satisfies a Slater condition [8].

It is known that if K0 and K∗
0 are replaced by the cone of symmetric

copositive matrices and its dual, respectively, then DQPS0
CP and SQPS0

CP are
equivalent to QPS [3]. Unfortunately these cones are not computationally
tractable. However, it has been shown [4,9] that there is a family of cones
with SDP representations Kr , r � 0, so that for any given Q, SQPSr

CP and
DQPSr

CP approximate QPS to any given accuracy when r is taken sufficiently
large. (Here SQPSr

CP and DQPSr
CP denote problems of the form SQPS0

CP and
DQPS0

CP but with K0 replaced by Kr .) In [2] it is shown that the use of the
cone Kr in place of K0 produces a lower bound vr =vr

CP satisfying (2).
Comparison of SQPSDC and SQPS0

CP will be facilitated by the following
problem, which is equivalent to SQPSDC by Lemma 1 below.
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SQPS′
DC: min Q•X

s.t. E •X =1

Xe � 0, X 	Diag(Xe)

X �0.

LEMMA 1. (X, x) is feasible for SQPSDC if and only if x = Xe and X is
feasible for SQPS′

DC.

Proof. Let (X, x) be feasible for SQPSDC. Arguments similar to (4) show
that Xe = x so that X is feasible for SQPS′

DC. On the other hand, sup-
pose X is feasible for SQPS′

DC and x =Xe. Clearly, x ∈� and X	Diag(x).
Moreover, the identity

(
1 xT

x X

)

=
(

eT

I

)

X(e, I )

combined with X � 0 completes the proof that (X, x) is feasible for
SQPSDC.

THEOREM 1. Let vDC and v0
CP denote the solution values in SQPSDC and

SQPS0
CP, respectively. Then v0

CP�vDC.

Proof. Let X be a feasible solution in SQPS0
CP. The nonnegativity of X

and the Gerschgorin circle theorem imply that Xe � 0 and X 	 Diag(Xe),
which show that X is feasible for SQPS′

DC. Defining x =Xe, Lemma 1 thus
implies that (X, x) is feasible for SQPSDC with the same objective value as
X in SQPS0

CP, which proves the theorem.

Note that if Q�0, then it is obvious that vDC =vQPS, since vQPS =v(S, T ) for
S =Q,T = 0. From Theorem 1 it follows that v0

CP = vQPS as well. This was not
obvious a-priori since the constraint X �xxT does not appear in SQPS0

CP.
It is easy to construct cases where vDC <v0

CP. A very simple example uses
the matrix

Q=
⎛

⎝
0 1 0
1 0 0
0 0 0

⎞

⎠ .

For this Q it is clear that vQPS =0, and v0
CP =0 as well, since λ=0 is feasible

in DQPS0
CP. However vDC = −1

8 , where the optimal solution in SQPSDC is

X = 1
16

⎛

⎝
3 −1 2

−1 3 2
2 2 4

⎞

⎠ .
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4. Extension to General Linear Constraints

Suppose the vectors {ai}mi=1 ⊂�n define a polytope P ={x ∈�n
+ :aT

i x =bi, i=
1, . . . ,m}. Note that since P is bounded it must be that bi �=0 for some i,
and P is the convex hull of its extreme points. Suppose that the set {wj }pj=1
is a complete listing of the extreme points of P , and let W ∈�n×p be the
matrix whose j -th column is wj .

One may extend the results of the previous sections to consider optimal
d.c. bounds for the problem

QPP : min xT Qx

s.t. x ∈P.

Note that QPS corresponds to m= 1, a1 = e. In the current context, how-
ever, there are two natural choices for d.c. bounds. The first option is to
start by describing P as the convex hull of its extreme points and then
apply the results obtained for QPS. In particular, QPP is clearly equivalent
to

min zT (WT QW)z

s.t. z∈�p,

where �p is the standard simplex in �p. The optimal d.c. bound is thus
calculated as

SQPPDC1: min WT QW •Z

s.t. zzT 	Z 	Diag(z)

z∈�p.

The second option is to apply the procedures of Section 2 to QPP directly,
that is, to construct an optimal lower bound of the form

v(S, T )=min
x∈P

xT Sx +min
x∈P

−xT T x

based on writing Q=S −T for S �0, T �0. Employing the Shor relaxation,
the first portion of this bound can be calculated as

max bT µ−σ

s.t.
(

σ sT

s S

)

�0

2s +AT µ� 0.

Moreover, using the extreme points of P , the second portion can be
expressed as max{−θ | θ �T • wjw

T
j , j = 1, . . . , p}. By optimizing jointly

over S and T , we thus obtain a bound
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max bT µ−σ − θ

s.t.
(

σ sT

s S

)

�0

2s +AT µ�0

S �Q, θ � (S −Q)•wjw
T
j , j =1, . . . , p.

Taking the dual, this optimized bound can be written

SQPPDC2: min Q•X

s.t. xxT 	X 	W Diag(y)WT

x ∈P, y ∈�p.

Note that in the case of QPS, for which P =� and W =I , the construction
here matches that of SQPSDC in Section 2.

In order to establish the relationship between SQPPDC1 and SQPPDC2 it
is helpful to define a third problem,

SQPP′
DC2: min WT QW •Z

s.t. WzzT WT 	WZWT 	W Diag(z)WT

z∈�p.

THEOREM 2. Let vDC1, vDC2 and v′
DC2 denote the solution values in

SQPPDC1, SQPPDC2 and SQPP′
DC2, respectively. Then vDC1 �v′

DC2 =vDC2.

Proof. It is obvious that vDC1 �v′
DC2, so to prove the lemma we must

show that v′
DC2 =vDC2. We first claim v′

DC2 �vDC2. Let (Z, z) be feasible for
SQPP′

DC2, and define (X, x, y)= (WZWT ,Wz, z). Clearly x ∈P and y ∈�p.
Moreover, we have

WzzT W 	WZWT 	W Diag(z)WT 
⇒ xxT 	X 	W Diag(y)WT ,

which shows that (X, x, y) is feasible for SQPPDC2. The claim follows by
noting that Q•X = (WT QW)•Z.

To prove the reverse inequality, let (X, x, y) be feasible for SQPPDC2.
First, pre- and post-multiplying the inequality xxT 	X 	W Diag(y)WT by
aT

i and ai , we see that

(aT
i x)2 �aT

i Xai � (WT ai)
T Diag(y)(WT ai)


⇒ b2
i �aT

i Xai � (bie)
T Diag(y)(bie)=b2

i ,

which implies aT
i Xai = b2

i . So ai is in the null space of both X − xxT and
W Diag(y)WT −X. For bi �=0 (which must hold for at least one i) it follows
that x =Wy. Defining z=y, we thus have
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WzzT W 	X 	W Diag(z)WT .

It remains to show that ∃Z, X=WZWT . Let v ∈Null(WT )⊂�n. Then the
above matrix inequality shows that vT Xv = 0, which implies v ∈ Null(X).
With QDiag(λ)QT a spectral decomposition of X, we let Q+ denote the
submatrix of Q consisting of only those columns which correspond to pos-
itive eigenvectors, and let Q0 denote the submatrix corresponding to zero
eigenvectors. It thus follows that Null(WT ) ⊆ Range(Q0), which in turn
implies Range(Q+)⊆ Range(W). Therefore, each positive eigenvector qi of
X can be expressed as Wui for some ui ∈�p. Hence, X=WZWT , where we
define Z =∑

i:λi>0 λiuiu
T
i .

Clearly (Z, z) is feasible for SQPP′
DC2. The inequality v′

DC2 �vDC2 now
follows by noting (WT QW)•Z =Q•X.

Note that since SQPPDC1 and SQPPDC2 involve the matrix W , and in
general p � n, both of these problems are in general computationally in-
tractible. In special cases where p is not too large, Theorem 2 indicates that
SQPPDC1 is preferable. In the case of QPS, W = I and vDC1 =vDC2.

There is also more than one approach to constructing an extension of
the copositive bound for QPP. By considering P to be the convex hull of
its extreme points, we have the following copositive relaxation:

SQPP0
CP1: min WT QW •Z

s.t. E •Z =1

Z ∈K∗
0 ⊂Sp

+.

However, one may also relax QPP directly to

SQPP0
CP2: min Q•X

s.t. aia
T
i •X =b2

i , i =1, . . . ,m

X ∈K∗
0 ⊂Sn

+.

By Theorems 2 and 1, SQPP0
CP1 yields a stronger bound than SQPPDC1

or SQPPDC2. Moreover, it is not difficult to show that SQPP0
CP1 is stronger

than SQPP0
CP2. However, since SQPP0

CP2 does not utilize the n×p matrix W

this relaxation will in general be more tractable than the alternatives con-
sidered in this section.

5. Bounding the Stability Number of a Graph

In this section we consider in more detail the application of QPS to deter-
mining the size of the maximum stable set in a graph. Let G be a graph
with vertex set {1,2, . . . , n}, edge set E and adjacency matrix A. It is well
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known that if Q= I +A, then vQPS =1/α(G), where α(G) is the size of the
maximum stable set [6]. Thus a lower bound on vQPS provides an upper
bound on the stability number. It is also known that for such problems
1/v0

CP = ϑ ′, where ϑ ′ is Schrijver’s strengthening of the Lovasz ϑ number
[4]. The relationship between ϑ and ϑ ′ is well known, and that between
vDC and v0

CP is described in Section 3, amounting to the following corol-
lary of Theorem 2.

COROLLARY 1. Let G be a graph with vertex set {1,2, . . . , n}, edge set E
and adjacency matrix A. Then ϑ ′ � 1/vDC, where Q= I +A.

The relationship between ϑ and vDC is less clear, despite the fact that there are a
variety of equivalent formulations of ϑ [5]. In this section we give a formulation
of ϑ via a lower bound on QPS that facilitates a comparison with vDC.

We use XE = 0 (respectively XE�0) to denote that Xij = 0 (respectively
Xij ≥0) for all (i, j)∈E . The Lovasz ϑ number can be defined via the SDP

ϑ =max E •X

s.t. tr(X)=1

XE =0, X �0,

while Schrijver’s ϑ ′ is given by the problem

ϑ ′ =max E •X

s.t. tr(X)=1

A•X =0

X � 0, X �0.

It is clear from the above formulations that ϑ ′ is a strengthening of ϑ

obtained by replacing XE = 0 with A • X = 0 and X � 0. It is well known
that

α(G)�ϑ ′ �ϑ �χ(Ḡ),

where χ(Ḡ) is the coloring number of the complement of G.
In [4] the relationship 1/v0

CP =ϑ ′ is established by first showing that

ϑ ′ =max E •X

s.t. (I +A)•X =1

X ∈K∗
0,
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which corresponds to simply replacing the two equality constraints in the
original formulation for ϑ ′ with their sum. Swapping objective and con-
straint then yields an instance of SQPS0

CP, with Q= I +A, whose optimal
value is 1/ϑ ′. Let K∗

E ={X |XE � 0, X �0} and define

vE =min Q•X

s.t. E •X =1

X ∈K∗
E .

Noting that ϑ may be reformulated as

ϑ =max E •X

s.t. tr(X)=1

A•X =0

XE � 0, X �0,

the exact same argument as in [4] implies the following theorem.

THEOREM 3. Let G be a graph with vertex set {1,2, . . . , n}, edge set E
and adjacency matrix A. Then ϑ =1/vE , where Q= I +A.

Using Lemma 1 and Theorem 3 we can give a clear comparison between
the bounds ϑ = 1/vE , ϑ ′ = 1/v0

CP, and 1/vDC on the stability number. All
three arise from optimization problems of the form

min Q•X

s.t. E •X =1

X �0,

with additional constraints that vary for the three bounds. The added con-
straints corresponding to each of the three bounds are as follows.

ϑ =1/vE : XE � 0,

ϑ ′ =1/v0
CP: X � 0,

1/vDC: Xe � 0, X 	Diag(Xe).

Note that for vDC we are using the alternative formulation SQPS′
DC

described in Section 3. We have been unable to find an instance G where
vDC >vE , but we are also unable to prove that vDC �vE .
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6. Computational Results

In order to computationally compare vDC with other bounds for QPS
we considered a set of test problems used in [2]. The first two, problems
5.1 and 5.2, arise in estimating the maximum stable set on the graphs
corresponding to the pentagon and the complement of the icosahedron,
respectively. The next two problems, 5.3 and 5.4, arise from applications
in population genetics and portfolio optimization, respectively. See [2] for
more details and references. In Table 1 we give the values of several bounds
for these four problems. The bounds v0

CP and v1
CP are the SDP bounds for

r =0 and r =1, and v1
LP is the LP bound for r =1, all from [2]. Opt denotes

the optimal solution value. All figures are rounded to 4 digits after the
decimal point. Some caution is required in computing vDC due to the fact
that all feasible solutions of SQPSDC are singular (5). We obtained values
of vDC using the self-dual SDP code SeDuMi [11], which remains stable
on problems of this type. (Alternatively one could use the reformulation
SQPS′

DC described in Section 3.)
We know that in all cases vDC �v0

CP �v1
CP and v1

LP �v1
CP must hold. For

the problems considered in Table 1 it is interesting to note that v1
LP <vDC

throughout, and vDC <v0
CP except on problem 5.4. It is also worth noting

that the Lovasz ϑ number gives the same bound on problems 5.1 and 5.2
as ϑ ′ =1/v0

CP.
In addition to problems 5.1–5.4, [2] considers 20 problems based on esti-

mating the maximum stable set for random graphs on 12 vertices con-
structed so as to have a maximum stable set of size 6. In [2] it is reported
that for all 20 instances the QPS problem resulted in a bound v1

LP of zero,
and a value of v1

CP equal to the true optimum (vQPS = 1
6 ). We constructed

20 similar instances and obtained positive values for vDC in all cases. The
resulting bounds on the max stable set were however quite poor; greater
than 12 in all but one case. (We have found other instances of random
graphs where vDC <0.) We also found that the Lovasz ϑ number gave the
exact value ϑ =α(G)= 6 for all 20 instances, so that no improvement was
possible from the more complex bounds v0

CP and v1
CP.

In addition to the quality of the various bounds it is interesting to con-
sider the relative computational effort of obtaining them. Although each of

Table 1. Comparison of bounds for instances of QPS

Problem [2] n v1
LP vDC v0

CP v1
CP Opt

5.1 5 0.3333 0.3528 0.4472 0.5000 0.5000
5.2 12 0.0000 0.0243 0.3090 0.3090 0.3333
5.3 5 −21.0000 −17.0096 −16.3333 −16.3333 −16.3333
5.4 5 0.3015 0.4839 0.4839 0.4839 0.4839
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the problems mentioned above took just a few seconds to solve by SeD-
uMi, the problems tested are not large-scale as would be encountered in
applications. The discussion in the following paragraph is particularly rele-
vant when solving relaxations of large-scale instances of QPS.

SeDuMi requires the conversion of SQPSDC and SQPS0
CP to a standard

self-dual conic form, in which each variable is constrained to be in at most
one cone. For any variable in the original form of the problem that is
in two or more cones simultaneously, the conversion to standard form is
achieved by introducing auxiliary variables, which are then themselves con-
strained to be in a single cone, as well as equality constraints linking the
original and auxiliary variables. For example, in the case of SQPS0

CP, which
has X � 0 and X � 0, we introduce Y � 0 and set X = Y . After the con-
version, it is not difficult to see that SQPSDC corresponds to optimization
over the cone Sn+1

+ ×Sn
+ ×�n

+ with n(n+ 1)/2 +n+ 2 equality constraints,
while SQPS0

CP is over the cone Sn
+ × �n(n+1)/2

+ with n(n + 1)/2 + 1 equal-
ity constraints. From a theoretical standpoint, SQPSDC is simpler to solve
using an interior-point algorithm since it has a barrier parameter that is
O(n), as opposed to O(n2) for SQPS0

CP [8]. In practice, however, it is well
known that the number of iterations required by interior-point algorithms
is almost independent of the barrier parameter. From a computational per-
spective, the work in each iteration for either problem is dominated by the
time needed to form and factor the Schur complement matrix for calcu-
lating the Newton direction, which can be seen to be proportional to the
cube of the number of equality constraints. This work is of the same order
for SQPSDC and SQPS0

CP. In particular, neither problem appears to have an
inherent structure – for example, a sparse Schur complement matrix – that
would allow faster calculation of the Newton direction. Hence, one would
expect similar computational effort for solving both problems in practice.

In the specific case of calculating a bound on the stability number of
a graph, it is also worth mentioning that the optimization problem that

defines vE is over the cone Sn
+ × �|E|

+ with |E | + 1 constraints. This prob-
lem is computationally cheaper than both SQPSDC and SQPS0

CP, especially
when the underlying graph is sparse.
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rem of Túran, Canadian Journal of Mathematics, 17, 533–540.
7. Nesterov, Y.E. (1999), Global quadratic optimization on the sets with simplex structure.

Discussion Paper 9915, Center for Operations Research and Econometrics (CORE),
Catholic University of Louvain, Louvain-la-Neuve, Belgium.

8. Nesterov, Y. and Nemirovskii, A. (1994), Interior-Point Polynomial Algorithms in Convex
Programming. SIAM, Philadelphia.

9. Parrilo, P.A. (2000), Structured semidefinite programs and semi-algebraic geometry
methods in robustness and optimization. Ph.D. thesis, California Institute of Technol-
ogy, Pasadena, CA.

10. Schrijver, A. (1979), A comparison of the Delsarte and Lovasz bounds, IEEE Transac-
tions of Information Theory, 25, 425–429.

11. Sturm, J.F. (1999), Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones, Optimization Methods and Software, 11–12, 625–653.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


