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Abstract. The low-rank semidefinite programming problem LRSDPr is a restriction of the semidefinite pro-
gramming problem SDP in which a bound r is imposed on the rank of X, and it is well known that LRSDPr

is equivalent to SDP if r is not too small. In this paper, we classify the local minima of LRSDPr and prove the
optimal convergence of a slight variant of the successful, yet experimental, algorithm of Burer and Monteiro
[5], which handles LRSDPr via the nonconvex change of variables X = RRT . In addition, for particular prob-
lem classes, we describe a practical technique for obtaining lower bounds on the optimal solution value during
the execution of the algorithm. Computational results are presented on a set of combinatorial optimization
relaxations, including some of the largest quadratic assignment SDPs solved to date.

Key words. Semidefinite programming – Low-rank matrices – Vector programming – Combinatorial opti-
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1. Introduction

We study the standard-form semidefinite programming problem

SDP min C • X

s.t. Ai • X = bi, i = 1, . . . , m

X � 0

and its dual

DSDP max bT y

s.t.
m∑

i=1

yiAi + S = C

S � 0,

where the matrices C, A1, . . . , Am and the vector b are the data and the matrices X, S

and the vector y are the variables. Each matrix is n × n symmetric (i.e., an element of
Sn); M • N = trace(MN); and M � 0 (or M ∈ Sn+) indicates that M is symmetric and
positive semidefinite. We assume that SDP has an interior feasible solution, but note that
we do not assume the same of DSDP. In addition, we make the assumption that both
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problems attain their optimal value with zero duality gap, i.e., there exist feasible X and
(S, y) such that X • S = 0.

There are many varied algorithms for solving SDP and DSDP, and it is convenient
to divide the methods into three groups according to their methodology and their effec-
tiveness on problems of different size. The first group is the second-order primal-dual
interior-point methods which use Newton’s method to solve SDP and DSDP simulta-
neously (for example, see [1, 10, 13, 16, 17, 26]). These methods are capable of solving
small- to medium-sized problems very accurately but have difficulty on large, sparse
problems because of their inherent high demand for storage and computation. The sec-
ond group is similar to the first, but instead of solving for the Newton direction exactly
at each iteration, an iterative solver is used to find the direction instead (for example, see
[4, 14, 18, 24, 25]). This approach allows large-scale problems to be solved to a medium
amount of accuracy. The final group consists of the first-order nonlinear programming
algorithms (for example, see [5, 6, 9]), which use fast, gradient-based techniques to
solve a nonlinear reformulation of either SDP or DSDP. Strong computational results,
obtaining medium accuracy on large problems, have been reported for these algorithms,
especially on the class of semidefinite relaxations of combinatorial problems. A com-
prehensive survey of all three of these groups of algorithms can be found in [15].

This paper investigates the first-order nonlinear programming algorithm introduced
by Burer and Monteiro in [5]. The algorithm is motivated by the following two results, the
first of which establishes the existence of extreme points for SDP (e.g., see Rockafellar
[22]):

Theorem 1.1. A nonempty closed convex set with no lines has an extreme point.

The second result, which provides a bound on the rank of extreme points for SDP (Pataki
[19]), uses the following definition: for any positive integer �,

r� := max{r integer : r(r + 1)/2 ≤ �, }. (1)

Theorem 1.2. If X̄ is an extreme point of SDP, then rank(X̄) ≤ rm.

Since the optimal value of SDP is attained at an extreme point, the following low-rank
semidefinite programming problem is equivalent to SDP for any integer r ≥ rm:

LRSDPr min C • X

s.t. Ai • X = bi, i = 1, . . . , m

X � 0, rank(X) ≤ r

Unless otherwise stated, we assume throughout that the integer r has been chosen large
enough so that the two problems are indeed equivalent.

Since the constraint rank(X) ≤ r is difficult to handle directly, Burer and Monteiro
[5] propose to use the fact that any X � 0 with rank(X) ≤ r may be written as X = RRT

for some R ∈ �n×r to reformulate LRSDPr as the nonlinear program

NSDPr min C • RRT

s.t. Ai • RRT = bi, i = 1, . . . , m.
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An immediate benefit of NSDPr is the reduced number of variables as compared with
LRSDPr . Burer and Monteiro [5] then use a first-order augmented Lagrangian algorithm
to solve NSDPr on the relaxations of some large-scale combinatorial optimization prob-
lems such as maximum cut and maximum stable set. They report strong computational
results, including speed-up factors of nearly 500 over the second fastest algorithm on
some problems (see section 4.2 of [5]), based on the fact that: (i) the function and gra-
dient evaluations of the augmented Lagrangian function are extremely quick, especially
when the Ai’s are sparse or low-rank and m and r are small; and (ii) even though NSDPr

is nonconvex, an optimal solution to NSDPr , and hence SDP, is always achieved exper-
imentally. Although Burer and Monteiro [5] provide some insight as to why (ii) occurs,
a formal convergence proof for their method is not established.

In this paper, we study LRSDPr and NSDPr in an effort to shed some theoretical
light on the intriguing practical behavior (ii) observed in [5]. In Section 2, we show some
basic facts relating LRSDPr and NSDPr , including an explicit correspondence between
the local minima of the two problems. In particular, we show that the change of variables
does not introduce any extraneous local minima. Then, in Section 3, we provide the fol-
lowing classification of the local minima of LRSDPr : if X is a local minimum, then
either X is an optimal extreme point for SDP, or X is contained in the relative interior of
a face of the feasible set of SDP which is constant with respect to the objective function.

In Section 4, we study the theoretical properties of sequences {Rk} produced by
augmented Lagrangian algorithms applied to NSDPr . Then in Section 5 we use these
properties to investigate a slight variant of the augmented Lagrangian algorithm pro-
posed by Burer and Monteiro [5] for solving NSDPr , which differs only in the addition
of the term µ det(RT R) to the augmented Lagrangian function, where µ > 0 is a scaling
parameter of arbitrarily small magnitude which is simply required to go to zero as the
algorithm progresses. Assuming that a local minimum is obtained at each stage of the
algorithm, we show that any accumulation point R̄ of the resulting sequence is an opti-
mal solution of NSDPr , and hence X̄ = R̄R̄T is an optimal solution of SDP. Moreover,
we show that the algorithm produces an optimal dual S̄ as well.

Finally in Section 6, we discuss some computational issues, including how, for
special problem classes, one can calculate lower bounds on the optimal value of SDP
during the execution of the algorithm. From a practical point of view, this addresses a
key drawback of the algorithm of Burer and Monteiro [5] in which lower bounds were
not available. We then provide computational results on the SDP relaxations of some
large-scale maximum cut, maximum stable set, and quadratic assignment problems. The
first two classes of problems are also considered in [5], while for the third class, we report
here some of the largest quadratic assignment SDP relaxations solved to date.

2. Some Facts Concerning the Change of Variables

In this section, we establish some basic facts concerning the change of variables X =
RRT . Note that each of these results is valid for any r .

At first glance, it is unclear how the local minima of LRSDPr relate to the local
minima of NSDPr . By continuity, we know that if X is a local minimum then each R

satisfying X = RRT is a local minimum, though it may be the case that X is not a local
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minimum when R is. In other words, the change of variables may introduce extraneous
local minima. In actuality, however, the results below show that this cannot happen.

The following lemma establishes a simple correspondence between any R and S

such that RRT = SST .

Lemma 2.1. Suppose R, S ∈ �n×r satisfy RRT = SST . Then S = RQ for some
orthogonal matrix Q ∈ �r×r .

Proof. Let q = rank(RRT ). By considering the eigenvalue decomposition of RRT , it
is easy to see that there exists U ∈ �n×r such that RRT = UUT and the last r − q

columns of U are zero. To prove the lemma, we exhibit an orthogonal Q1 such that
R = UQ1, which similarly implies the existence of Q2 such that S = UQ2. Hence,
Q = QT

1 Q2 satisfies S = RQ.
Using that UUT = RRT is positive semidefinite, it is straightforward to argue

Null(UT ) = Null(RT ), which implies Range(U) = Range(R). Hence, if we write

U = (
Ũ 0

)
,

so that Ũ ∈ �n×q denotes the nonzero part of U , there exists a unique H̃ ∈ �q×r such
that ŨH̃ = R. Hence,

Ũ (Iq − H̃ H̃ T )ŨT = 0.

Since Ũ is full rank, this implies H̃ H̃ T = Iq , i.e., the rows of H̃ are orthonormal.
Extending H̃ to an orthogonal matrix Q1 ∈ �r×r , we have UQ1 = R, as desired. ��
The next lemma is a fundamental observation about the local minima of NSDPr —
namely that the local minima occur as sets parameterized by multiplication by an orthog-
onal matrix. The proof is straightforward based on the fact that RRT = RQQT RT for
all R and all orthogonal Q.

Lemma 2.2. R̄ is a local minimum of NSDPr if and only if R̄Q is a local minimum for
all orthogonal Q ∈ �n×r .

By combining Lemmas 2.1 and 2.2, we now show that the change of variables
X = RRT does not introduce any extraneous local minima.

Proposition 2.3. Suppose X̄ = R̄R̄T , where X̄ is feasible for LRSDPr and hence R̄ is
feasible for NSDPr . Then X̄ is a local minimum of LRSDPr if and only if R̄ is a local
minimum of NSDPr .

Proof. As discussed above, continuity of the map R �→ RRT implies that if X̄ is a local
minimum, then so is R̄. In fact, any R such that X̄ = RRT is a local minimum.

Now suppose that X̄ is not a local minimum of LRSDPr . Then there exists a sequence
of feasible solutions {Xk} of LRSDPr converging to X̄ such that C •Xk < C • X̄ for all
k. For each k, choose Rk such that Xk = Rk(Rk)T . Since {Xk} is bounded, it follows
that {Rk} is bounded and hence has a subsequence {Rk}k∈K converging to some R such
that X̄ = RRT . Since C • Rk(Rk)T = C • Xk < C • X̄ = C • RRT , we see that R is
not a local minimum of NSDPr . Using the fact that X̄ = R̄R̄T = RRT together with
Lemmas 2.1 and 2.2, we conclude that R̄ is not a local minimum of NSDPr . ��
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We remark that arguments similar to those in this section can be used to show
that the local minima of any continuous optimization problem over the set {X : X �
0, rank(X) ≤ r} and the local minima of its corresponding reformulation by the change
of variables X = RRT are related according to Proposition 2.3.

3. Local Minima Classification

In this section, we provide a classification of the local minima of LRSDPr . By Proposi-
tion 2.3, this also serves to classify the local minima of NSDPr .

Given a point X̄ ∈ Sn+, we define the following convex set, which consists of all
matrices in Sn+ having the same inner product with C, A1, . . . , Am as X̄:

X (X̄) := {X ∈ Sn
+ : C • X = C • X̄, Ai • X = Ai • X̄, ∀ i = 1, . . . , m}.

When X̄ is feasible for SDP, and hence satisfies Ai • X̄ = bi for i = 1, . . . , m, one can
think of X (X̄) as an “iso-cost” slice of the feasible region. The following well-known
result (see [20], for example) characterizes when X̄ is an extreme point of X (X̄).

Proposition 3.1. Let X̄ ∈ Sn+ be given and let R ∈ �n×r be a matrix with full-column
rank satisfying X̄ = RRT . Then X̄ is an extreme point of X (X̄) if and only if the system
of linear equations

φ(R) C • R�RT = 0
Ai • R�RT = 0, ∀ i = 1, . . . , m,

where � ∈ Sr is the unknown, has a unique solution (i.e., the trivial solution � = 0).

An observation, which will be used in Section 4, is that φ(R) has a nontrivial solution
when r(r + 1)/2 > m + 1, i.e., the number of unknowns is larger than the number of
equations, or equivalently when r > rm+1. Accordingly, we see that if X̄ is an extreme
point of X (X̄), then r ≤ rm+1. Note that Theorem 1.2 follows as an immediate conse-
quence of this observation (with C removed from consideration and m + 1 replaced by
m).

The following lemma is the key result which serves to classify the local minima of
LRSDPr . The basic idea is a “rank-reduction” technique proposed by Pataki [20] (also
easily derived from [19]), in which, if the rank of X is large enough, then X may be
moved to a matrix of lower rank without changing its inner product with C, A1, . . . , Am.
The lemma can be seen as an application of this rank-reduction technique to a sequence
of points. In its proof, we use the following notation: for E ∈ Sn, we let λmin(E)

and λmax(E) denote the minimum and maximum eigenvalue of E and ‖E‖ denote the
operator norm of E defined as ‖E‖ := max{−λmin(E), λmax(E)}.
Lemma 3.2. Assume that X̄ is an extreme point of the set X (X̄) and that {Xk} ⊂ Sn+
is a sequence converging to X̄. Then there exists a sequence {Y k} ⊂ Sn+ satisfying the
following two conditions:

(a) {Y k} converges to X̄;
(b) Y k is an extreme point of X (Xk) for all k.
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As a consequence, each Y k satisfies rank (Y k) ≤ rm+1.

Proof. If Xk is an extreme point of the set X (Xk) for every k, then we may simply
define Y k = Xk for all k. Otherwise, we will prove that {Xk} can be “updated” to a
sequence {Y k} converging to X̄ and having the properties that Y k ∈ X (Xk) for all k and
rank (Y k) ≤ rank (Xk)− 1 for all k ∈ K, where K is the set of indices k for which Xk is
not an extreme point of X (Xk). A simple argument shows that, after performing a finite
number of these updates, we obtain a sequence {Y k} satisfying (a) and (b).

To prove the above claim, we factor each Xk as Xk = Rk(Rk)T , where Rk ∈ �n×rk

has full-column rank, or equivalently, rk = rank (Rk). Since {Xk} is bounded, the
sequence {‖Rk‖} is also bounded. We next build the sequence {Y k} and an auxiliary
sequence {Zk} as follows. If Xk is an extreme point of X (Xk), then we define Y k := Xk

and Zk := Xk . Now suppose Xk is not an extreme point of X (Xk). By Proposition 3.1,
the system of equations φ(Rk) has a nontrivial solution �k ∈ Srk . We assume without
loss of generality that ‖�k‖ = λmax(�

k) = 1; otherwise, we can scale �k and/or take
−�k . We then define

Y k := Xk − Rk�k(Rk)T = Rk(I − �k)(Rk)T ,

Zk := Xk + Rk�k(Rk)T = Rk(I + �k)(Rk)T .

Using the fact that ‖�k‖ = λmax(�
k) = 1 and �k is a solution of φ(Rk), we eas-

ily see that {Y k} and {Zk} are sequences of positive semidefinite matrices such that
Y k, Zk ∈ X (Xk) for all k and rank (Y k) ≤ rank (Xk)−1 for all k ∈ K. It remains to show
that {Y k} converges to X̄. Indeed, let {Uk} be the sequence defined as Uk = Rk�k(Rk)T

if k ∈ K and Uk = 0 if k /∈ K. Note that {Uk} is clearly bounded. Now let Ū be an
accumulation point of {Uk}. Since Y k = Xk − Uk and Zk = Xk + Uk for all k, it
follows that X̄ − Ū and X̄ + Ū are accumulation points of {Y k} and {Zk}, respectively.
Using this fact, we can easily see that Ȳ := X̄ − Ū and Z̄ := X̄ + Ū are both in X (X̄).
Since X̄ = (Ȳ + Z̄)/2 and X̄ is an extreme point of X (X̄), it follows that Ȳ = Z̄ = X̄,
or equivalently, Ū = 0. We have thus proved that {Uk} converges to 0, and hence that
Y k converges to X̄. ��

The following result follows as an immediate consequence of the above lemma.

Proposition 3.3. Let X̄ be an extreme point (of the feasible region) of SDP and assume
that {Xk} is a sequence of feasible points for SDP converging to X̄. Then there exists a
sequence {Y k} of feasible points for SDP converging to X̄ and satisfying C•Y k = C•Xk

and rank (Y k) ≤ rm+1 for all k.

We now are able to provide a classification of the local minima of LRSDPr for r suffi-
ciently large.

Theorem 3.4. Suppose X̄ is a local minimum of LRSDPr for some r ≥ rm+1. Then, X̄

is contained in the relative interior of a face F̄ of SDP over which the objective function
is constant. Moreover, if the dimension of F̄ is zero then X̄ is an optimal extreme point
of SDP.
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Proof. Let F̄ be the minimal face of SDP containing X̄. It is well-known that X̄ ∈ ri F̄
(e.g., see Theorem 18.2 of [22]) and that

F̄ = {X � 0 : Range(X) ⊆ Range(X̄)} ∩ {X ∈ Sn : Ai • X = b, i = 1, . . . , m}.

(e.g., see [3, 20]). The second fact then implies that every X ∈ F̄ is feasible for LRSDPr .
The assumption that X̄ is a local minimum of LRSDPr then implies that X̄ is also a local
minimum of the problem min{C • X : X ∈ F̄ }. Since X̄ ∈ ri F̄ , it is easy to see that this
implies that the objective function C • X is constant on F̄ .

If the dimension of F̄ is zero, then F̄ = {X̄} and X̄ is clearly an extreme point
of SDP (see Section 2.3 of [11]). Suppose that X̄ is not an optimal solution of SDP
so that there exists a sequence {Xk} of SDP-feasible points converging to X̄ such that
C • Xk < C • X̄ for all k. Then, by Proposition 3.3 and the assumption that r ≥ rm+1,
there exists a sequence {Y k} converging to X̄ such that Y k is feasible for LRSDPr and
C • Y k = C • Xk < C • X̄ for every k. This implies that X̄ is not a local minimum of
LRSDPr , which is a contradiction. Thus, X̄ is in fact an optimal solution of SDP. ��
Roughly speaking, one can also interpret the above theorem as providing an answer to
the following question: how large must we take r so that the local minima of LRSDPr

are guaranteed to be global minima of SDP? The theorem asserts that we need only
r ≥ rm+1 (with the important caveat that positive-dimensional faces of SDP, which are
“flat” with respect to the objective function, can harbor non-global local minima). One
might suspect from Theorem 1.2 that taking r ≥ rm would suffice, but this is indeed not
the case, in particular due to the critical role the objective function plays in Proposition
3.3. It is interesting to note that the implementation of Burer and Monteiro [5] required
only r ≥ rm, but now with the insight provided by Theorem 3.4, our implementation in
Section 6 implements r ≥ rm+1.

4. Analysis of Augmented-Lagrangian Sequences

In this section we analyze some properties of the augmented Lagrangian method in
connection with problem NSDPr .

For notational convenience, we define A : Sn → �m to be the linear operator
defined by [A(X)]i = Ai • X for all X ∈ Sn and i = 1, . . . , m, so that the linear
constraints of SDP can be stated compactly as A(X) = b. It turns out that the adjoint
operator A∗ : �m → Sn is given by A∗(y) = ∑m

i=1 yiAi for all y ∈ �m, and hence the
linear constraints of DSDP can be compactly written as S ∈ C + Im A∗.

Given sequences {yk} ⊂ �m and {σk} ⊂ �++, the general augmented Lagrangian
approach applied to NSDPr consists of finding approximate stationary points Rk of the
sequence of subproblems

min
R∈�n×r

Lk(R) := Ck • RRT + σk

2
‖A(RRT ) − b‖2, (2)

where Ck := C +A∗yk . Clearly, if we take yk = 0 and allow σk → ∞, then the method
becomes a standard penalty method. More typically, yk and σk are chosen dynamically.
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Of course, one natural requirement of any variation of the method is that any accumu-
lation point R̄ of the sequence of approximate solutions {Rk} is feasible for NSDPr .

It can be easily seen that

∇Lk(R
k) = 2 SkRk (3)

L′′
k(R

k)(H, H) = 2 Sk • HHT + 4 σk

∥∥∥A
(
RkHT

)∥∥∥
2
, ∀ H ∈ �n×r , (4)

where

Sk := Ck + σk A∗
(
A
(
Rk(Rk)T

)
− b

)
= C + A∗

(
yk + σk

(
A
(
Rk(Rk)T

)
− b

))
.

(5)

It is well-known that necessary conditions for Rk to be a local minimum of Lk(R) are
that ∇Lk(R

k) = 0 and L′′
k(R

k)(H, H) ≥ 0 for all H ∈ �n×r .
We now state our first result concerning sequences of points Rk arising as approxi-

mate stationary points of the sequence of subproblems (2).

Theorem 4.1. Let {Rk} ⊂ �n×r be a bounded sequence satisfying the following condi-
tions:

(a) limk→∞ A (
Rk(Rk)T

) = b;
(b) limk→∞ ∇Lk(R

k) = 0;
(c) lim infk→∞ L′′

k(R
k)(Hk, Hk) ≥ 0 for all bounded sequences {Hk} ⊂ �n×r ;

(d) rank (Rk) < r for all k.

Then the following statements hold:

(i) every accumulation point of {Rk(Rk)T } is an optimal solution of SDP;
(ii) the sequence {Sk} is bounded and any of its accumulation points is an optimal dual

slack for DSDP.

Proof. Let Xk := Rk(Rk)T for all k. Clearly, (3) and condition (b) together imply that

lim
k→∞

SkXk = 0. (6)

Also, condition (d) implies that for each k there exists an orthogonal matrix Qk ∈ �r×r

such that the last column of RkQk is zero. Now, let h ∈ �n be given and define

Hk := [0, . . . , 0, h](Qk)T ∈ �n×r .

Using (4) together with the equalities Hk(Hk)T = hhT and Rk(Hk)T = 0, we conclude
from condition (c) that

lim inf
k→∞

Sk • hhT ≥ 0. (7)

We will now show that {Sk} is bounded. Indeed, assume for contradiction that, for
some subsequence {Sk}k∈K, we have limk∈K→∞ ‖Sk‖ = ∞, and let (X̄, S̄) be an accu-
mulation point of {(Xk, Sk/‖Sk‖)}k∈K. Using condition (a), relations (5), (6) and (7)
and the fact that limk∈K→∞ ‖Sk‖ = ∞, we easily see that A(X̄) = b, 0 �= S̄ ∈ Im (A∗),
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S̄ � 0, and S̄ • X̄ = 0. It is now easy to see that these conclusions imply that S̄ is a
nontrivial direction of recession for the set of feasible dual slacks of DSDP. This violates
the assumption that SDP has an interior feasible solution, however, yielding the desired
contradiction. Hence {Sk} must be bounded.

Again, using (5), (6) and (7), it is straightforward to verify (i) and the remaining part
of (ii). ��

Observe that if Rk is a local minimum of Lk(R), then the sequence {Rk} obviously
satisfies conditions (b) and (c) of Theorem 4.1. However, there is no reason for this
sequence to satisfy condition (d). In the next section, we show how to obtain a sequence
{Rk} satisfying all conditions simultaneously, simply by taking Rk to be a local min-
imizer of a function obtained by adding an extra term to the augmented Lagrangian
function Lk .

A disadvantage of Theorem 4.1 is that the boundedness of the sequence {Rk} must
be assumed. We will now study some properties of approximate stationary points Rk

for the sequence of subproblems obtained by adding the constraint ‖R‖2
F ≤ M to the

subproblems (2), where M > 0 is some large constant. This approach has the advantage
that {Rk} will be automatically bounded.

We assume that M > 0 is such that I • X∗ < M for some optimal solution X∗
of SDP. Then we may add the constraint I • X ≤ M to SDP, obtaining the equivalent
semidefinite programming problem

SDP′ min C • X

s.t. A(X) = b

I • X ≤ M

X � 0,

whose dual can be written in nonstandard format as

DSDP′ max bT y − Mθ

s.t. A∗(y) + S = C

θ ≥ 0, S + θI � 0.

Note that any optimal solution of DSDP′ must have θ = 0 so that S is an optimal dual
slack for DSDP. Applying the low-rank change of variables X = RRT to SDP′, we
obtain the nonlinear programming formulation

NSDP′
r min C • RRT

s.t. A(RRT ) = b

‖R‖2
F ≤ M

A partial augmented Lagrangian approach applied to this problem consists of finding
approximate stationary points Rk for the sequence of subproblems

min
R∈�n×r

Lk(R) (8)

s.t. ‖R‖2
F ≤ M
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A necessary condition for Rk to be a local minimum of the k-th subproblem of (8) is the
existence of θk ≥ 0 such that

∇Lk(R
k) + θkR = 0, θk(M − ‖Rk‖2

F ) = 0, (9)

L′′
k(R

k)(H, H) + θk I • HHT ≥ 0, ∀ H ∈ �n×r such that Rk • H = 0. (10)

We now state our second result regarding approximate stationary points Rk of the se-
quence of subproblems (8). The proof, which is an extension of the proof of Theorem
4.1, is left to the reader.

Theorem 4.2. Let M > 0 be a constant large enough so that I • X∗ < M for some
optimal solution X∗ of SDP. In addition, let {Rk} ⊂ �n×r and {θk} ⊂ �+ be sequences
such that ‖Rk‖2

F ≤ M and which also satisfy the following conditions:

(a) limk→∞ A (
Rk(Rk)T

) = b;
(b) limk→∞ ∇Lk(R

k) + θkR
k = 0 and limk→∞ θk(M − ‖Rk‖2

F ) = 0;
(c) lim infk→∞ L′′

k(R
k)(H, H) + θk I • HHT ≥ 0 for all bounded sequences {Hk} ⊂

�n×r such that Rk • Hk = 0 for all k;
(d) rank (Rk) < r for all k.

Then the following statements hold:

(i) every accumulation point of {Rk(Rk)T } is an optimal solution of SDP;
(ii) the sequence {Sk} defined by (5) is bounded and any of its accumulation points is an

optimal dual slack for DSDP, in which case limk→∞ θk = 0.

5. A Perturbed Augmented Lagrangian Algorithm

We now consider a perturbed version of the augmented Lagrangian algorithm consid-
ered in Section 4. For eack k, the method consists of finding a stationary point Rk of the
following subproblem:

min
R∈�n×r

fk(R) := Lk(R) + µk det(RT R), (11)

where Lk is the function defined in (2) and {µk} ⊂ �++ is a sequence converging to 0.
Under mild conditions, we will show below that any accumulation point of the sequence
{Rk(Rk)T } is an optimal solution of SDP. Our strategy will be to show that {Rk} satisfies
the conditions of Theorem 4.1.

The following two lemmas essentially show that {Rk} satisfies condition (d) of The-
orem 4.1.

Lemma 5.1. Let 0 �= � ∈ Sr be given and define d(δ) = det(Ir + δ �) for all δ ∈ �.
Then δ = 0 is not a local minimum of d(δ).

Proof. Let λ = (λj ) �= 0 denote the vector of eigenvalues of �, in which case d(δ) =
�r

j=1(1 + δ λj ). It is not difficult to see that

d ′(0) = eT λ

d ′′(0) =
(
eT λ

)2 − eT (λ2),
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where e is the vector of all ones and λ2 = (λ2
j ). If d ′(0) �= 0, then the result follows.

On the other hand, if d ′(0) = 0, then d ′′(0) < 0, showing that δ = 0 is a strict local
maximum, from which the result follows. ��
Lemma 5.2. Assume that r > rm+1. If Rk is a local minimum of fk(R), then
rank(Rk) < r .

Proof. Suppose for contradiction that rank(Rk) = r , and for notational convenience
let R = Rk . Note that det(RT R) > 0. Because the assumption on r implies that
r(r + 1)/2 > m + 1, we conclude that system φ(R) with C = Ck in Proposition 3.1
has a nontrivial solution �. For any δ such that I + δ � � 0, define

Rδ = R chol(Ir + δ �),

where chol(·) denotes the lower Cholesky factor of (·). Note that Rδ is well-defined
on an open interval of δ containing 0 and that M • RδR

T
δ = M • RRT for all M ∈

{Ck, A1, . . . , Am}. This implies that Lk(Rδ) = Lk(R), and hence

fk(R) − fk(Rδ) = µk

(
det(RT R) − det(RT

δ Rδ)
)

= µk det(RT R) (1 − det(Ir + δ �)) ,

where the second equality follows from standard properties of the determinant. By
Lemma 5.1, δ = 0 is not a local minimum of det(Ir + δ �), i.e., there exists arbitrarily
small δ �= 0 such that det(Ir + δ �) < 1, which when combined with the above equality
and the fact that µk det(RT R) > 0 imply that R is not a local minimum of fk(R). Since
this contradicts the definition of R, we must have rank (R) < r . ��
We remark that the main point of Lemma 5.2 can also be achieved by analyzing the
behavior of det(RT R)1/r . The key observation is that det(·)1/r is a concave function
over the set of r × r positive definite matrices and is actually strictly concave over line
segments between linearly independent matrices (see section 7.8 of Horn and Johnson
[12]).

Theorem 5.3. Assume that r > rm+1 and that {µk} ⊂ �++ is a sequence converging to
0. For each k, let Rk be a local minimum of fk(R) and let Sk be given by (5). Moreover,
assume that:

(a) limk→∞ A (
Rk(Rk)T

) = b;
(b) the sequence {Rk} ⊂ �n×r is bounded.

Then the following statements hold:

(i) every accumulation point of {Rk(Rk)T } is an optimal solution of SDP;
(ii) the sequence {Sk} defined by (5) is bounded and any of its accumulation points is

an optimal dual slack for DSDP.

Proof. The result follows immediately by verifying that {Rk} satisfies conditions (b) to
(d) of Theorem 4.1. Condition (d) of Theorem 4.1 follows from Lemma 5.2. To verify
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(b) and (c) of Theorem 4.1, define d(R) = det(RT R) for all R ∈ �n×r . Since Rk is a
local minimum of fk(R), we must have

∇fk(R
k) = ∇Lk(R

k) + µk∇d(Rk) = 0,

f ′′
k (Rk)(H, H) = L′′

k(R
k)(H, H) + µk d ′′(Rk)(H, H) ≥ 0, ∀ H ∈ �n×r .

Since {µk} converges to 0 and the derivatives of d are uniformly bounded over compact
sets, it follows that limk→∞ ∇Lk(R

k) = 0 and lim infk→∞ L′′
k(R

k)(Hk, Hk) ≥ 0 for
all bounded sequences {Hk} ⊂ �n×r , showing that {Rk} also satisfies conditions (b)
and (c) of Theorem 4.1. ��

Similar to Theorem 4.1, one drawback of the above theorem is that the boundedness
of {Rk} must be assumed, and similar to Theorem 4.2, the next theorem addresses this
issue by considering the sequence of stationary points {Rk} of the sequence of subprob-
lems

min
R∈�n×r

fk(R)

s.t. ‖R‖2
F ≤ M,

which automatically enforce that the sequence {Rk} is bounded. Its proof, which is based
on Theorem 4.2, is quite similar to the one of Theorem 5.3.

Theorem 5.4. Let M > 0 be a constant large enough so that I • X∗ < M for some
optimal solution X∗ of SDP. Assume that r > rm+2 and that {µk} ⊂ �++ is a sequence
converging to 0. For each k, let Rk be a local minimum of the subproblem min{fk(R) :
‖R‖2

F ≤ M} and let Sk be given by (5). Then, the following statements hold:

(i) if limk→∞ A(Rk(Rk)T ) = b then any accumulation point of {Rk(Rk)T } is an opti-
mal solution of SDP, the sequence {Sk} is bounded and any accumulation point of
{Sk} is an optimal dual slack of SDP;

(ii) if limk→∞ σk = ∞ and the sequences {yk} and {Sk} are bounded then
limk→∞ A(Rk(Rk)T ) = b.

Proof. To prove (i), assume that limk→∞ A(Rk(Rk)T ) = b. Let θk ∈ �+ denote the
Lagrange multiplier corresponding to the constraint ‖R‖2

F ≤ M of the k-th subproblem.
Using the fact that (Rk, θk) satisfies limk∈→∞ A(Rk(Rk)T ) = b and relations (9) and
(10), it is possible to show that the sequences {Rk} and {θk} satisfy all the conditions of
Theorem 4.2, from which (i) immediately follows. (We remark that a variation of Lemma
5.2 is needed in order to guarantee that rank (Rk) < r . In this variation, it is necessary to
assume that r > rm+2, or equivalently that r(r +1)/2 > m+2, which allows the matrix
� in the proof of Lemma 5.2 to be chosen so as to ensure that ‖Rδ‖2

F = I • RδR
T
δ is a

constant function of δ.)
We now prove (ii). Using (5), the assumption that {yk} and {Sk} are bounded and A∗

is one-to-one, we easily see that {σk(A(Rk(Rk)T )−b)} is bounded. Since limk→∞ σk =
∞, this implies that limk→∞ A(Rk(Rk)T ) = b. ��

Observe that Theorem 5.4 establishes, under the assumption that limk→∞ σk = ∞
and {yk} is bounded, that the condition limk→∞ A(Rk(Rk)T ) = b is equivalent to the
boundedness of {Sk}. Unfortunately, we do not know whether one of these two conditions
will always hold, even though they are always observed in our practical experiments.
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6. Computational Results

The algorithm of the previous section, whose convergence is proven in Theorems 5.3
and 5.4, differs only slightly from the practical algorithm of [5] in that the extra term
µk det(RT R) is added to the augmented Lagrangian function. While it seems that the
extra term is necessary for theoretical convergence, it does not appear to be necessary
for practical convergence. Indeed, the practical convergence observed in [5] has served
as the main motivation for the theoretical investigations of the current paper. Informally,
one can also see that the theoretical and practical versions are not extremely differ-
ent since one may theoretically choose µk > 0 as small as one wishes, with the only
requirement being that µk → 0.

Another reason for favoring the practical algorithm is the difficulty of calculating
the derivative of d(R) = det(RT R), which in particular would need to be calculated for
any R such that rank(R) < r , or equivalently, when RT R is singular. It is not difficult
to see that

∇d(R) = R cofactor(RT R),

where cofactor(RT R) denotes the matrix of cofactors of (RT R)ij in RT R. The authors
are not aware of any quick, numerically stable way of calculating cofactor(RT R). For
these reasons, the numerical results that we present are based on the same algorithm as
introduced in [5].

These things being said, however, it is reasonable to expect the practical algorithm
to deliver a certificate of optimality, at least asymptotically. Letting {Rk} and {Sk} be
the sequences generated by the algorithm, the relevant measurements are

(
m∑

i=1

(Ai • Rk(Rk)T − bi)
2

)1/2

, ‖SkRk‖F , λmin(S
k),

which monitor primal feasibility, complementarity (which also corresponds to the norm
of the gradient of the augmented Lagrangian function), and dual feasibility, respectively.
In expectation that each of these quantities will go to zero during the execution of the
algorithm, we implement the following strategy. Given parameters ρf , ρc > 0:

• the k-th subproblem is terminated with Rk and Sk once

‖SkRk‖F

‖C‖F + 1
<

ρc

σk

;

• the entire algorithm is terminated with R̄ = Rk and S̄ = Sk once Rk is obtained
such that

(∑m
i=1(Ai • Rk(Rk)T − bi)

2
)1/2

‖b‖ + 1
< ρf .

On all test problems, these termination criteria were realized (see below). In addition,
although we cannot exercise as much control over λmin(S

k), we have found that λmin(S̄)

is typically slightly negative, which matches the theoretical prediction of Section 4.
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For other implementation details regarding the augmented Lagrangian algorithm,
we refer the reader to [5]. We mention briefly that the penalty parameter σ is updated
by a fairly conservative factor of

√
10 every so often, typically after the solution of each

third or fourth subproblem.
In the following two subsections, we demonstrate the performance of the low-rank

algorithm on three classes of SDP relaxations of combinatorial optimization problems.
We remark that a common feature of the three classes of problems we solve is that the
constraints Ai • X = bi , i = 1, . . . , m, impose an upper bound on the trace of X and
hence a bound on the norm of any feasible R. Hence, in accordance with Theorem 5.3,
we can expect the sequences generated by the algorithm to be bounded.

The implementation of the low-rank algorithm was written in ANSI C, and all com-
putational results were performed on a Pentium 2.4 GHz having 1 Gb of RAM.

6.1. Maximum cut and maximum stable set relaxations

We consider ten test problems which were used in [5]; see [5] for a careful description.
In particular, we have chosen five of the largest maximum cut SDP relaxations and five
of the largest maximum stable set SDP relaxations, whose results are shown in Table 1.
The parameters chosen for the test runs were ρf = 10−5 for primal feasibility and
ρc = 10−1 for complementarity. The first three columns of Table 1 give basic problem
information; the fourth gives the final objective value achieved by the algorithm; the
fifth gives a lower bound on the optimal value of SDP; the sixth gives the minimum
eigenvalue of the final dual matrix; and the last gives the total time required in seconds.

The lower bounds given in Table 1 were computed by perturbing the final dual matrix
S̄ in order to achieve dual feasibility and then reporting the corresponding dual objective
value. In particular, both the maximum cut and maximum stable set SDPs share the
property that the identity matrix I can be written as a known linear combination of the
matrices A1, . . . , Am, which makes it straightforward to perturb S̄ as long as λmin(S̄) is
available. The minimum eigenvalue of S̄ was computed with the Lanczos-based package
LASO available from the Netlib Repository.

The computational results demonstrate that the low-rank algorithm with the described
parameters is able to solve the the maximum cut problems to several digits of accuracy

Table 1. Results of the low-rank algorithm on five maximum-cut and five maximum-stable-set SDP relax-
ations (see [5]). Parameters are ρf = 10−5 and ρc = 10−1, and lower bounds are calculated by shifting S̄ to
dual feasibility. Times are given in seconds.

problem n m C • R̄R̄T lower bd λmin(S̄) time
G67 10000 10000 -7.744e+03 -7.745e+03 -1.8e−04 595
G70 10000 10000 -9.861e+03 -9.863e+03 -1.4e−04 517
G72 10000 10000 -7.808e+03 -7.809e+03 -4.7e−05 787
G77 14000 14000 -1.104e+04 -1.105e+04 -1.6e−04 865
G81 20000 20000 -1.565e+04 -1.567e+04 -6.7e−04 2433
G43 5000 9991 -2.806e+02 -2.833e+02 -2.7e+00 1709
G51 3000 6001 -3.490e+02 -3.503e+02 -1.3e+00 3265
brock400-4.co 400 20078 -3.970e+01 -4.066e+01 -9.7e−01 768
c-fat200-1.co 200 18367 -1.200e+01 -1.229e+01 -2.9e−01 260
p-hat300-1.co 300 33918 -1.007e+01 -1.199e+01 -1.9e+00 4948
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in a small amount of time. In particular, approximate primal and dual optimal solutions
are produced by the algorithm as indicated by the achieved feasibility tolerance ρf , the
small minimum eigenvalues of S̄, and the associated duality gap.

The results for the maximum stable set relaxations do not appear as strong, however,
since the minimum eigenvalues and lower bounds are not quite as accurate. Upon further
investigation, we found that by tightening the complementarity parameter ρc to values
such as 10−2 or 10−3, we could significantly improve these metrics, but a fair amount of
additional computation time was required. Moreover, the primal matrix R̄ improved only
incrementally under these scenarios. (These observations are demonstrated in Table 2.)
Hence, with regard to the maximum stable set SDP, the results of Table 1 present a
balance between good progress in the primal with the time required to achieve good
progress in the dual.

6.2. Quadratic assignment relaxations

The results of the previous subsection highlight a capability of the low-rank algorithm —
namely that it can be used to obtain lower bounds on the optimal value of SDP whenever
I is in the subspace generated by A1, . . . , Am or, equivalently, when the constraints of
SDP imply a constant trace over all feasible X. This class of SDPs includes the relax-
ations of many combinatorial optimization problems (e.g., maximum cut and maximum
stable set) and has been studied extensively in [9]. In such cases, since the optimal value
of the SDP relaxation is itself a lower bound on the optimal value of the underlying
combinatorial problem, the low-rank algorithm can be used as a tool to obtain bounds
for combinatorial optimization problems also.

Given a general 0-1 quadratic program, its standard SDP relaxation does not sat-
isfy the condition of the previous paragraph, i.e., I is not in the subspace generated
by A1, . . . , Am. There is, however, a simple, easily computable scaling PAiP

T of the
matrices Ai such that I is generated by PA1P

T , . . . , PAmP T (see [23, 8]). Hence,
this scaling can be used in conjunction with the low-rank algorithm to compute lower
bounds on the optimal value of 0-1 quadratic programs.

The quadratic assignment problem (QAP) is a 0-1 quadratic program arising in loca-
tion theory that has proven to be extremely difficult to solve to optimality, due in no small
part to its large size even for moderate numbers of decision variables. In particular, a
QAP with � facilities and � locations yields a quadratic program with �2 binary variables
and 2� linear constraints. In terms of optimizing QAP using an implicit enumeration
scheme such as branch-and-bound, a key ingredient in any such scheme is the bounding

Table 2. Results of the low-rank algorithm on the five maximum-stable-set SDP relaxations of Table 1. Here,
parameters are ρf = 10−5 and ρc = 10−3.

problem C • R̄R̄T lower bd λmin(S̄) time
G43 -2.806e+02 -2.817e+02 -1.1e+00 12440
G51 -3.490e+02 -3.491e+02 -1.3e−01 34972
brock400-4.co -3.970e+01 -4.066e+01 -9.6e−01 3476
c-fat200-1.co -1.200e+01 -1.200e+01 -2.1e−03 977
p-hat300-1.co -1.007e+01 -1.025e+01 -1.8e−01 15514
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technique used to obtain lower bounds on the optimal value of QAP, and for this, many
bounds based on convex optimization have been proposed, including ones based on
linear programming, convex quadratic programming, and semidefinite programming. A
recent survey on progress made towards solving QAP is given by Anstreicher [2].

SDP relaxations of QAP have been studied in [14, 21, 27] and are most notable for
the fact that, even though the quality of bounds is usually quite good, the huge size of the
SDPs makes the calculation of these bounds very difficult. In [14, 27], four successively
larger SDP relaxations are introduced, and generally speaking, the bound is improved
as the size of the relaxation is increased. Table 3 gives basic information on the size of
these relaxations in terms of the number � of facilities and locations; we refer the reader
to [14, 27] for a full description.

Lin and Saigal [14] give computational results on solving the relaxation QAPR0 of
Table 3 for several problems of size up to � = 30. Likewise, Zhao et al. [27] investigate
QAPR1 and QAPR2 for problems up to size � = 30 and QAPR3 for problems up to size
� = 22 with at most 2,000 linear inequalities. Most recently, Rendl and Sotirov [21]
have used the bundle method to compute bounds provided by QAPR2 and QAPR3 (with
all inequality constraints included) for instances up to � = 30.

For the algorithm of this paper, we provide computational results for computing
bounds provided by QAPR1 and QAPR2 for instances of size up to � = 40. In particular,
we do not include any problems with � < 30 since we wish to concentrate on problems
of larger size. Also, we do not test QAPR3 for two primary reasons. First, it is not clear
at this moment the best way to incorporate linear inequality constraints into the low-
rank algorithm. Second, since it makes sense to solve QAPR3 with only a few important
inequalities and since choosing such inequalities is itself a difficult task, we would like
instead to study the performance of the low-rank algorithm on the well-defined problem
classes QAPR1 and QAPR2 .

Our test problems come from QAPLIB [7], and we have selected a representative
sample of all problems in QAPLIB with 30 ≤ � ≤ 40. The results of the problems are
shown in Table 4. The feasibility and centrality parameters are taken to be ρf = 10−3

and ρc = 102, respectively. In contrast with Table 1, we do not report any information
concerning the primal objective value or the minimum eigenvalue of S̄, since primal and
dual solutions of high accuracy are not necessarily of interest here. Instead, we wish to
demonstrate that reasonably good bounds for QAP can be computed using the low-rank
algorithm. To judge the quality of the bounds, we also include the objective value of the
best known integer feasible solution of QAP as well. In particular, those problems for
which the best known integer feasible value is also optimal are indicated by a prefixed
asterisk (∗). We remark that, if the reader is further interested in the quality of the bounds,
the papers [2, 21, 27] discuss such issues in detail.

Table 3. Size comparison of four SDP relaxations of QAP. Here, � is the basic dimension of the QAP; n gives
the size of the semidefinite matrix; and m gives the number of equality constraints.

n m linear inequalities
QAPR0 �2 + 1 �2 + 3 0
QAPR1 (� − 1)2 − 1 2�2 + � + 1 0
QAPR2 (� − 1)2 − 1 �3 − 2�2 + 1 0
QAPR3 (� − 1)2 − 1 �3 − 2�2 + 1 ≤ 1

2 �4 − �3 + 5
2 �2 + 1
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A few comments regarding the results presented in Table 4 are in order. First of all, the
low-rank algorithm was able to successfully solve all instances to the desired accuracy,
delivering bounds of roughly the same quality as documented in other investigations of
SDP bounds for QAP; see [21, 27].

In terms of computation times, it is clear that the low-rank algorithm can take a
significant amount of time on some problems (for example, the maximum time was
approximately 6.4 days for ste36b). However, we stress that these times, although large
in some cases, compare very favorably to other investigations. Moreover, to our knowl-
edge, no computational results for SDP relaxations having � > 30 have been reported
in the literature. As an example, Rendl and Sotirov [21] report that their bundle method
requires approximately 10 hours to deliver a bound of 5651 on nug30 via QAPR2 on
an Athlon XP running at 1.8 GHz. As shown in Table 4, we were able to achieve a
comparable bound of 5629 in approximately 36 minutes.

In addition, the computational results demonstrate that solving QAPR2 requires much
more time than QAPR1 . Moreover, it seems difficult to predict an expected increase of
time between QAPR1 and QAPR2 , as the factors of increase range from a low of 4.7 for
esc32a to a high of 74.1 for ste36b. For classes of problems for which the bound does
not improve dramatically from QAPR1 to QAPR2 , it thus may be reasonable to solve
only QAPR1 .

Finally, Table 4 illustrates a phenomenon that many authors have recognized in work-
ing with QAP, namely that problems of similar size have varying degrees of difficulty. In
other words, the data of the QAP can greatly affect the difficulty of the instance. This is
evidenced in the table, for example, by lipa30a and tho30. Although each is of the same
size, tho30 takes about 4 times longer to solve for QAPR1 and about 36 times longer to
solve for QAPR2 .

Table 4. Results of the low-rank algorithm for QAPR1 and QAPR2 on seventeen problems from QAPLIB;
subscripts indicate the relevant relaxation. Parameters are ρf = 10−3 and ρc = 102, and lower bounds are
rounded up to nearest integer due to integral data for underlying QAP. Times are in seconds.

problem feasible val n{1,2} m1 m2 lower bd1 lower bd2 time1 time2
esc32a 130 960 2081 30721 −326 −144 103 480
esc32h 438 960 2081 30721 176 225 111 527
kra30a ∗88900 840 1831 25201 69509 78255 3274 58359
kra30b ∗91420 840 1831 25201 70096 79165 2602 48846
kra32 ∗88700 960 2081 30721 65605 76669 2894 58103
lipa30a ∗13178 840 1831 25201 12765 12934 439 2294
lipa30b ∗151426 840 1831 25201 151133 151357 582 14862
lipa40a ∗31538 1520 3241 60801 30575 30560 889 8753
lipa40b ∗476581 1520 3241 60801 474875 476417 4747 93621
nug30 ∗6124 840 1831 25201 5311 5629 359 2161
ste36a ∗9526 1224 2629 44065 −9452 7156 2963 25703
ste36b ∗15852 1224 2629 44065 −115816 10350 7464 552860
tai30a 1818146 840 1831 25201 1528834 1577013 3216 72911
tai35a 2422002 1155 2486 40426 1970071 2029376 6775 155143
tai40a 3139370 1520 3241 60801 2519257 2592756 11938 421348
tho30 ∗149936 840 1831 25201 125846 135535 1921 81454
tho40 240516 1520 3241 60801 199680 214593 7384 219336
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