
SIAM J. OPTIM. c© 2006 Society for Industrial and Applied Mathematics
Vol. 16, No. 3, pp. 726–750

SOLVING LIFT-AND-PROJECT RELAXATIONS
OF BINARY INTEGER PROGRAMS∗

SAMUEL BURER† AND DIETER VANDENBUSSCHE‡

Abstract. We propose a method for optimizing the lift-and-project relaxations of binary integer
programs introduced by Lovász and Schrijver. In particular, we study both linear and semidefinite
relaxations. The key idea is a restructuring of the relaxations, which isolates the complicating
constraints and allows for a Lagrangian approach. We detail an enhanced subgradient method and
discuss its efficient implementation. Computational results illustrate that our algorithm produces
tight bounds more quickly than state-of-the-art linear and semidefinite solvers.

Key words. integer programming, lift-and-project relaxations, semidefinite programming, aug-
mented Lagrangian

AMS subject classifications. 90C10, 90C22, 90C27, 90C30

DOI. 10.1137/040609574

1. Introduction. In the field of optimization, binary integer programs have
proven to be an excellent source of challenging problems, and the successful solution
of larger and larger problems over the past few decades has required significant theo-
retical and computational advances. One of the fundamental issues is how to obtain
a “good” description of the convex hull of integer solutions, and many specific classes
of integer programs have been solved by finding problem-specific ways to address this
issue.

Researchers have also developed techniques for approximating the convex hull of
integer solutions without any specific knowledge of the problem, i.e., techniques that
apply to arbitrary binary integer programs. Some of the earliest work done in this
direction was by Gomory [19] in generating linear inequalities that tighten the basic
linear relaxation. A different idea, which has been advocated by several authors, is
to approximate the convex hull as the projection of some polyhedron lying in a space
of higher dimension. We refer the reader to [3, 38, 32, 4, 24, 7]. Connections between
these works are explored in [27, 26].

Although these so-called lift-and-project methods are quite powerful theoretically,
they present great computational challenges because one typically must optimize in
the space of the lifting, i.e., the space of higher dimension. Computational issues are
detailed in [4, 39, 11, 22, 14].

In this paper, we focus on the techniques proposed by Lovász and Schrijver (LS),
including both linear and semidefinite relaxations. In particular, our main goal is to
present improved computational methods for optimizing over the first-level LS relax-
ations. We are aware of only one study (by Dash [14]), which investigates the strength
of these relaxations computationally. This shortage of computational experience is
due to the dramatic size of these relaxations. For example, one specific semidefinite

∗Received by the editors June 7, 2004; accepted for publication (in revised form) June 17, 2005;
published electronically January 6, 2006.

http://www.siam.org/journals/siopt/16-3/60957.html
†Department of Management Sciences, University of Iowa, Iowa City, IA 52242-1000 (samuel-

burer@uiowa.edu). This author was supported in part by NSF grant CCR-0203426.
‡Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-

Champaign, Urbana, IL 61801 (dieterv@uiuc.edu).

726

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 727

relaxation that has been considered by Dash (and which we also consider in this
paper) has well over 1.7 million constraints.

Since it is unlikely that these relaxations can be solved using direct algorithms,
we instead adopt the paradigm of decomposition, which is common in large-scale op-
timization methods. (Dash [14] also considers a decomposition approach.) The main
idea here is a clever decomposition of the LS relaxations, which allows for a Lagrangian
approach. Instead of using the common subgradient algorithm, however, we propose
to use an augmented Lagrangian algorithm, which is, in some sense, an enhanced sub-
gradient method and which also has connections with the bundle method for convex
optimization. We provide a theoretical explanation of the benefits of the augmented
Lagrangian algorithm and give a detailed explanation of our implementation, which
is demonstrated to outperform state-of-the-art subgradient, linear, and semidefinite
solvers on certain classes of problems.

We remark that, while the idea of using the augmented Lagrangian method for
linear programs is not new (see [35, 40]), little work has been done on the computa-
tional aspects of such a method. In this paper, we fill this gap concerning large-scale
linear programs and also present an augmented Lagrangian method for semidefinite
programs for the first time.

The paper is organized as follows. In section 2, we give background on the Lovász-
Schrijver lift-and-project relaxations as well as propose the decomposition technique
that will become the basis of our augmented Lagrangian algorithm. Then, in section
3, we discuss the augmented Lagrangian algorithm, including its theoretical benefits
and specialization in the current context. Next, in section 4, we present the details of
our implementation and computational results. We also discuss the strength of the
LS relaxations on various problem classes, with one highlight being that, in practice,
the LS semidefinite relaxation provides the strongest known bounds for a collection
of problems in the Quadratic Assignment Problem Library [36]. Finally, we conclude
with a few final remarks and suggestions for future research in section 5.

1.1. Notation and terminology. In this section, we introduce some of the
notation that will be used throughout the paper. R

n will refer to n-dimensional
Euclidean space. The norm of a vector x ∈ R

n is denoted by ‖x‖ :=
√
xTx. We let

ei ∈ R
n represent the ith unit vector, and e is the vector of all ones. R

n×n is the set
of real n× n matrices, Sn is the set of symmetric matrices in R

n×n, while Sn
+ is the

set of positive semidefinite symmetric matrices. The special notation R
1+n and S1+n

is used to denote the spaces R
n and Sn with an additional “zeroth” entry prefixed or

an additional zeroth row and zeroth column prefixed, respectively. The inner product
of two matrices A,B ∈ R

n×n is defined as A •B := tr(ATB), where tr(·) denotes the
sum of the diagonal entries of a matrix. The Frobenius norm of a matrix A ∈ R

n×n

is defined as ‖A‖F :=
√
A •A. diag(A) is defined as the vector with the diagonal of

A as its entries.

2. The lift-and-project operators of Lovász and Schrijver. When solving
a 0-1 integer program of the form

min
{
cTx | Ax ≤ b, x ∈ {0, 1}n

}
,(IP)

we are often interested in relaxations of the convex hull of integer solutions

P := conv {x ∈ {0, 1}n | Ax ≤ b} .

Optimization over such relaxations provides lower bounds that can be used within
branch-and-bound methods or allow one to assess the quality of feasible solutions

728 SAMUEL BURER AND DIETER VANDENBUSSCHE

of (IP). The trivial linear programming (LP) relaxation is obtained by replacing
x ∈ {0, 1}n with x ∈ [0, 1]n. In an effort to develop relaxations that are stronger than
the LP relaxation, Lovász and Schrijver [32] introduced the lifted matrix variable

Y =

(
1
x

)(
1
x

)T

=

(
1 xT

x xxT

)
.

Given this definition relating Y and x ∈ {0, 1}n, we can observe a number of inter-
esting properties of Y :

1. Y is symmetric and positive semidefinite, i.e., Y ∈ S1+n
+ ;

2. the diagonal of Y equals the zeroth column of Y , i.e., diag(Y) = Y e0;
3. if we multiply the constraints Ax ≤ b of P by some xi, we obtain the set of

nonlinear inequalities bxi −Axxi ≥ 0, which are valid for P ; these inequalities can be
written in terms of Y as

(
b
∣∣−A

)
Y ei ≥ 0 ∀ i = 1, . . . , n;

4. analogously, multiplying Ax ≤ b by 1 − xi yields

(
b
∣∣−A

)
Y (e0 − ei) ≥ 0 ∀ i = 1, . . . , n.

Lovász and Schrijver [32] observed that these properties could be used to obtain
relaxations of P . In particular, they homogenized the standard LP relaxation of (IP)
by defining

K :=

{(
x0

x

)
∈ R

1+n | Ax ≤ x0b, 0 ≤ x ≤ x0e

}
.

We remark that enforcing x0 = 1 in K yields the LP relaxation and that the third
and fourth properties above can be written as Y ei ∈ K and Y (e0 − ei) ∈ K. They
then proposed the following sets:

M(K) :=
{
Y ∈ S1+n | Y e0 = diag(Y), Y ei ∈ K, Y (e0 − ei) ∈ K ∀ i = 1, . . . , n

}
M+(K) :=

{
Y ∈ S1+n

+ | Y ∈ M(K)
}
.

Note that M+(K) differs from M(K) only in that positive semidefiniteness is enforced
on the Y variable. M(K) now leads to a linear relaxation of P via the projected set

N(K) :=

{
x ∈ R

n |
(

1
x

)
= diag(Y) for some Y ∈ M(K)

}
,

and M+(K) leads to an analogous semidefinite relaxation N+(K) of P . In partic-
ular, Lovász and Schrijver [32] showed that P ⊆ N+(K) ⊆ N(K) and that N(K)
is contained in the LP relaxation of (IP). Further, they showed that applying these
relaxation procedures iteratively n times yields P exactly.

We remark that our definitions of N(K) and N+(K) are actually slices (at Y00 = 1
and x0 = 1) of the cones originally defined by Lovász and Schrijver [32].

Applying these ideas to the stable set problem, Lovász and Schrijver proved that
some classes of inequalities for the stable set polytope are satisfied by all the points
in N(K), while other classes are only valid for N+(K). In turn, these results have
significant implications for the complexity of finding maximum stable sets in various
classes of graphs. Further, theoretical results concerning the strength of N(K) and

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 729

N+(K), as well as the higher-order liftings, have also been established; see [41, 12,
18, 25, 30].

To compute lower bounds available from the relaxations N(K) and N+(K), one
must solve the LP

min
{
cTx | x ∈ N(K)

}
(1)

or the semidefinite program (SDP)

min
{
cTx | x ∈ N+(K)

}
.(2)

Defining c̃ :=

(
0
c

)
and using the above definitions, (1) can be written explicitly as

min c̃TY e0(3)

s.t. Y = Y T ,(4)

Y e0 = diag(Y),(5)

Y ei ∈ K ∀ i = 1, . . . , n,(6)

Y (e0 − ei) ∈ K ∀ i = 1, . . . , n,(7)

Y00 = 1.(8)

Likewise, (2) can be written as

min c̃TY e0

s.t. Y ∈ S1+n
+

(4)–(8).

A couple of comments concerning (1) and (2) are in order. First, the constraints
(6) and (7) imply Y e0 ∈ K. Combined with (8), this in turn implies that each
component of the zeroth column of Y is in [0, 1]. By (4), the same holds for the
zeroth row of Y , which implies by (6) that all other components of Y are in [0, 1].
Hence, we may replace K with K̂ := K ∩ [0, 1]1+n without affecting the optimal
solution sets of (1) and (2).

Second, if K is defined by m constraints, including upper and lower bounds, then
the LP described by (3)–(8) has O(n2 + nm) constraints and O(n2) variables. Con-
sequently, solving this LP using, say, the simplex method or interior-point methods
becomes too cumbersome even for problems with moderate n and m. This situation
is further exacerbated when solving (2). In fact, using standard SDP methods, (2)
will only be solvable for very small n and m. As a result, very little research has been
done on actually solving (1) and (2). Work involving (1) is discussed in [39] and some
computations of (2) for various 0-1 polytopes can be found in [14].

This second observation motivates us to investigate new optimization techniques
for solving (1) and (2), and, in particular, we are interested in applying decomposition
methods for large-scale optimization. We first show how this can be done for (1).
Unfortunately, all the constraints (4)–(8) are tightly linked, and so the problem does
not immediately lend itself to decomposition. To partially overcome this obstacle,
however, we introduce the matrix variable

Z = Y Q ∈ R
(1+n)×n, where Q :=

(
e0 − e1

∣∣∣e0 − e2

∣∣∣ · · · ∣∣∣e0 − en

)

730 SAMUEL BURER AND DIETER VANDENBUSSCHE

and reformulate (3)–(8) as

min c̃TY e0

s.t. Y = Y T , Y e0 = diag(Y), Z = Y Q(9)

Y ei ∈ K̂, Zei ∈ K̂ ∀ i = 1, . . . , n(10)

Y00 = 1.(11)

Note that K has been replaced with K̂ in accordance with the first comment above.
Furthermore, it is clear that the constraints (10) are separable over the columns of Y
and Z but that these same columns are linked via the constraints (9).

A reasonable idea is to apply Lagrangian relaxation to the constraints (9), and in
order to simplify notation, we denote (9) by the collection of linear equations h(Y,Z) =
0. Letting λ denote the vector of unconstrained dual multipliers for h(Y,Z) = 0, we
obtain the Lagrangian relaxation

L(λ) := min c̃TY e0 + λTh(Z, Y)

s.t. Y ei ∈ K̂ ∀ i = 0, 1, . . . , n(12)

Zei ∈ K̂ ∀ i = 1, . . . , n(13)

Y00 = 1.(14)

Note that we have added the constraint Y e0 ∈ K, which is redundant for (9) and (10)
but is included here in order to properly constrain the zeroth column of Y . It is now
clear that L(λ) is separable over the columns of Y and Z, and so to evaluate L(λ)
for any λ, we can simply solve 2n + 1 separate linear optimizations over K̂ (while
respecting the simple constraint Y00 = 1). Furthermore, from standard LP theory, we
know that the optimal value of

max
λ

L(λ)(15)

equals the optimal value of (1).
The semidefinite optimization (2) can be approached in a similar fashion, i.e.,

by introducing the auxiliary variable Z and then relaxing the linking constraints.
However, we must also introduce a dual multiplier S ∈ S1+n

+ for the constraint that
keeps Y positive semidefinite, which modifies the Lagrangian relaxation to read

L(λ, S) := min c̃TY e0 + λTh(Z, Y) − S • Y
s.t. (12)–(14),

so that the resulting Lagrangian optimization is

sup
λ,S

{
L(λ, S) | S ∈ S1+n

+

}
.(16)

It is well known that the dual SDP of (2) has an interior-point, i.e., it satisfies Slater’s
condition, which implies that there is no duality gap and that optimality is attained
in (2)—although optimality may not be attained in the dual of (2). As a result, it is
not difficult to see that the optimal value of (16) equals that of (2).

Theoretically, one can solve both (15) and (16) using a subgradient method. Our
initial experiments, however, indicated that convergence of subgradient methods was
sometimes slow. This motivated us to examine an augmented Lagrangian method,
which overall proved to be more robust while still allowing us to exploit the structure
inherent in (1) and (2). We discuss these issues in detail in sections 3 and 4.

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 731

3. The augmented Lagrangian method for linear conic programs. In
this section, we discuss the specialization of the augmented Lagrangian method—a
standard tool of nonlinear programming (NLP)—to the case of linear optimization
over linear and conic constraints, of which problems (1) and (2) are particular exam-
ples. More specifically, let C ⊆ R

q be a closed, convex cone, and let

X := {y ∈ R
q | Ey = f, y ∈ C}.(17)

We consider the following generic problem throughout this section:

min
{
cT y | Ay = b, y ∈ X

}
.(18)

Here, y ∈ R
q is the optimization variable and c ∈ R

q, A ∈ R
p×q, and b ∈ R

p are the
data. We assume that an optimal solution exists and denote the optimal value by v∗.

We acknowledge that initially it may seem counterintuitive to apply a NLP al-
gorithm to linear conic problems. In fact, we are aware of only two studies [35, 40],
which consider the augmented Lagrangian method in such a context, in particular for
C = R

q
+. In this section, however, besides laying the groundwork for the augmented

Lagrangian algorithm, we also hope to highlight the advantages of the method, which
when combined with several computational ideas discussed in section 4 make it a good
choice for optimizing (1) and (2).

3.1. The augmented Lagrangian method. The augmented Lagrangian method
can be seen as a combination of the standard subgradient and quadratic penalty meth-
ods. It is based on the following function, which is specified for fixed λ ∈ R

p and
σ > 0:

Lλ,σ(y) = cT y + λT (b−Ay) +
σ

2
‖b−Ay‖2

.(19)

The augmented Lagrangian method is then stated as Algorithm 1. Roughly speak-
ing, the augmented Lagrangian method runs the subgradient and quadratic penalty
methods at the same time by alternating between the update of λ and σ (typically
using some predefined update strategy, such as performing the nontrivial update of
σ every 10 iterations). Some of the main advantages of the augmented Lagrangian
algorithm over subgradient and penalty methods are that it yields both primal and
dual solutions, as well as dual bounds, for (18).

Algorithm 1 Augmented Lagrangian algorithm

Set λ1 = 0, σ1 = 1
for k = 1, 2, 3, . . . , do

Calculate some yk ∈ Argmin
{
Lλk,σk

(y) : y ∈ X
}

;
Calculate the subgradient dk = b−Ayk;
Choose either (αk = σk and ηk = 1) or (αk = 0 and ηk
 1);
Calculate λk+1 = λk + αkd

k and σk+1 = ηkσk.
end for

There are also some additional, less obvious advantages of the augmented La-
grangian method. First, an important feature of the augmented Lagrangian, in con-
trast with the subgradient method, is that there is a definitive choice of step-size αk

in each iteration. This choice is dictated by convergence results for augmented La-
grangian methods (see [6]) and also seems to work well in practice. Second, it is well

732 SAMUEL BURER AND DIETER VANDENBUSSCHE

known in the study of NLP that the introduction of explicit dual variables into the
quadratic penalty method tends to lessen the ill-conditioning encountered in penalty
methods. In particular, it can be proved that if the iterates λk are sufficiently close
to an optimal dual solution, then there is a finite value of σ that still guarantees
convergence [6].

In fact, in the specific case of (18), where X is given by (17), it is possible to show
a much stronger result, namely that Algorithm 1 converges even if σk is held constant
at an arbitrary initial value σ1 > 0. In order to state the result, we point out that
the dual of (18) can be written explicitly as

max
{
bTλ + fT η | ATλ + ET η + s = c, s ∈ C∗} ,(20)

where

C∗ :=
{
s ∈ R

q : sT y ≥ 0 ∀ y ∈ C
}

is the dual cone of C, η ∈ R
m is the dual variable associated with the constraint

Ey = f , and s ∈ R
q is the dual variable associated with the constraint x ∈ C. We

also make the following assumptions: A has full row rank, and both (18) and (20)
have Slater points, i.e., feasible points in the interior of C and C∗, respectively. In
addition, we let ηk and sk denote the optimal multipliers associated with Ey = f and
y ∈ C gotten from the solution of the kth augmented Lagrangian subproblem. The
result is the following theorem.

Theorem 3.1. Let X be given by (17), and suppose that Algorithm 1 is executed
so that σk = σ1 for all k ≥ 1, i.e., the dual multiplier is updated nontrivially in each
iteration. Then any accumulation point of the combined sequence {(yk, λk+1, ηk, sk)}
constitutes a primal-dual optimal pair of (18) and (20).

This result is proven by Poljak and Tret′jakov [35] for the specific case of C =
R

q
+, and the essence of their proof carries over to general C. Although it is not

difficult to extend the result based on their ideas, we include a proof in section 3.4
for completeness.

We finish this subsection with a few observations. First, Theorem 3.1 shows that
(1) and (2) can theoretically be solved without ever increasing σ, and computational
experiments support this. In practice, however, it still may be advantageous to in-
crease σ to moderate levels in order to facilitate convergence of the method, as we
demonstrate in section 4.

Second, even with the theoretical and practical benefits of augmented Lagrangian
methods, it is still important to keep in mind that the inner optimization over y ∈ X
in each iteration of the algorithm utilizes a convex quadratic objective, instead of a
linear one as in the subgradient method. In some applications, this is a disadvantage
of the augmented Lagrangian method that may preclude its use, but we will show
that, in the case of (1) and (2), the use of the augmented Lagrangian method is
indeed beneficial.

Third, in practice it is rarely the case that the inner minimization of Algorithm
1 is computed exactly. Nonetheless, convergence is typically observed in practice
even if yk is a “nearly” optimal solution [6]. This behavior will guide some of our
implementation decisions, which we describe in section 4.

3.2. Variations on the augmented Lagrangian method. Typically the aug-
mented Lagrangian method is stated in terms of handling difficult equality constraints,
such as the constraints Ay = b in (18). Although there exist variations which can

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 733

handle inequality constraints directly (see [34]), a standard approach for handling
inequalities is to simply add slack variables and then to revert to the equality case.
For example, consider the problem

min
{
cT y | Ay ≤ b, y ∈ X

}
.

By introducing the variable z ∈ R
p
+, we have the equivalent problem

min
{
cT y | Ay + z = b, (y, z) ∈ X × R

p
+

}
.

The augmented Lagrangian can now be applied directly to the second formulation.
Of course, the inner optimization of the augmented Lagrangian algorithm is now
slightly more complicated due to the addition of slack variables, but this complication
is usually worth the trouble.

Further extensions of this idea can also be considered. If Z ⊆ R
p is an arbitrary

set, a problem of the form

min
{
cT y | b−Ay ∈ Z, y ∈ X

}
can then be converted to

min
{
cT y : Ay + z = b, (y, z) ∈ X × Z

}
,

after which the augmented Lagrangian method can be applied. Here again, the sim-
plicity of the inner optimization over (y, z) ∈ X×Z is the key to the overall efficiency
of the augmented Lagrangian algorithm. In particular, convergence will be theoreti-
cally and practically more reliable if Z is convex.

3.3. Relationship with the bundle method. In section 3.1, we have pre-
sented the augmented Lagrangian algorithm as an alternative to the standard sub-
gradient algorithm. When the set X is convex, another well-known alternative to
the subgradient algorithm is the bundle method (see [29, 23]). Like the subgradient
method, the bundle method uses subgradient information to produce a sequence {λk}
of dual multipliers whose corresponding Lagrangian objective values converge to v∗.
However, the bundle method differs from the subgradient method in the precise way
that the subgradient information is used.

The bundle method is initialized with λ1 = 0 and, at the kth iteration, the
basic idea is to calculate λk+1 by solving an approximation of the Lagrangian dual
optimization

sup
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X

}
.(21)

More specifically, the bundle method assumes that a current best point λ̄ has been
calculated (note that λ̄ does not necessarily equal λk) and that a finite collection of
dual points {λj | j ∈ Jk} is available, for some finite index set Jk. For example, one
may take Jk = {1, . . . , k} so that the dual points correspond to the dual solutions λj

already produced by the algorithm in the first k − 1 iterations, though other choices
are possible. Defining X̃ := conv{yj : j ∈ Jk}, the approximation of (21) is then
given as

sup
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X̃

}
.(22)

734 SAMUEL BURER AND DIETER VANDENBUSSCHE

Generally speaking, the inner minimization of (22) (viewed as a function of λ) is
only considered a reliable approximation of the inner minimization of (21) for those λ
relatively close to λ̄. Hence, the next iterate λk+1 is not actually chosen as an optimal
solution of (22), but rather as an optimal solution of

max
λ∈Rp

min
{
cT y + λT (b−Ay) | y ∈ X̃

}
− ρ

2

∥∥λ− λ̄
∥∥2

,(23)

where ρ > 0 is a proximity parameter. In other words, (23) is similar to (22) ex-
cept that it penalizes points that are too far from the current best iterate λ̄, and the
parameter ρ controls the precise amount of penalization. Once λk+1 has been calcu-
lated, the bundle method calculates the value of the Lagrangian function at λk+1 and
decides whether or not λk+1 should become the new best iterate λ̄.

With this description of the bundle method, it is not difficult to see that the
bundle method’s procedure for computing λk+1 is similar to that of the augmented
Lagrangian algorithm. Indeed, (23) can be rearranged as

min

{
max
λ∈Rp

cT y + λT (b−Ay) − ρ

2

∥∥λ− λ̄
∥∥2 | y ∈ X̃

}
.(24)

Since the inner optimization of (24) is a concave maximization over λ ∈ R
p, its optimal

solution is given by λ̄ + ρ−1(b−Ay), which further simplifies (24) to

min

{
cT y + λ̄T (b−Ay) +

1

2ρ
‖ b−Ay‖2 | y ∈ X̃

}
.(25)

Letting σ = ρ−1, we now easily see that (25) is similar in form to the kth augmented
Lagrangian subproblem except that (25) approximates X by X̃. Next, once the bundle
method calculates an optimal solution yk of (25), λk+1 is calculated by the formula

λk+1 := λk + ρ−1
(
b−Ayk

)
,

which matches the update formula used by the augmented Lagrangian algorithm.
As described above, in addition to the approximation X̃ of X, the bundle method

differs from the augmented Lagrangian method in that it selectively keeps a current
best iterate λ̄ (which affects each stage of the algorithm), whereas the augmented
Lagrangian algorithm simply generates each λk in succession. It is further interesting
to note that the bundle method is known to converge for fixed ρ.

3.4. Proof of Theorem 3.1. In this subsection, we give the proof of Theorem
3.1, which has been stated in section 3.1. We remark that our proof is an extension
of the proof given in [35] for the case C = R

q
+.

The main idea of the theorem is that, when X is given by (17), the augmented
Lagrangian algorithm converges without ever increasing the penalty parameter σ. For
this, we consider the value σ > 0 to be fixed throughout the execution of Algorithm 1,
i.e., σk = σ for all k ≥ 1. Also recall the following assumptions: A has full row rank,
and (18) and (20) have Slater points. We will investigate three sequences produced
by the algorithm:

(i) the sequence {yk} of primal estimates;
(ii) the shifted sequence {λk+1} of dual multipliers; note that λk+1 is calculated

as a result of the kth augmented Lagrangian subproblem;
(iii) the sequence {(ηk, sk)} of optimal multipliers for the constraints Ey = f and

y ∈ C in the sequence of augmented Lagrangian subproblems.

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 735

Because (18) and (20) each have a Slater point, strong duality holds and there
exists a primal-dual solution (y, λ, η, s) that satisfies sT y = 0. The kth augmented
Lagrangian problem (with fixed σ) is

min
{
cT y + (λk)T (b−Ay) +

σ

2
‖b−Ay‖2 | Ey = f, y ∈ C

}
,(26)

and its dual (see [16] for QP duality in the case of R
q
+) can be stated as

max bTλk + fT η +
σ

2

(
bT b− vTATAv

)
(27)

s.t. AT
(
λk + σ(b−Av)

)
+ ET η + s = c

s ∈ C∗.

Since (18) has a Slater point, so does (26). Furthermore, since A has full row rank, we
can use a Slater point from (20) to construct such a point for (27). As a result, strong
duality also holds between (26) and (27), and there exists a primal-dual solution
(y, v, η, s) such that v = y and sT y = 0.

We first show that Ayk → b via two lemmas and a proposition.
Lemma 3.2. Let λ̄ and λ̂ be arbitrary multipliers for Ax = b, and let ȳ and ŷ be

optimal solutions of the corresponding augmented Lagrangian subproblems. Then

(
λ̄− λ̂

)T

(Aȳ −Aŷ) ≥ σ‖Aȳ −Aŷ‖2.

Proof. Optimality of ȳ with respect to λ̄ implies

(c−AT (λ̄ + σ(b−Aȳ)))T (y − ȳ) ≥ 0

for all y such that Ey = f, y ∈ C. Likewise, for ŷ and λ̂:

(c−AT (λ̂ + σ(b−Aŷ)))T (y − ŷ) ≥ 0.

Applying these results with y = ŷ and y = ȳ, respectively, summing the two resultant
inequalities, and rearranging terms, we achieve the result.

Lemma 3.3. Let (λ∗, η∗, s∗) be an optimal solution of (20). Then any y ∈ X is
optimal for the augmented Lagrangian subproblem corresponding to λ∗ if and only if
y is optimal for (18).

Proof. Using dual feasibility, we have that

cT y + (λ∗)T (b−Ay) +
σ

2
‖b−Ay‖2

= (λ∗)T b + fT η∗ + (s∗)T y +
σ

2
‖b−Ay‖2

.

Hence, ignoring the constant terms bTλ∗ + fT η∗, the minimum value attainable by
the augmented Lagrangian function is clearly bounded below by 0. Moreover, 0 is
attained if and only if (s∗)T y = 0 and Ay = b, which proves the result.

Proposition 3.4. The sequence {Ayk} converges to b.
Proof. Let (λ∗, η∗, s∗) be any optimal solution of (20), and let y∗ be any optimal

solution of (18). For all k ≥ 1,

‖λk+1 − λ∗‖2 = ‖λk − λ∗‖2 + 2σ(b−Ayk)T (λk − λ∗) + σ2‖b−Ayk‖2

≤ ‖λk − λ∗‖2 − 2σ2‖Ay∗ −Ayk‖2 + σ2‖b−Ayk‖2

= ‖λk − λ∗‖2 − σ2‖b−Ayk‖2 (by Lemmas 3.2 and 3.3).

736 SAMUEL BURER AND DIETER VANDENBUSSCHE

For arbitrary N , summing this inequality for k = 1, . . . , N , we have

0 ≤
N∑

k=1

(
‖λk − λ∗‖2 − σ2‖b−Ayk‖2 − ‖λk+1 − λ∗‖2

)

= ‖λ1 − λ∗‖2 − ‖λN+1 − λ∗‖2 − σ2
N∑

k=1

‖b−Ayk‖2,

which implies σ2
∑N

k=1 ‖b−Ayk‖2 ≤ ‖λ1 − λ∗‖2. Hence, because N is arbitrary, Ayk

must converge to b.
Now, with Proposition 3.4 and an additional lemma, we prove Theorem 3.1.
Lemma 3.5. For all k ≥ 1, yk and (λk+1, ηk, sk) are primal-dual optimal solutions

of

min
{
cT y | Ay = Ayk, Ey = f, y ∈ C

}
,(28)

max
{
(Ayk)Tλ + fT η | ATλ + ET η + s = c, s ∈ C∗} .(29)

Proof. Clearly, yk is feasible for (28). Moreover, strong duality between (26) and
(27) implies that (λk, ηk, sk) is feasible for (27) such that (sk)T yk = 0. Combining this
with the definition λk+1 := λk + σ(b− Ayk), we see that (λk+1, ηk, sk) is feasible for
(29) and that strong duality holds between (28) and (29). This proves the result.

Proof of Theorem 3.1. By Lemma 3.5, for each k ≥ 1, (yk, λk+1, ηk, sk) is a
solution of the nonlinear system

Ay = Ayk, Ey = f, y ∈ C

ATλ + ET η + s = c, s ∈ C∗

yT s = 0.

By continuity, any accumulation point (ȳ, λ̄, η̄, s̄) of {(yk, λk+1, ηk, sk)} satisfies the
above system with Ayk replaced by its limit b (due to Proposition 3.4). In other
words, (ȳ, λ̄, η̄, s̄) is a primal-dual optimal solution for (18) and (20).

4. Computational issues and results. In this section, we discuss the imple-
mentation details of the augmented Lagrangian algorithm used to solve (1) and (2).
We then demonstrate the effectiveness of this approach on various problem classes and
also illustrate advantages of the augmented Lagrangian approach over other methods.

4.1. Optimizing over N(K) and N+(K). We have suggested in section 2
that one could consider a purely Lagrangian approach for solving the linear relaxation
(1) since the calculation of L(λ) is separable into 2n + 1 LPs over the columns of
the variables Y and Z. We have argued in section 3, however, that the augmented
Lagrangian method has several advantages over the Lagrangian approach. In the case
of (1), the kth augmented Lagrangian subproblem can be stated as

min c̃TY e0 + (λk)Th(Z, Y) +
σk

2
‖h(Z, Y)‖2(30)

s.t. Y ei ∈ K̂ ∀ i = 0, 1, . . . , n(31)

Zei ∈ K̂ ∀ i = 1, . . . , n(32)

Y00 = 1.(33)

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 737

An important observation is that, in contrast with L(λ), (30)–(33) is a nonseparable
convex QP. More precisely, the quadratic term in the objective (30) is the sole cause
of the nonseparability.

Even with this complication, we still advocate the use of the augmented La-
grangian method. To exploit the structure inherent in the constraints (31)–(33), we
propose to employ block coordinate descent for solving the subproblem, iteratively
taking a descent step over a particular column of Y or Z, while keeping all other
columns fixed. Block coordinate descent is known to be a convergent method; see
Proposition 2.7.1 in [6].

When the amount of coupling between the blocks is small, block coordinate de-
scent can be expected to converge quickly. One can observe that, because of the
particular structure of h(Y,Z), the amount of coupling between the columns of Y and
Z is relatively small. In particular, the greatest amount of coupling is between Y ei,
Zei, and Y e0 for i = 1, . . . , n. As a result, we expect block coordinate descent to be
a good choice for optimizing (30)–(33).

For optimizing over N+(K), we also advocate the augmented Lagrangian method,
but at first glance, it is not clear how to handle the constraint that Y be positive
semidefinite. This constraint is difficult not only because it involves positive semidef-
initeness but also because it links the columns of Y . To handle this constraint, we
follow the suggestions laid out in section 3.2. In particular, we introduce an “excess”
variable U , which is required to be symmetric positive semidefinite and must also
satisfy U = Y , and simultaneously drop the positive semidefiniteness constraint on
Y . After introducing a symmetric matrix S of Lagrange multipliers for the constraint
U = Y , the resulting kth augmented Lagrangian subproblem becomes

min c̃TY e0 + (λk)Th(Z, Y) +
σk

2
‖h(Y,Z)‖2 + Sk • (U − Y) +

σk

2
‖U − Y ‖2

F

s.t. (31)–(33), U � 0.

Again we propose to solve this problem using block coordinate descent. For
example, we first fix U and solve a series of QPs as we did in the case (30)–(33), one
for each column of Y and Z. We then proceed by fixing Y and Z and solving the
subproblem over U , which is equivalent to

min
{
2σ−1

k Sk • (U − Y) + ‖U − Y ‖2
F | U � 0

}
.

By completing the square, we see that

2σ−1
k Sk • (U − Y) + ‖U − Y ‖2

F = ‖σ−1
k Sk + (U − Y)‖2

F − σ−2
k Sk • Sk,

so that the above minimization is equivalent to solving

min
{∥∥σ−1

k Sk + (U − Y)
∥∥2

F
| U � 0

}
,

which in turn is solved explicitly by projecting Y −σ−1
k Sk onto the cone of symmetric

positive semidefinite matrices.
It is well known that calculating the projection M+ of a symmetric matrix M

onto the cone of symmetric positive semidefinite matrices can be done by calculating
the spectral decomposition M = QDQT and then forming the matrix M+ = QD+Q

T ,
where D+ is derived from D by replacing all negative diagonal entries with 0. How-
ever, in our case, the matrix that we project, M = Y − σ−1

k Sk, is not symmetric.

738 SAMUEL BURER AND DIETER VANDENBUSSCHE

Table 1

Number of variables and constraints in the descriptions of N(K) and N+(K) that serve as
the basis of the augmented Lagrangian algorithm. Note that m represents the number of linear
constraints (including lower and upper bounds) present in K̂.

Variables Constraints
Linear Linear SDP

Y, Z U enforced relaxed

N(K) (2n + 1)(n + 1) 0 1 + (2n + 1)m n
(
3
2
n + 5

2

)
0

N+(K) (2n + 1)(n + 1) 1
2
(n + 1)(n + 2) 1 + (2n + 1)m n

(
3
2
n + 5

2

)
+ (n + 1)2 1

Nevertheless, by using the identity

‖U −M‖2
F =

∥∥∥∥U − 1

2
(M + MT) − 1

2
(M −MT)

∥∥∥∥
2

F

=

∥∥∥∥U − 1

2
(M + MT)

∥∥∥∥
2

F

−
(
U − 1

2
(M + MT)

)
•
(
M −MT

)
+

1

4

∥∥M −MT
∥∥2

F

=

∥∥∥∥U − 1

2
(M + MT)

∥∥∥∥
2

F

+
1

4

∥∥M −MT
∥∥2

F
,

where the final equality follows from the fact that the dot product of a symmetric
matrix and a skew-symmetric matrix is zero, we can easily see that the projection of
M is equal to the projection of (M + MT)/2, which is itself symmetric.

Note that since S is the dual multiplier for the equality U = Y , it is unrestricted.
However, from basic duality, it is not difficult to see that S will be constrained to
be positive semidefinite in the dual problem. An illustration of this is as follows.
Consider the generic SDP

min {C • Y | A(Y) = b, Y − U = 0, U � 0} ,

which has the dual SDP

max
{
bT y | A∗(y) + S = C, −S 0

}
;

here, A is a generic linear operator and A∗ its adjoint. Thus, without loss of generality,
we may restrict each Sk to be positive semidefinite, enforcing this by projection after
each dual update.

Before moving onto the description of the specifics of the implementation in the
next subsection, we would like to give some sense of the actual size of the LPs and
SDPs that we are proposing to solve with the augmented Lagrangian method. This
is given in Table 1. In the table, the quantity m represents the number of linear
constraints (including lower and upper bounds) present in K̂.

4.2. Implementation details. The augmented Lagrangian algorithm for (1)
and (2) has been implemented in ANSI C under the Linux operating system on a
Pentium 4 having a 2.4 GHz processor and 1 GB of RAM. The pivoting algorithm of
CPLEX 8.1 for convex QP [21] has been employed for solving the 2n + 1 quadratic
subproblems encountered during block coordinate descent, and LAPACK [1] has been
utilized for the spectral decompositions required when projecting onto the positive
semidefinite cone.

The choice of a pivoting algorithm for the quadratic subproblems—as opposed to
an interior-point algorithm—was motivated by the warm-start capabilities of pivoting

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 739

algorithms. In particular, it is not difficult to see that the objective functions of the
2n+ 1 quadratic subproblems change only slightly between loops of block coordinate
descent or between iterations of the augmented Lagrangian algorithm. As a result, the
ability to warm-start from an advance basis has proven to be invaluable for speeding
up the overall algorithm.

Although Theorem 3.1 indicates that it is theoretically not necessary to increase
the penalty parameter σ during the course of the algorithm, we have found that it is
indeed advantageous to increase σ in order to enhance convergence. Our update rule
is as follows:

Penalty update rule. Every 500 iterations, σ is increased by a factor
of 10.

We consider this to be a fairly conservative update rule.

Practically speaking, during the course of the algorithm, one can expect the norm
of the constraint violation—‖h(Y k, Zk)‖ in the case of (1) and (‖h(Y k, Zk)‖2 +‖Y k−
Uk‖2

F)1/2 in the case of (2)—to decrease towards 0, which is an indication that the
algorithm is converging. As a result, we implement the following overall stopping
criterion:

Stopping criterion. The augmented Lagrangian algorithm is termi-
nated once primal iterates are calculated such that the corresponding
constraint violation is less than 10−6.

We remark that, during early experiments on a handful of instances, this criterion
was not achieved due to numerical difficulties caused by a large value of σ—typically
around 108 or higher. As a result, we have also implemented the following:

Alternate stopping criterion. The augmented Lagrangian algorithm
is terminated once σ grows larger than 108.

Another implementation detail is how accurately the augmented subproblem is
solved in each iteration. Recall from section 3 that it is not theoretically necessary
to solve each subproblem exactly, and in fact, we have found in practice that it often
suffices to solve them fairly loosely. In the computational results presented in section
4.4, our goal is to highlight the quality and speed of dual bounds provided by (1) and
(2), rather than to calculate optimal solutions of high precision. In light of this goal,
we decided to “solve” each augmented Lagrangian subproblem by performing exactly
one cycle of block coordinate descent.

4.3. Problems. We have chosen four classes of 0-1 integer programs to illustrate
the performance of the augmented Lagrangian algorithm.

4.3.1. Maximum stable set. Given an undirected, simple graph G with vertex
set V = {1, . . . , n} and edge set E ⊆ V × V , the (unweighted) maximum stable set
problem is

max
{
eTx | xi + xj ≤ 1, (i, j) ∈ E, x ∈ {0, 1}n

}
.

As mentioned in section 2, the maximum stable set problem has been studied exten-
sively by Lovász and Schrijver, and a number of theoretical results are known which
illustrate the strength of (1) and (2).

740 SAMUEL BURER AND DIETER VANDENBUSSCHE

We have collected a total of 26 graphs for testing; a basic description of these
problems can be seen in Table 4. All graphs were obtained from the Center for Discrete
Mathematics and Theoretical Computer Science [15] and originated as test instances
for the maximum clique problem in the Second DIMACS Implementation Challenge.
As such, we actually use the complement graphs as instances of the maximum stable
set problem.

4.3.2. Problem of Erdös and Turán. We consider a 0-1 integer programming
formulation of a problem studied by Erdös and Turán: calculate the maximum size
of a subset of numbers in {1, . . . , n} such that no three numbers are in arithmetic
progression. This number is the optimal value of

max
{
eTx | xi + xj + xk ≤ 2, i + k = 2j, i < j < k, x ∈ {0, 1}n

}
.

For a full discussion, we refer the reader to [14], which includes background on the
problem as well as some active set approaches for approximately optimizing (2) in this
case. In the computational results, we consider 10 instances for n = 60, 70, . . . , 150. It
is interesting to note that the number of constraints in N(K) and N+(K) for n = 150
is approximately 1.7 million.

4.3.3. Market share. The market share instances from MIPLIB [33], mark-
share1 and markshare2, have proven to be very small yet challenging instances of
mixed integer programs. They are not pure binary integer programs, so one cannot
apply the lift-and-project operator directly. It is easy, however, to generate very sim-
ilar problems using only 0-1 variables. We first generate an m× n matrix, A, exactly
as is done for the market share instances (see [13]). We also define the vector b by
bi = � 1

2

∑n
j=1 Aij� for each i = 1, . . . ,m. The resulting IP is

min

m∑
i=1

⎛
⎝bi −

n∑
j=1

Aijxj

⎞
⎠

Ax ≤ b

x ∈ {0, 1}n.

We generated two instances of these problems of the same sizes as markshare1 (6×50)
and markshare2 (7 × 60).

4.3.4. Quadratic assignment. Besides 0-1 linear integer programs, the lift-
and-project relaxations provided by Lovász and Schrijver can easily be applied to 0-1
QPs with linear constraints. A quadratic objective xTQx in the original problem
becomes the linear objective

(
0 0
0 Q

)
• Y

in the lifted problem. Using this technique, we can also consider the quadratic as-
signment problem (QAP), which is a problem of this type arising in location theory.

Because of its difficulty, QAP has attracted a large amount of attention and
study; see [36, 10] and the recent survey by Anstreicher [2]. One of the most common
forms of the QAP is the Koopmans–Beckmann form: given an integer p and matrices

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 741

A,B ∈ R
p×p, the QAP is

min

p∑
i=1

p∑
j=1

p∑
k=1

p∑
l=1

aijbklxikxjl

s.t.

p∑
i=1

xik = 1 ∀ k = 1, . . . , p

p∑
k=1

xik = 1 ∀ i = 1, . . . , p

xik ∈ {0, 1} ∀ i, k = 1, . . . , p.

We have taken 91 test instances from QAPLIB, and all instances in QAPLIB are in
Koopmans–Beckmann form.

In the effort to solve QAP to optimality, a variety of dual bounds have been
developed for QAP. In particular, we will compare with three bounds from the litera-
ture: (i) the Gilmore–Lawler bound (denoted GLB) [17, 28]; the LP bound (denoted
KCCEB) found in [22]; and the semidefinite programming bound (denoted RSB) of
Rendl and Sotirov [37]. It is known that KCCEB is stronger than GLB, and it has
been observed that RSB is stronger than KCCEB. As one might expect, however,
RSB requires the most time to compute, while GLB takes the least.

The bound KCCEB is based on the first-level reformulation-linearization tech-
nique of Sherali and Adams [38] applied to QAP. It is not difficult to see that this
relaxation is equivalent to (1), and so the bound provided by (1) and KCCEB are
theoretically equal, although slight differences are observed in practice due to compu-
tational differences such as the level of precision to which the relaxation is solved.

The derivation of RSB is based on similar lift-and-project ideas as (2). How-
ever, RSB selectively includes certain constraints that are implied by N+(K), while
adding in additional constraints that are not implied by N+(K) (at least not implied
explicitly). It is currently unclear whether one bound is theoretically stronger than
the other, although our computational results in the next subsection show that the
Lovász–Schrijver bound is stronger than RSB on all test instances.

One additional comment regarding QAP is in order. Since QAP has equality
constraints and upper bounds on the variables are redundant, it is possible to show
that the constraints (7) of (1) and (2) are implied by (6). As a result, in this instance
it is unnecessary to introduce the variable Z, which has the benefit of reducing the
number of quadratic subproblems in the block coordinate descent from 2n+1 to n+1.
We have implemented these savings in the code and remark that the calculation of
KCCEB has taken this into account as well.

4.4. Results. We first provide a comparison of our implementation with existing
methods on a few problems selected from our test instances. We feel that these
comparisons provide a fair indication of the advantages of our method in terms of
both bound quality and computation time. Next, we provide detailed information on
the performance of our method on the four problem classes discussed above.

4.4.1. Comparison with linear and semidefinite solvers. We directly solved
some instances of (1), i.e., optimization over N(K), using the dual simplex LP al-
gorithm of CPLEX 8.1 [21] (with both default pricing and steepest-edge pricing),
enforcing a time limit of 15,000 seconds. We show these results in Table 2 together
with the running times and bounds obtained by the augmented Lagrangian approach

742 SAMUEL BURER AND DIETER VANDENBUSSCHE

Table 2

Comparisons of bounds achieved for optimization over N(K) by CPLEX 8.1 dual simplex (with
default and steepest-edge pricing) and the augmented Lagrangian method. Timings (in seconds) are
also given. When prefixed to a timing, the symbol (�) indicates that the algorithm did not terminate
within the 15, 000 seconds allotted.

Bound Time(s)
CPLEX Auglag CPLEX Auglag

Name Default Steep Default Steep
MANN a9 18.0000 18.0000 18.0000 3 5 5
johnson8-2-4 9.3333 9.3333 9.3333 0 0 6
johnson8-4-4 23.3333 23.3333 23.3333 88 85 90
hamming6-2 32.0000 32.0000 32.0000 11 10 11
hamming6-4 21.3333 21.3333 21.3334 12 12 134
johnson16-2-4 40.0000 40.0000 40.0001 1,505 1,521 763
keller4 57.0000 57.0000 57.0001 4,745 5,059 4,910
hamming8-2 128.9971 128.9971 128.0000 � 15,000 � 15,000 640
san200 09 1 86.3989 82.3446 70.1613 � 15,000 � 15,000 4,840
san200 09 2 83.7750 87.7951 66.6667 � 15,000 � 15,000 3,484
san200 09 3 80.4699 83.8000 66.6678 � 15,000 � 15,000 2,538

Erdös–Turán (n = 60) 34.2857 34.2857 34.6688 4,126 2,421 354
Erdös–Turán (n = 70) 40.0000 40.0000 40.7446 � 15,000 14,119 778
Erdös–Turán (n = 80) 46.5922 46.4502 46.7352 � 15,000 � 15,000 1,686
Erdös–Turán (n = 90) 54.5405 54.1181 53.0720 � 15,000 � 15,000 2,550
Erdös–Turán (n = 100) 63.8962 63.4383 59.6474 � 15,000 � 15,000 2,810

applied to (1). Note that we include both stable set and Erdös–Turán instances and
that the instances are ordered roughly in terms of increasing size. We were unable to
solve larger, denser instances with CPLEX as these required more than the available
memory. For very large problems, these results clearly indicate the ability of our
method to obtain bounds for N(K) in much less time than is required by standard
LP solvers.

We also attempted to carry out some optimizations of N+(K) using standard
semidefinite solvers, such as CSDP developed by Borchers [8], but found that all but
the smallest of instances would require more than the 1 GB of available memory on
our computer.

4.4.2. Comparison with subgradient methods. We implemented a subgra-
dient approach for optimizing over N(K) using the volume algorithm developed in
[5], for which an open source framework is available from the COIN-OR repository
[31]. We found that this subgradient implementation in the current context was sen-
sitive to the choice of initial dual multipliers. Consequently, some experimentation
was required to settle upon appropriate starting duals. In particular, we found that
starting duals of all −1’s performed much better than all 0’s.

In Table 3, we compare the subgradient algorithm and our augmented Lagrangian
algorithm initialized with the same starting duals. We report not only the final
bound and total running time for both algorithms but also the time at which one
algorithm surpasses the best bound of the other. For example, on the brock200 1
instance, in 2,052 seconds the augmented Lagrangian algorithm achieved the same
bound that the subgradient algorithm achieved after 8,603 seconds. A quick summary
of Table 3 is that the subgradient algorithm outperforms augmented Lagrangian on
the Erdös–Turán instances, whereas augmented Lagrangian outperforms subgradient
on the stable set instances.

We found that increasing the number of cycles of coordinate descent (recall that
we use only one cycle in all computations in this paper) improved the convergence

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 743

Table 3

Comparisons of bounds achieved for optimization over N(K) by the subgradient method and
the augmented Lagrangian method, along with timings (in seconds). Also shown is the time at which
one algorithm surpassed the best bound of the other.

Bound Time(s) Surpass Time(s)
Instance Subgrad Auglag Subgrad Auglag Subgrad Auglag

MANN a9 18.0098 18.0000 11 8 8
brock200 1 69.3607 66.6668 8,603 6,175 2,052
brock200 2 68.1062 66.6667 18,672 13,951 5,607
brock200 3 68.8632 66.6667 13,420 9,773 3,801
brock200 4 68.0411 66.6668 9,136 8,378 3,596
c-fat200-1 66.7608 66.6668 22,995 26,652 14,295
c-fat200-2 66.8576 66.6668 27,681 23,859 12,090
c-fat200-5 67.5605 66.6672 28,285 15,937 7,103
hamming6-2 32.0119 32.0000 31 20 20
hamming6-4 21.3543 21.3334 212 155 103
hamming8-2 128.0129 128.0000 2,407 1,118 1,065
hamming8-4 86.8582 85.3333 41,376 22,398 8,219
johnson16-2-4 40.0239 40.0003 972 684 522
johnson8-2-4 9.3875 9.3333 12 7 5
johnson8-4-4 23.3814 23.3333 177 98 69
keller4 57.8079 57.0001 5,275 4,960 1,865
p hat300-1 102.1317 100.0013 198,263 98,646 35,030
p hat300-2 102.7619 100.0036 129,663 61,445 17,471
p hat300-3 102.8840 100.0016 64,609 26,660 7,005
san200 07 1 72.2302 66.6667 12,224 7,550 2,054
san200 07 2 66.9081 66.6670 72,026 7,306 3,846
san200 09 1 70.0103 70.2033 14,733 4,746 11,193
san200 09 2 66.9371 66.6667 33,923 3,462 1,363
san200 09 3 66.9232 66.6668 31,469 2,528 1,353
sanr200 0 7 69.7920 66.6667 14,061 7,920 2,695
sanr200 0 9 66.8795 66.6667 32,368 3,459 1,410

Erdös–Turán (n = 60) 34.3553 37.5214 508 863 123
Erdös–Turán (n = 70) 40.1841 43.9156 589 1,591 202
Erdös–Turán (n = 80) 45.9178 49.3888 1,468 3,052 488
Erdös–Turán (n = 90) 51.5557 57.4332 2,169 3,927 714
Erdös–Turán (n = 100) 57.3410 62.7492 3,273 5,458 1,312
Erdös–Turán (n = 110) 63.1194 67.4054 5,858 9,752 2,337
Erdös–Turán (n = 120) 68.7601 71.9690 7,066 16,852 3,629
Erdös–Turán (n = 130) 74.5256 79.6999 14,909 19,356 6,113
Erdös–Turán (n = 140) 80.1107 88.7548 18,311 35,119 6,833
Erdös–Turán (n = 150) 85.9341 96.5941 24,155 85,492 8,078

of the augmented Lagrangian algorithm on the Erdös–Turán instances. However, the
resultant timings were still not competitive with the subgradient algorithm on these
instances. We remark that such convergence issues were much less prevalent in the
semidefinite computation using augmented Lagrangian, as Table 5 will demonstrate.

We also experimented with our own implementation of a subgradient method
to optimize over N+(K) but found that standard stepsize strategies for subgradient
methods did not seem appropriate for the positive semidefinite multiplier S. Conse-
quently, convergence was difficult to achieve in this case.

4.4.3. Maximum stable set. In Table 4, we give the dual bounds obtained
by the augmented Lagrangian algorithm for the maximum stable set instances. The
bounds and times (in seconds) to achieve those bounds are listed under N for (1) and
N+ for (2). When prefixed to the bound, the symbol (‡) indicates that the alternate
stopping criterion for our method was enforced, i.e., σ had grown too large before
primal feasibility had been obtained.

744 SAMUEL BURER AND DIETER VANDENBUSSCHE

Table 4

Results on the maximum stable set problem, comparing bounds achieved by the N and N+

procedures. Timings (in seconds) are also given. When prefixed to the bound, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Bound Time(s)
Name |V | |E| α ϑ+ ϑ N N+ N — N+

brock200 1 200 5066 21 27.2 27.5 66.6668 27.9874 5,119 28,590
brock200 2 200 10024 12 14.2 66.6671 ‡ 17.0805 11,174 67,302
brock200 3 200 7852 15 18.8 66.6670 ‡ 20.7928 8,674 51,665
brock200 4 200 6811 17 21.1 21.3 66.6681 22.8004 6,765 43,433
c-fat200-1 200 18366 12 12.0 12.0 66.6667 ‡ 14.9735 18,125 126,103
c-fat200-2 200 16665 24 24.0 24.0 66.6686 24.0877 13,861 83,691
c-fat200-5 200 11427 58 60.3 66.6671 58.1798 16,774 44,483
hamming6-2 64 192 32 32.0 32.0 32.0000 32.0000 11 15
hamming6-4 64 1312 4 4.0 5.3 21.3334 ‡ 4.5460 134 1,416
hamming8-2 256 1024 128 128.0 128.0 128.0000 128.0001 640 728
hamming8-4 256 11776 16 16.0 16.0 85.3340 ‡ 20.5442 21,723 90,169
johnson8-2-4 28 168 4 4.0 4.0 9.3333 4.0052 6 59
johnson8-4-4 70 560 14 14.0 14.0 23.3333 14.0076 90 479
johnson16-2-4 120 1680 8 8.0 8.0 40.0001 ‡ 10.2637 763 3,140
keller4 171 5100 11 13.5 14.0 57.0001 ‡ 15.4119 4,910 19,319
MANN-a9 45 72 16 17.5 18.0000 17.1790 5 50
p hat300-1 300 33917 8 10.0 10.1 100.0003 ‡ 18.6697 129,437 322,287
p hat300-2 300 22922 25 27.0 100.0004 ‡ 30.1066 83,142 244,428
p hat300-3 300 11460 36 41.2 100.0008 43.3282 33,554 101,995
san200 07 1 200 5970 30 30.0 30.0 66.6672 30.7071 7,995 31,049
san200 07 2 200 5970 18 18.0 18.0 66.6670 ‡ 20.0176 7,710 37,102
san200 09 1 200 1990 70 70.0 70.0 70.1613 70.5464 4,840 6,947
san200 09 2 200 1990 60 60.0 60.0 66.6667 60.7250 3,484 6,977
san200 09 3 200 1990 44 44.0 44.0 66.6678 44.4080 2,538 12,281
sanr200 07 200 6032 18 23.6 23.8 66.6672 24.9716 7,946 36,576
sanr200 09 200 2037 42 49.3 66.6667 49.3156 3,335 9,428

In order to gauge the quality of the bounds in Table 4, we also include the size
α of the maximum stable set (either obtained from the literature or computed using
the IP solver of CPLEX) as well as the Lovász ϑ number of the graph (obtained
by the algorithm of Burer and Monteiro [9]) and Schrijver’s strengthening ϑ+ of ϑ
(obtained from Kim Toh (personal communication)). Note that the value of ϑ+ was
not available for all instances. The numbers ϑ and ϑ+ are polynomial-time computable
upper bounds on α, which are obtained by solving two related semidefinite programs.
Theoretically, the N+ bound is at least as strong as ϑ+, which is at least as strong
as ϑ, but computationally, ϑ takes less time to compute than ϑ+, which in turn takes
much less time than the N+ bound (a reasonable estimate is roughly one order of
magnitude less).

The results indicate that, at least on the majority of problems in this sample of
graphs, the computed N+ bound is significantly tighter than the computed N bound.
Moreover, it is a real challenge for the augmented Lagrangian algorithm to optimize
the N+ bound fully, which is evidenced by the fact that the computed value for
the N+ bound is actually higher than ϑ on most instances. This demonstrates the
possibility for further improvement of our optimization technique, perhaps by more
sophisticated guidelines for choosing the number of cycles of block coordinate descent
or for updating σ.

Nevertheless, we stress that our overall intention is to show that (1) and (2) can
be (approximately) solved for general 0-1 integer programs. Accordingly, Table 4
serves to demonstrate that, given a specific problem (such as the stable set problem),

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 745

Table 5

Results on the problem of Erdös and Turán, comparing bounds achieved by the N and N+

procedures. Timings (in seconds) are also given. Lower and upper bounds (LB and UB) were
achieved by running the IP solver of CPLEX 8.1 for at most 15, 000 seconds.

Bound Time(s)
n LB UB N N+ N N+

60 19 19 34.6688 31.4183 354 653
70 20 20 40.7446 36.6120 778 1,062
80 22 27 46.7352 41.6060 1,686 1,676
90 24 32 53.0720 46.5339 2,550 3,164

100 25 37 59.6474 51.8541 2,810 4,295
110 27 44 65.8540 57.0635 5,387 6,773
120 30 48 71.1935 62.1836 10,932 9,659
130 32 55 77.2897 67.2867 11,023 13,459
140 32 60 82.9586 72.3553 21,164 18,239
150 32 66 89.5872 77.2238 34,180 23,450

our method allows one to compute the N and N+ bounds and hence to evaluate their
quality.

4.4.4. Problem of Erdös and Turán. Table 5 lists the results of our algorithm
on the Erdös–Turán instances, and the details of the table are the same as for Table
4. In order to assess the quality of the computed N and N+ bounds, we ran CPLEX’s
IP solver on each instance for at most 15,000 seconds and report the best lower bound
(LB) and best upper bound (UB) achieved.

Three things are interesting to note. First, the N+ bounds are a significant
improvement over the bounds reported by Dash [14] (for example, Dash gives a bound
of 87.6 for n = 150). Second, the times for computing the N and N+ bounds are not
dramatically different from one another, and in fact, on some of the largest problems,
the N+ bound actually takes less time to compute. Third, the upper bound calculated
by CPLEX’s IP solver (after 15,000 seconds) is significantly tighter than the computed
N and N+ bounds, which puts into perspective the time dedicated to calculating N
and N+. Even still, as with the stable set instances in the previous subsection, the
results demonstrate that the augmented Lagrangian greatly improves our capabilities
for actually computing the Lovász–Schrijver bounds.

4.4.5. Market share. Besides solving both the N and N+ relaxations of our
market share instances, we also ran the default CPLEX IP solver for 15,000 on each in-
stance in order to obtain lower and upper bounds. The results appear in the following
table (recall that these are minimization problems).

Bound Time(s)
Instance lb ub N N+ N N+

Markshare1 (6 × 50) 0 3 0.0000 0.0000 20 17
Markshare2 (7 × 60) 0 11 0.0000 0.0000 37 31

Since the problems are quite small, optimizing over N and N+ is done very quickly.
However, neither relaxation improves on the basic LP bound of 0. This demonstrates
that lift-and-project operators are not always able to strengthen the LP relaxation of
an IP.

4.4.6. Quadratic assignment. Tables 6 and 7 list our results on the quadratic
assignment instances, and the details of the table are similar to Table 4, except for

746 SAMUEL BURER AND DIETER VANDENBUSSCHE

Table 6

Results on the quadratic assignment problem (I), comparing gaps achieved by three previous
bounding techniques and the two techniques of this paper, N and N+. Timings (in seconds) for N
and N+ are also given. Gaps are calculated with respect to the feasible value listed, which is known
to be optimal unless the symbol (†) is prefixed. When prefixed to the gap, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Gap (%) Time(s)
Name Feas Val GLB KCCEB RSB N N+ N N+

bur026a 5,426,670 2.05 1.29 1.19 0.19 17,929 60,397
bur026b 3,817,852 2.70 1.69 1.57 0.22 18,248 53,749
bur026c 5,426,795 2.11 1.21 1.08 0.18 17,932 67,918
bur026d 3,821,225 2.87 1.64 1.51 0.21 18,064 69,804
bur026e 5,386,879 1.48 0.97 0.86 ‡ 0.20 18,530 71,917
bur026f 3,782,044 1.99 1.27 1.14 0.10 18,195 78,748
bur026g 10,117,172 1.37 0.61 0.51 0.15 19,214 73,082
bur026h 7,098,658 1.77 0.75 0.63 0.09 18,385 70,939
chr012a 9,552 24.15 1.09 0.00 0.00 330 352
chr012b 9,742 26.65 0.00 0.00 0.00 293 363
chr012c 11,156 28.50 4.28 0.00 0.00 376 410
chr015a 9,896 43.16 11.65 4.35 0.14 1,415 1,461
chr015b 7,990 41.76 11.94 0.01 0.00 1,467 1,140
chr015c 9,504 35.13 3.80 0.00 0.00 901 1,188
chr018a 11,098 38.92 9.56 3.28 0.00 3,357 3,947
chr018b 1,534 0.00 0.00 0.00 0.13 1,277 6,239
chr020a 2,192 1.92 1.19 1.00 0.18 3,878 6,307
chr020b 2,298 4.44 1.70 0.87 0.13 4,030 9,778
chr020c 14,142 39.18 7.68 0.05 0.02 5,046 6,812
chr022a 6,156 3.77 0.58 0.24 0.03 6,762 12,711
chr022b 6,194 4.17 0.65 0.26 0.19 7,070 18,377
chr025a 3,796 27.16 4.98 0.53 0.37 13,901 33,402
els019 17,212,548 30.45 5.45 2.00 0.04 5,879 9,821
esc016a 68 44.12 39.71 13.24 29.41 5.88 452 1,195
esc016b 292 24.66 6.16 1.37 4.79 0.68 474 1,103
esc016c 160 48.13 43.13 11.25 26.25 3.75 538 1,981
esc016d 16 81.25 75.00 50.00 75.00 18.75 397 1,520
esc016e 28 57.14 57.14 17.86 50.00 3.57 349 1,318
esc016g 26 53.85 53.85 23.08 46.15 3.85 351 1,315
esc016h 996 37.25 29.32 2.61 29.32 1.91 618 1,369
esc016i 14 100.00 100.00 35.71 100.00 14.29 160 1,601
esc016j 8 87.50 75.00 12.50 75.00 0.00 345 1,331
esc032a † 130 73.08 69.23 20.77 10,503 143,084
esc032b † 168 42.86 42.86 21.43 5,308 130,393
esc032c † 642 45.48 40.65 4.05 15,223 114,053
esc032d † 200 47.00 44.00 4.50 10,767 117,556
esc032e 2 100.00 100.00 0.00 498 143,593
esc032f 2 100.00 100.00 0.00 496 144,820
esc032g 6 100.00 100.00 ‡ 0.00 506 107,683
esc032h † 438 41.32 33.79 3.20 15,031 140,406
had012 1,652 7.02 2.00 0.54 1.82 0.00 363 244
had014 2,724 8.52 2.31 0.33 2.13 0.00 818 1,092
had016 3,720 9.73 4.49 0.56 4.30 0.13 1,396 2,551
had018 5,358 10.86 5.23 0.77 5.06 0.11 2,518 4,966
had020 6,922 10.92 5.13 0.53 4.98 0.16 4,119 8,835

the following: (i) the best-known feasible value for the QAP is listed such that, if
the symbol (†) is not prefixed, then the feasible value is actually optimal, while (†) is
present when the value is not known to be optimal; (ii) instead of listing dual bounds,
we give optimality gaps, i.e.,

gap =
feas val − bound

feas val
× 100%.

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 747

Table 7

Results on the quadratic assignment problem (II), comparing gaps achieved by three previous
bounding techniques and the two techniques of this paper, N and N+. Timings (in seconds) for N
and N+ are also given. Gaps are calculated with respect to the feasible value listed, which is known
to be optimal unless the symbol (†) is prefixed. When prefixed to the gap, the symbol (‡) indicates
that the alternate stopping criterion was enforced.

Gap (%) Time(s)
Name Feas Val GLB KCCEB RSB N N+ N N+

kra030a 88,900 23.10 15.00 12.86 14.51 2.50 30,618 128,883
kra030b 91,420 24.45 16.61 11.23 16.10 4.07 30,648 136,187
kra032 88,700 24.02 10.19 16.06 3.51 40,543 225,053
lipa020a 3,683 0.00 0.00 0.00 0.00 1,337 3,699
lipa020b 27,076 0.00 0.00 0.00 1,556 4,276
lipa030a 13,178 0.00 0.00 0.01 0.02 20,584 121,748
lipa030b 151,426 0.00 0.00 0.00 10,783 77,868
nug012 578 14.71 9.86 3.63 9.52 1.73 315 469
nug014 1,014 15.98 2.17 8.97 0.39 837 1,093
nug015 1,150 16.26 10.17 2.43 9.48 0.78 1,043 1,543
nug016a 1,610 18.39 11.86 2.48 11.49 0.75 1,456 2,421
nug016b 1,240 17.58 12.74 4.19 12.26 1.69 1,338 2,143
nug017 1,732 19.86 13.51 3.64 13.05 1.44 1,932 3,379
nug018 1,930 19.48 14.20 4.04 13.89 1.92 2,393 4,932
nug020 2,570 19.96 15.45 4.63 15.14 2.49 3,772 7,577
nug021 2,438 24.82 17.64 4.72 17.10 2.46 5,150 13,791
nug022 3,596 30.95 21.19 4.34 20.88 2.34 6,110 18,074
nug024 3,488 23.28 18.09 5.10 17.75 2.61 8,581 25,887
nug025 3,744 23.37 18.16 5.58 17.76 3.29 10,457 31,082
nug027 5,234 29.29 5.14 21.63 2.33 14,406 69,574
nug028 5,166 26.71 5.13 21.58 2.92 16,501 81,564
nug030 6,124 25.39 21.86 5.24 21.60 3.10 21,762 127,011
rou012 235,528 14.12 5.09 5.03 4.79 0.11 566 759
rou015 354,210 15.71 8.64 5.91 8.30 1.13 1,377 2,027
rou020 725,522 17.31 11.59 8.50 11.36 4.19 5,112 10,997
scr012 31,410 11.31 5.96 6.65 5.07 0.00 489 496
scr015 51,140 12.52 5.07 4.51 3.70 0.00 1,403 1,197
scr020 110,030 30.23 14.12 13.66 13.58 3.88 5,182 10,564
ste036a 9,526 25.22 17.49 16.80 5.31 68,877 427,884
ste036b 15,852 45.41 30.65 7.61 73,431 358,981
ste036c 8,239,110 22.40 14.70 ‡ 3.92 89,618 377,109
tai012a 224,416 12.70 1.61 0.73 1.02 0.00 563 414
tai012b 39,464,925 75.20 22.66 ‡ 20.04 ‡ 1.01 845 1,039
tai015a 388,214 15.64 9.34 6.04 9.12 2.86 1,402 2,022
tai015b 51,765,268 78.28 0.52 0.53 0.35 2,070 3,199
tai017a 491,812 16.08 10.23 8.23 10.01 3.11 2,521 4,414
tai020a 703,482 17.46 12.34 9.41 12.11 4.52 5,056 10,418
tai020b 122,455,319 88.40 24.44 ‡ 23.06 ‡ 4.11 7,981 15,591
tai025a 1,167,256 17.55 13.82 10.79 14.30 4.66 13,382 39,565
tai025b 344,355,646 86.15 56.93 ‡ 55.82 ‡ 11.70 16,855 65,262
tai030a 1,818,146 17.24 13.91 9.13 13.74 6.12 27,299 155,797
tai030b † 637,117,113 93.57 78.46 ‡ 78.46 ‡ 18.47 31,333 247,114
tai035a † 2,422,002 19.44 16.66 16.52 8.48 60,604 329,608
tai035b † 283,315,445 88.49 64.05 ‡ 66.40 ‡ 15.42 63,888 430,914
tho030 149,936 39.59 33.40 9.26 32.84 4.75 28,180 99,265

A missing entry from the table (applicable only in the case of KCCEB and RSB)
indicates that the gap was not available in the literature. In addition, note that the
number contained in the names of the QAP instances is the size n of the QAP; for
example, the instance bur026a has n = 26.

Though theory predicts that the KCCEB and N gaps should equal one another,
we do see some discrepancies in Tables 6 and 7, probably because of numerical differ-
ences in the algorithms. Typically, N is slightly better than KCCEB, but in compar-

748 SAMUEL BURER AND DIETER VANDENBUSSCHE

Table 8

Results on the quadratic assignment problem (III), comparing gaps achieved by the bounding
technique of Hahn et al. [20] (denoted by H) and the semidefinite technique of this paper, N+. The
problem instances are a subset of those shown in Tables 6 and 7.

Gap (%)
Name H N+

had16 0.00 0.13
had18 0.00 0.11
had20 0.00 0.16
kra30a 2.98 2.50
kra30b 4.72 4.07
nug12 0.00 1.73
nug15 0.00 0.78
nug20 3.23 2.49

Gap (%)
Name H N+

nug30 6.11 3.10
rou15 0.00 1.13
rou20 3.60 4.19
tai20a 3.93 4.52
tai25a 6.48 4.66
tai30a 7.25 6.12
tho30 8.82 4.75

Table 9

Average number of iterations of the augmented Lagrangian algorithm over all problems on three
of the four problem classes, for both N(K) and N+(K).

Stable Erdös–Turán Market Share QAP
N(K) 371 760 251 2,796
N+(K) 1,648 1,197 205 2,812

ison with timings reported in [22], the calculation of N takes more time. We should
point out, however, that the algorithm used to compute KCCEB exploits the struc-
ture of QAP to a great extent (more than just the reduction of 2n + 1 subproblems
to n + 1 mentioned previously) and does not appear to be generalizable to other 0-1
problems. On the other hand, the augmented Lagrangian method can be applied to
any 0-1 problem.

The tables also indicate that the N+ gap is significantly tighter than the RSB gap.
In fact, on a number of relatively small problems, the N+ gap is 0, indicating that (2)
solves the QAP exactly. Previous to these results, RSB had provided the strongest
known bounds for problems in QAPLIB. Only partial timing results are given by
Rendl and Sotirov [37], and so we are unable to make precise timing comparisons
with RSB.

After the initial appearance of this paper, Hahn (personal communication) an-
nounced bounds for several of the instances in Tables 6 and 7, which were calculated
with an algorithm of Hahn et al. [20] (but were not specifically presented there). The
bounds are obtained by solving the second-level Sherali–Adams linear program for
the QAP. We present the bounds compared with our semidefinite bounds in Table 8.

4.4.7. Some further details. The tables of the previous subsections include
bounds and timings for the augmented Lagrangian runs. Some additional aggre-
gate information on the number of iterations is given in Table 9. Here, “number
of iterations” refers to the number of outermost loops in the augmented Lagrangian
algorithm—indexed by k in the statement of Algorithm 1.

For problems with m much larger than n, the most computationally intensive
part of the augmented Lagrangian algorithm (applied to both N(K) and N+(K)) is
using CPLEX to solve the convex QP subproblems corresponding to the columns of
Y and Z. We consider all stable and Erdös–Turán instances, which have n ≤ 300
and often m ≈ O(n2), to be of this type. On the other hand, in the case of N+(K),
the O(n3) eigenvalue decompositions required by the semidefinite projections (two
per iteration) will constitute a large part of the computation, especially for large n
and small m. For example, for the QAP instances, n ranges from 144 to 1,225 and

SOLVING LIFT-AND-PROJECT RELAXATIONS OF 0-1 INTEGER PROGRAMS 749

m = 3n + 2. This helps to explain the fact that, while the average number of QAP
iterations for N(K) and N+(K) shown in Table 9 are not significantly different, the
corresponding timings in Tables 6 and 7 are quite different.

5. Conclusions. In this paper, we propose a novel method to apply dual decom-
position to the lift-and-project relaxations of binary integer programs introduced by
Lovász and Schrijver [32]. We believe that this is some of the first work that focuses
on developing effective tools for solving these very large relaxations. Rather than
using subgradient techniques to solve the dual, we show how to use an augmented
Lagrangian technique to obtain bounds from these relaxations in both the LP and
semidefinite case. We extend a result by Poljak and Tret′jakov [35] to show that in the
case of linear, conic programs, the augmented Lagrangian approach can use a constant
penalty parameter and still guarantee convergence. Through extensive computational
testing, we demonstrate the ability of this technique to outperform standard LP, SDP,
and subgradient methods for various classes of problems. For some instances, such as
QAP, the bounds computed from these relaxations are the tightest known to date.

As part of our future work in this area, we will study the possibility of using
special purpose algorithms to solve the QP subproblems, especially in cases such as
QAP where the constraints of the subproblems are simply a homogenization of the
assignment polytope. We also intend to examine how these techniques may be used
to yield tight relaxations of problems with a mix of binary and continuous variables
and of continuous nonconvex QP’s.

In addition to introducing some of the first effective solution techniques for linear
and positive semidefinite lift-and-project relaxations, the success of this approach also
demonstrates the applicability of augmented Lagrangian techniques even for linear,
conic problems. We believe it will be interesting to investigate how well this technique
performs on other large-scale linear, conic problems with block-angular structure.

Acknowledgments. The authors are in debt to two anonymous referees for
careful and thorough comments that have greatly improved the paper.

REFERENCES

[1] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Dongarra, J. Du Croz,

A. Greenbaum, S. Hammarling, A. McKenney, and D. Sorensen, LAPACK Users’
Guide, 3rd ed., Society for Industrial and Applied Mathematics, Philadelphia, 1999.

[2] K. M. Anstreicher, Recent advances in the solution of quadratic assignment problems, Math.
Program., 97 (2003), pp. 27–42.

[3] E. Balas, Disjunctive programming, Ann. Discrete Math., 5 (1979), pp. 3–51.
[4] E. Balas, S. Ceria, and G. Cornuéjols, A lift-and-project cutting plan algorithm for mixed

0–1 programs, Math. Program., 58 (1993), pp. 295–324.
[5] F. Barahona and R. Anbil, The volume algorithm: Producing primal solutions with a sub-

gradient method, Math. Program., 87 (2000), pp. 385–399.
[6] D. P. Bertsekas, Nonlinear Programming, 1st ed., Athena Scientific, Belmont, MA, 1995.
[7] D. Bienstock and M. Zuckerberg, Subset algebra lift operators for 0–1 integer programming,

SIAM J. Optim., 15 (2004), pp. 63–95.
[8] B. Borchers, CSDP, a C library for semidefinite programming, Optim. Methods Softw., 11/12

(1999), pp. 613–623.
[9] S. Burer and R. Monteiro, A nonlinear programming algorithm for solving semidefinite

programs via low-rank factorization, Math. Program., 95 (2003), pp. 329–357.
[10] R. E. Burkard, S. Karisch, and F. Rendl, QAPLIB—a quadratic assignment problem li-

brary, J. Global Optim., 10 (1997), pp. 391–403.
[11] S. Ceria and G. Pataki, Solving integer and disjunctive programs by lift-and-project, in Pro-

ceedings of the Sixth International IPCO Conference, Lecture Notes in Comput. Sci. 1412,
R. E. Bixby, E. A. Boyd, and R. Z. Rios-Mercato, eds., 1998, pp. 271–283.

750 SAMUEL BURER AND DIETER VANDENBUSSCHE

[12] W. Cook and S. Dash, On the matrix-cut rank of polyhedra, Math. Oper. Res., 26 (2001),
pp. 19–30.

[13] G. Cornuéjols and M. Dawande, A class of hard small 0–1 programs, INFORMS J. Comput.,
11 (1999), pp. 205–210.

[14] S. Dash, On the Matrix Cuts of Lovász and Schrijver and Their Use in Integer Programming,
Ph.D. thesis, Rice University, Houston, TX, 2001.

[15] See the website: http://dimacs.rutgers.edu/Challenges/.
[16] W. S. Dorn, Duality in quadratic programming, Quart. Appl. Math., 18 (1960/1961), pp. 155–

162.
[17] P. C. Gilmore, Optimal and suboptimal algorithms for the quadratic assignment problem, J.

Soc. Indust. Appl. Math., 10 (1962), pp. 305–313.
[18] M. X. Goemans and L. Tunçel, When does the positive semidefiniteness constraint help in

lifting procedures?, Math. Oper. Res., 26 (2001), pp. 796–815.
[19] R. E. Gomory, An algorithm for integer solutions to linear programs, in Recent Advances in

Mathematical Programming, R. Graves and P. Wolfe, eds., McGraw-Hill, New York, 1963,
pp. 269–302.

[20] P. M. Hahn, W. L. Hightower, T. A. Johnson, M. Guignard-Spielberg, and C. Rou-

cairol, A level-2 reformulation-linearization techinque bound for the quadratic assignment
problem, manuscript, University of Pennsylvania, Philadelphia, PA, 2001.

[21] ILOG, Inc., ILOG CPLEX 8.1, User’s Manual, 2002.
[22] S. E. Karisch, E. Çela, J. Clausen, and T. Espersen, A dual framework for lower bounds of

the quadratic assignment problem based on linearization, Computing, 63 (1999), pp. 351–
403.

[23] K. C. Kiwiel, Methods of Descent for Nondifferentiable Optimization, Springer, Berlin, 1985.
[24] J. B. Lasserre, An explicit exact SDP relaxation for nonlinear 0–1 programs, in Lecture Notes

in Comput. Sci., 2081, K. Aardal and A. M. H. Gerards, eds., 2001, pp. 293–303.
[25] M. Laurent, Tighter linear and semidefinite relaxations for max-cut based on the Lovász–

Schrijver lift-and-project procedure, SIAM J. Optim., 12 (2001/2002), pp. 345–375.
[26] M. Laurent, A comparison of the Sherali–Adams, Lovász–Schijver, and Lasserre relaxation

for 0–1 programming, SIAM J. Optim., 28 (2003), pp. 470–496.
[27] M. Laurent and F. Rendl, Semidefinite programming and integer programming, Technical

report PNA-R0210, CWI, Amsterdam, April 2002. To appear as chapter of the Handbook
on Discrete Optimization edited by K. Aardal, G. Nemhauser and R. Weismantel.

[28] E. L. Lawler, The quadratic assignment problem, Management Sci., 9 (1962/1963), pp. 586–
599.

[29] C. Lemaréchal, Nonsmooth optimization and descent methods, Technical report, International
Institute for Applied Systems Analysis, Laxenburg, Austria, 1977.

[30] L. Lipták and L. Tunçel, The stable set problem and the lift-and-project rank of graphs,
Math. Program., 98 (2003), pp. 319–353.

[31] R. Lougee-Heimer, The Common Optimization INterface for Operations Research, IBM
Journal of Research and Development, 47 (2003), pp. 57–66; also available online from
www.coin-or.org.

[32] L. Lovász and A. Schrijver, Cones of matrices and set-functions, and 0–1 optimization,
SIAM J. Optim., 1 (1991), pp. 166–190.

[33] MIPLIB, 2003. http://miplib.zib.de/.
[34] J. Nocedal and S. Wright, Numerical Optimization, Springer-Verlag, New York, 1999.
[35] B. T. Poljak and N. V. Tret

′
jakov, A certain iteration method of linear programming and

its economic interpretation, Èkonom. i Mat. Metody, 8 (1972), pp. 740–751.
[36] QAPLIB, http://www.seas.upenn.edu/qaplib/.
[37] F. Rendl and R. Sotirov, Bounds for the quadratic assignment problem using the bundle

method, Technical report, Department of Mathematics, University of Klagenfurt, Klagen-
furt, Austria, 2003.

[38] H. D. Sherali and W. P. Adams, A hierarchy of relaxations between the continuous and
convex hull representations for zero-one programming problems, SIAM J. Discrete Math.,
3 (1990), pp. 411–430.

[39] H. D. Sherali and W. P. Adams, A Reformulation-Linearization Technique (RLT) for Solving
Discrete and Continuous Nonconvex Problems, Kluwer, Dordrecht, The Netherlands, 1997.

[40] H. D. Sherali, B. Özdaryal, W. P. Adams, and N. Attia, On using exterior penalty
approaches for solving linear programming problems, Comput. Oper. Res., 28 (2001),
pp. 1049–1074.

[41] T. Stephen and L. Tunçel, On a representation of the matching polytope via semidefinite
liftings, Math. Oper. Res., 24 (1999), pp. 1–7.

