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Abstract A finite set of outlets with randomly fluctuating demands bands together to
reduce costs by buying, storing and distributing their inventory jointly. This is termed
inventory centralization and is a type of risk pooling. The expected centralization cost
can be lowered even further, without disrupting the demand behavior at individual
outlets, by inducing the outlets to correlate their individual demands. Given that the
outlets’ demands are normally distributed, the lowering of the centralized cost corre-
sponds to a semidefinite optimization problem. This paper establishes a closed-form
optimal solution of the semidefinite program and a fair allocation of the centralized
cost at optimality.

Keywords Inventory centralization · Risk pooling · Cooperative game theory ·
Convex optimization

Mathematics Subject Classification (2000) 90B05 · 91A12 · 90C22 · 90C25

1 Introduction

Centralized inventory allows a coalition of outlets to reduce their expected inven-
tory costs via the dampened variation in demand experienced at the warehouse. By
appropriately correlating their individual demands further, additional savings can be
realized. In order to provide minimal incentives for the outlets to maintain the central-
ized inventory arrangement, the expected costs should be allocated among the outlets
so that no subset can be rewarded by breaking off from the coalition.
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There are many real-life examples where companies attempt to reduce inventory
and manufacturing costs by manipulating correlated demand sources, or inducing
demand patterns that balance each other in an average sense (Gerchak and Gupta
1991).

The hockey-stick phenomenon occurs in “just about every company” (Chase and
Aquilano 1992). This term refers to the practice of shipping most of the demand
from a factory during the last week or two of a fiscal period such as a quarter. This
intensive correlation of demand at the end of the period has very bad effects on a
manufacturing or order-fulfillment operation. Most of the work falls in a short time
span, which increases chances for errors, reduces quality control, and causes missed
shipping deadlines. Some companies have gone to great lengths to reduce this effect.
For instance, in the 1980s, Digital Equipment Corporation’s US operations staggered
fiscal years-ends for its regions to end in each of the 12 months, so that the quarter-
end rush to ship computing equipment would be averaged out over the calendar year.
They took this extreme measure to reduce the overlap in deadlines and to simplify and
improve their shipping schedules. Such an effort shows the importance companies
place on controlling the overall demand pattern.

Lee et al. (1997) observed manufacturers going to great lengths to smooth out
variances. The problem these authors discuss is the amplification of demand variance
(the bull whip effect) as forecasts flow from lower levels to higher ones in a distrib-
ution chain. Timing of forecasts and their frequency may cause an inventory system
to oscillate between shortage and excess inventory in a multiperiod setting. Some of
the techniques they observed companies using are designed specifically to produce a
negative correlation between demand points. These include staggering the times for
receipt of forecasts and shipping orders at different times.

The literature of utility management, such as power plant grids, supplies examples
of attempts to decouple or decorrelate demand. For instance, Ruusunen et al. (1991)
discuss a multiperiod analysis of a group of interconnected utilities. An attempt is
made to negatively correlate demand by using off-peak price reductions at different
utilities.

Another example: a cola or beer bottling plant may attempt to stagger the peak
demand at different service regions (e.g., via regional price promotions) so as to re-
duce the peak production demand at the plant. The mean demand at each region
will hopefully remain the same (maintaining the same volume or market share in a
highly competitive environment is considered a marketing and operational success).
However, manipulating the buying patterns among the different regions appropriately
might reduce the peak production pressure on the plant. For benefits of pooling in
production-inventory systems see Benjaafar et al. (2005).

It is clear that companies understand well the benefits of manipulating correlations
between demand points. Each company will determine its own strategy regarding the
correlations based on the characteristics of its market. The challenge is to explain it
analytically and to provide computational strategies that determine an optimal corre-
lation solution and allocate costs fairly.

In this paper, we restrict our attention to outlets with single-period, normally dis-
tributed, correlated individual demands and identical linear holding and penalty costs.
We assume an infinite horizon setting with risk neutrality for costs and benefits. In



Newsvendor games: convex optimization of centralized inventory

the context of inventory centralization, this newsvendor setting has first been studied
by Eppen (1979), who establishes the potential for savings by showing that the ex-
pected cost of centralization can be expressed as a constant multiple of the standard
deviation at the warehouse. (Another related point of view found in the literature is
that of capacity centralization.)

Many authors have extended Eppen’s results to other models with varying assump-
tions. For instance, Gerchak and He (2003) examine the relation between the benefits
of risk pooling and the variability of demand and provide an example where increased
variability of individual demands reduces the benefits of risk pooling. Benjaafar et al.
(2005) examine the benefits of risk pooling in production-inventory systems with en-
dogenously generated lead times. The effect of centralization on expected profit in a
multi-location newsvendor setting is summarized by Cherikh (2000). Eppen’s results
have also been used in the literature of supply chain planning; see for example the
paper of Shen and Coullard (2003), who utilize Eppen’s risk pooling in a location-
inventory model under the assumption of independent normal demands. For early
work on cooperative games in the context of inventory centralization, see Gerchak
and Gupta (1991), Hartman (1994), and Hartman and Dror (1996).

The models of Eppen and others assume that the joint distribution of demand is
given, i.e., is an input to the model. In contrast, Hartman and Dror (2003) extend
Eppen’s idea by considering the following question, which matches the spirit of the
examples described above: how far could the centralization cost be lowered if it were
possible to coordinate the pairwise correlations between outlets to further reduce the
variance at the warehouse? Hartman and Dror show that this minimization of the
centralization cost leads to a semidefinite optimization problem.

The first broad goal of this paper is to study the structure of the semidefinite opti-
mization problem introduced by Hartman and Dror. By extending some results from a
branch of statistics called minimum trace factor analysis, we establish an easily com-
putable, closed-form optimal solution. Further, we discuss how the structure of the
optimal solution provides insight into real-world strategies for demand smoothing.

A second broad goal of this paper is to provide a fair allocation of costs to the
outlets, where the precise meaning of “fair” is as described by Hartman and Dror
(1996) (see Sect. 2). We examine the case where the cost allocations are allowed to
be negative (i.e., an outlet is given money to participate because its presence provides
a significant benefit to the grand coalition), as well as the more typical case when
all cost allocations are nonnegative. Our key result is: if an optimal inventory cen-
tralization has been achieved, i.e., via the semidefinite optimization, then a fair cost
allocation (either nonnegative or unrestricted) can be stated in a simple, closed form.

2 Elements of the model

Let U = {1, . . . , n} be a set of outlets. Given a fixed duration time period, we assume
that demand at the outlets is jointly normal. In particular, each outlet i ∈ U is nor-
mally distributed with mean μi > 0 and standard deviation σi > 0, and correlations
ρij are encoded in the correlation matrix R. We consider a static infinite horizon
setting (i.e., an infinite number of time periods) where expected inventory cost is
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the metric. Inventory cost is composed of the holding cost h (per unit held) and the
penalty cost p (per unit out of stock); we assume these numbers are constant for any
coalition S ⊆ U of outlets that bands together to centralize inventory.

We assume throughout this paper that the vectors μ and σ are fixed, i.e., are inputs
to the model. On the other hand, with regards to the correlation matrix R, we will
investigate the effect that changing R has on the model.

The expected inventory cost for an assembly S is proportional to the standard
deviation of their joint distribution (Eppen 1979; Hartman et al. 2000), where the
proportionality constant depends only on p, h, and the standard normal distribution
and hence can be scaled to 1. Thus, with respect to R, the expected cost for any S can
be represented by

cR(S) =
√∑

i∈S

∑
j∈S

σij =
√∑

i∈S

∑
j∈S

σiσjρij ,

where σij = σiσjρij represent the covariances of the joint distribution of demand
for S. In particular, the cost for a singleton outlet i is cR({i}) = σi .

2.1 Optimizing centralized inventory costs

Eppen (1979) and Hartman et al. (2000) showed that, in total, it is always cheaper for
all outlets to participate in a single, centrally managed inventory system modeled as
above, due to the inequality

cR(U) =
√√√√ n∑

i=1

n∑
j=1

σij =
√√√√ n∑

i=1

σ 2
i + 2

∑
j>i

σiσjρij ≤
n∑

i=1

σi =
n∑

i=1

c
({i}).

The above inequality intuitively suggests that low or negative correlations yield a
lower cost to the coalition (when the individual distributions of demand at the outlets,
i.e., μ and σ , are fixed). Said differently, certain correlation structures yield lower
centralized inventory costs than others. A natural idea is thus: we could lower the
coalition’s overall expected cost if it were possible to adjust R, while maintaining
demands and variances at each outlet.

Is it possible to adjust correlations in such a manner, however? Hartman and Dror
(2003) discuss several real-life examples in which companies understand the bene-
fit of—and implement strategies for—reducing these cross correlations (see also the
introduction and papers by Gerchak and He 2003; Benjaafar et al. 2005). An as-
sumption of this paper is that it is indeed possible to modify correlations in some
interesting settings, and in Sect. 3, we present a correlation matrix R∗ that minimizes
cR(U). Some additional comments on modifying correlations are given in Sect. 2.3.

2.2 Allocating centralized inventory costs

Once the correlations between the outlets have been fixed, it is important to allocate
the total cost cR(U) to all outlets in a “fair” manner. For example, one possible allo-
cation would be to charge the entire cost cR(U) to outlet 1 and zero cost to outlets
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2, . . . , n. While outlets 2, . . . , n would see this allocation as beneficial to them, outlet
1 might judge this to be unfair. If this occurs, outlet 1 would be likely to leave the
coalition.

2.2.1 The meaning of “fair”

In order to define what a fair allocation is, we follow Hartman and Dror (2003) and in-
terpret the centralization as a cooperative game, which is defined formally as follows:
a cooperative n-person game on U , in characteristic function form, is an ordered pair
(U ;f ), where f : 2U → � is a real-valued set-function on the collection 2U of all
subsets of U such that f (∅) = 0. In our inventory model, we may consider f = cR ,
for example. The corresponding game is referred to as the cost game with respect
to f .

We also introduce a bit of notation. For any subset S ⊆ U and vector q ∈ �n, we
use the notation q(S) to define the sum of the components in q corresponding to the
members in S, i.e., q(S) = ∑

i∈S qi .
A cost allocation is a vector a = (a1, . . . , an) that assigns to each outlet its por-

tion of the cost f (U). Note that a may have negative entries (also referred to as
preimputation, see Peleg and Sudhölter 2003), unless specifically constrained to be
nonnegative. We consider a cost allocation a to be fair with respect to f if it satisfies
the following conditions:

1. Efficiency (all of the costs are distributed):

a(U) = f (U);
2. Stability (no subset of outlets has an incentive to leave the coalition because it

feels it is subsidizing the remaining outlets by paying too much of the cost):

a(S) ≤ f (S) ∀S ⊆ U.

Conditions 1 and 2 together define membership in the core. In general, it is possible
that there exists no fair cost allocation with respect to f .

In this paper, we focus our attention on costs, but a “dual” point of view is to
examine the total benefits (or savings) received by a coalition S of outlets when it
centrally manages its inventory. This benefit is measured as

g(S) =
∑
i∈S

f
({i}) − f (S).

It is also important to distribute the benefits g(U) fairly. A benefit allocation is a
vector x = (x1, . . . , xn) whose coordinates are the benefits received by the mem-
bers of U , and notions of efficiency and stability for benefits are easily defined:
x(U) = g(U) and x(S) ≥ g(S) for all S ⊆ U . The consideration of benefits leads
to an additional notion of fairness:

3. Justifiability (at the level of singletons, costs and benefits are compatible):

xi = f
({i}) − ai ∀i ∈ U.
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Because we focus on costs in this paper, given a fair (i.e., efficient and stable)
cost allocation a, we define an automatic benefit allocation x by xi = f ({i}) − ai ,
which satisfies justifiability by definition. Moreover, because the core condition for
singleton subsets implies ai ≤ f ({i}), it is not difficult to see that x is also efficient
and stable relative to benefits. Approaches for calculating x, which are more sophisti-
cated than ours, may be possible. For example, there are various applications in which
one can calculate a and x independently and still achieve justifiability (Hartman and
Dror 1996). From this point on, we do not mention benefits explicitly.

There may be multiple cost allocations a that satisfy the above fairness conditions.
Schmeidler (1969) described how to compute a specific allocation (either nonnega-
tive or unrestricted) that “makes the least well-off coalition as well-off as possible”
(Young 1985a); this allocation is called the nucleolus. Following Schmeidler, we fo-
cus on the nucleolus as the preferred cost allocation scheme even though a number of
other viable allocations exist. We discuss the relationship between the nucleolus and
other allocations below.

The nucleolus is calculated by solving a sequence of n successively refined linear
programs (LPs), each having roughly 2n constraints. In the Appendix, we provide a
full description of this procedure. In the case of the cost game with respect to f , the
initial LP that one must solve is

max ε

s.t. f (S) − a(S) ≥ ε ∀∅ �= S � U,

a(U) = f (U),

[a ≥ 0].

(1)

The brackets around the constraint a ≥ 0 indicate that it can be enforced if desired.
Note that any feasible solution (a, ε) to this LP automatically satisfies the efficiency
condition. Moreover, the core condition is met if and only if ε ≥ 0. In this sense,
solving (1) can be interpreted as finding an allocation, which is as fair as possible,
i.e., an allocation for which ε is as large as possible (even if that ε turns out to be
negative).

Besides the nucleolus, there are a host of competing cost allocation methods and
choosing among them is somewhat subjective. For instance, in Hartman and Dror
(1996) seven different allocation methods are compared in one specific inventory
centralization instance. One must ask what are the fundamental properties that an
allocation should possess in a given cooperative game setting.

The Shapley value (Shapley 1953) is a common allocation method that assigns a
unique allocation to every game. Roughly, this allocation gives each player his aver-
age marginal contribution in the game. It is also the unique allocation that satisfies
the dummy axiom. (A player is a dummy if he contributes nothing to any coalition,
and the dummy axiom states that a dummy’s allocation is zero.) The Shapley value
also satisfies the additivity axiom. (A cost allocation method φ is additive if for any
joint cost functions c and c′ on U , φ(c + c′) = φ(c) + φ(c′), where c + c′ is defined
by (c+ c′)(S) = c(S)+ c′(S) for all S ⊆ U .) Finally, the Shapley value is monotonic.
(An allocation method φ is monotonic if an increase in the cost of a particular coali-
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tion implies, ceteris paribus, no decrease in the cost allocation to any members of that
coalition.) These three properties are attractive features of the Shapley value.

However, the Shapley value fails to be a core allocation in nonconcave games.
Unfortunately, the newsvendor centralization of this paper is not concave; Hartman
(1994) provides a simple three player example for this fact. In computational exper-
iments for a nonconcave inventory consolidation ordering game described in Dror
et al. (2008), the Shapley value fails to be in the core in about 30% of the cases for
which the core is nonempty.

In contrast, the nucleolus is always in the core when the core is nonempty, and
even when the core is empty, the nucleolus assigns a cost that cannot be improved by
any coalition, thus guaranteeing an elementary condition for stability—an important
consideration in a supply chain. The core property of the nucleolus, its “geometric”
centrality, and its minimization of the worst impact to any coalition make the nucleo-
lus a fair and defendable cost allocation in a newsvendor centralization situation such
as ours. Finally, the nucleolus is non-monotonic. However, Young (1985b) proved
that monotonicity is fundamentally incompatible with staying in core by showing
that for |U | ≥ 5 there exists no monotonic core allocation method.

As presented above, the fair allocation of costs clearly depends on the function f

being used to measure actual costs for subsets S ⊆ U . In this paper, we consider the
form cR∗ , where R∗ is assumed to be an optimal correlation matrix. This function
possesses special properties as described in Sect. 4.

2.3 Comments on assumptions of the model

The assumptions of the model explained above are certainly an approximation of
real-life. In this paper, we attempt to achieve assumptions that are as realistic as pos-
sible, while enabling analysis that sheds light on universal properties of inventory
centralization.

The assumption of normal demands, which matches the approach of Eppen (1979)
exactly, is key to our entire approach because it enables analytical formulas for in-
ventory costs. It seems difficult to obtain concrete results under other distributions;
further research would certainly be interesting.

The assumption of identical holding and penalty costs across all subsets of outlets
is also key to our model (and Eppen’s) because it allows these costs to be “scaled
out.” Further, Hartman and Dror have shown in an unpublished note that fair cost
allocations do not exist under general holding and penalty costs.

The ability to modify correlations to any desired levels, while maintaining the in-
dividual demands at the outlets, is a basic assumption of the results in Sects. 3–4.
As mentioned in the introduction, there are many real-life examples in which com-
panies try to manipulate correlations. Even still, modifying correlations precisely is
not something that is common managerial expertise. We consider this assumption
to be analogous to arguments based on perfect information (PI). Just as arguments
with PI allow one to assess the value of PI, our assumption allows us to gauge the
value of modifying correlations. In this sense, we can establish fundamental proper-
ties of inventory centralization, even if the exact assumptions are realistically hard to
achieve.



S. Burer, M. Dror

3 Adjusting the correlations

We assume that μi and σi are fixed for all i ∈ U . From Sect. 2, our optimization
problem is to find R that minimizes cR(U), or equivalently R that minimizes

cR(U)2 =
n∑

i=1

σ 2
i + 2

∑
j>i

σiσjρij = σT Rσ.

Since the set of correlation matrices can be described as all symmetric, positive semi-
definite matrices with ones on the diagonal, our optimization is

min σT Rσ

s.t. diag(R) = e,

R  0,

(2)

where e is the all-ones vector and the constraint R  0 indicates that R is symmetric
and positive semidefinite. As the objective and diagonal constraints are linear in R,
(2) is a (linear) semidefinite program (SDP), which is a type of convex programming
problem that can be solved up to any desired accuracy in polynomial-time using
interior-point methods (Wolkowicz et al. 2000). However, we will establish below an
easily computable, closed-form solution of (2), which obviates the need for iterative
algorithms in this case. The key idea, echoed in Theorem 3.1, Proposition 3.1, and
Theorem 3.2 below, is to lower the overall variance σT Rσ of the coalition using
antithetic random variables. The multinormal structure of the demand distribution is
critical for this.

In the context of inventory centralization, the SDP (2) was introduced by Hartman
and Dror (2003), but SDPs having the same constraint structure have been studied
for some time. In particular, the set of correlation matrices serves as the basis for
relaxations of the maximum-cut problem (Goemans and Williamson 1995), which
refers to the decomposition of a graph by deletion of edges of maximum weight. In
addition, optimization over correlations matrices has been investigated in the statistics
literature on minimum trace factor analysis. In fact, based on the specific structure of
the objective function of (2), Shapiro (1982) has provided a partial classification of
the optimal solutions of (2). To state the theorem, we make the following assumption
without loss of generality:

Assumption The components of σ are sorted in nonincreasing order.

Then the theorem of Shapiro (1982) is as follows:

Theorem 3.1 Let n ≥ 2, and let v ∈ �n be the vector having all −1’s except for a 1
in the first position. It holds that:

(a) If vT σ > 0, then R = vvT is the unique optimal solution of (2) with optimal value
(vT σ )2.

(b) If vT σ = 0, then R = vvT is an optimal solution of (2) with optimal value 0.
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(c) If vT σ < 0, then the optimal value of (2) is 0, so that all optimal solutions satisfy
the equation Rσ = 0.

Theorem 3.1 provides valuable information about (2)—and does so practically,
since one can easily check the sign of vT σ . It is important to point out, however, that
Theorem 3.1 does not specifically provide an optimal solution when vT σ < 0, i.e.,
we still must calculate an optimal solution on our own. In the following subsection,
we examine simple ways to do so.

Note also that, among the three cases considered by Theorem 3.1, the case
vT σ < 0 is likely to occur in many real-world situations where all outlets are of
roughly the same size and characteristics, i.e., where no single outlet dominates the
others. In this sense, vT σ < 0 is a highly interesting case, warranting further consid-
eration.

3.1 Calculating an optimal solution when vT σ < 0

In this subsection, we assume vT σ < 0, where v is as in Theorem 3.1; note that
vT σ < 0 implies n ≥ 3. By Theorem 3.1, the optimal value of the inventory cen-
tralization is 0. We wish to calculate an optimal correlation matrix R satisfying
σT Rσ = 0 or, equivalently, Rσ = 0.

Our analysis will be based on the fundamental fact that any symmetric positive
semidefinite R can be factored as R = V V T for some V ∈ �n×n. Note that the fac-
torization is not unique in general. Thus, our search for a correlation matrix R can
be cast as a search for V with unit-length rows such that σT V V T σ = ‖σT V ‖2 = 0,
where ‖ · ‖ is the standard vector Euclidean norm. Equivalently, we search for V

satisfying σT V = 0.
The factor V can in fact be taken to have rank(R) columns. However, we have

no prior knowledge of this rank except for the following: rank(R) ≤ n − 1 because
σ is a nonzero vector in the null space of R. So without loss of generality, we can
restrict our search to V ∈ �n×(n−1). In the results below, we will in fact demonstrate
an optimal R such that rank(R) ≤ 2.

3.1.1 The case for n = 3

We consider first the case when n = 3. Given σ = (σ1, σ2, σ3)
T , define

R∗ =
⎛
⎝ 1 ρ12 ρ13

ρ12 1 ρ23
ρ13 ρ23 1

⎞
⎠ and V ∗ =

⎛
⎜⎜⎝

1 0

ρ12

√
1 − ρ2

12

ρ13 −
√

1 − ρ2
13

⎞
⎟⎟⎠ , (3)

where

ρ12 = (
σ 2

3 − σ 2
1 − σ 2

2

)
/(2σ1σ2),

ρ13 = (
σ 2

2 − σ 2
1 − σ 2

3

)
/(2σ1σ3),

ρ23 = (
σ 2

1 − σ 2
2 − σ 2

3

)
/(2σ2σ3).
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We have the following proposition:

Proposition 3.1 Suppose σ ∈ �3 satisfies σ > 0 and vT σ < 0, and define R∗ and
V ∗ by (3). Then R∗ = V ∗(V ∗)T , and R∗ is the unique optimal solution of (2). Specif-
ically, σT R∗σ = 0 and σT V ∗ = 0.

Proof We remark that the assumption vT σ < 0 implies any optimal solution to (2)
must have rank equal to 2, which is consistent with the proposed structure for V ∗
(i.e., 2 columns).

We first show that V ∗ is well defined, i.e., that |ρ12| ≤ 1 and |ρ13| ≤ 1. In particu-
lar, we show |ρ12| < 1 and |ρ13| < 1. Since ρ12 and ρ13 are defined similarly, we give
the argument for ρ12 only. If the numerator of ρ12 is nonnegative, then it suffices to
show ρ12 < 1, which is equivalent to

σ 2
3 − σ 2

1 − σ 2
2 < 2σ1σ2 ⇐⇒ σ 2

3 < (σ1 + σ2)
2 ⇐⇒ σ3 < σ1 + σ2,

which is true because σ is sorted in descending order. On the other hand, if the nu-
merator is negative, then we require ρ12 > −1, which is equivalent to

σ 2
3 − σ 2

1 − σ 2
2 > −2σ1σ2 ⇐⇒ σ 2

3 > (σ1 − σ2)
2

⇐⇒ σ3 > max{σ1 − σ2, σ2 − σ1},
which is also true because vT σ < 0 and because σ is sorted. It follows that |ρ12| < 1.

We next argue R∗ = V ∗(V ∗)T . It is clear that diag(V ∗(V ∗)T ) = e,
(V ∗(V ∗)T )12 = ρ12, and (V ∗(V ∗)T )13 = ρ13, and so it remains to show

ρ12ρ13 −
√

1 − ρ2
12

√
1 − ρ2

13 = ρ23. (4)

We first remark that one can readily show σ 2
2 (1 − ρ2

12) = σ 2
3 (1 − ρ2

13), which implies
the left-hand side of (4) equals ρ12ρ13 − (σ2/σ3)(1 − ρ2

12). This expression in turn
simplifies to ρ23.

To complete the proof of the proposition, we demonstrate that any V ∈ �3×2 hav-
ing unit-length rows and satisfying σT V = 0 must yield R∗ = V V T . We note that, for
all orthogonal Q ∈ �2×2: (i) V V T = (V Q)(V Q)T ; and (ii) the equation σT V = 0
holds if and only if σT V Q = 0. As a result, we may assume without loss of generality
that a rotation has been applied to the rows of V so that V1· = (1,0). We write

V =
⎛
⎝1 0

a b

c d

⎞
⎠

and require

a2 + b2 = 1, c2 + d2 = 1, σ1 + σ2a + σ3c = 0, σ2b + σ3d = 0.

These equations imply

a2 + (σ3/σ2)
2d2 = 1, (1/σ3)

2(σ1 + σ2a)2 + d2 = 1,
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which in turn imply a = ρ12 after substituting for d2. A similar argument yields
c = ρ13. Since the equation σ2b + σ3d = 0 implies that b and d have opposite signs,
we have

(b, d) = ±(√
1 − ρ2

12,−
√

1 − ρ2
13

)
.

In either case, the product V V T equals R∗. �

Proposition 3.1 provides the optimal solution for the case when n = 3, and al-
though this result may seem specialized, we show in the next subsection that it actu-
ally allows us to solve (2) easily for arbitrary n.

3.1.2 The case for arbitrary n ≥ 3

Let S be a bi- or tri-partition of {1, . . . , n}; we write S = {S1, S2} or S = {S1, S2, S3}
as appropriate. Define

σ̄ ∈ �|S|, σ̄j = σ(Sj ) =
∑
k∈Sj

σk, 1 ≤ j ≤ |S|. (5)

We say that S is balanced if

σ̄1 = σ̄2 when |S| = 2

or if

σ̄1 < σ̄2 + σ̄3, σ̄2 < σ̄1 + σ̄3, σ̄3 < σ̄1 + σ̄2 when |S| = 3. (6)

Intuitively, a balanced S divides the outlets into groups, where the total amount of
standard deviation of demand in each group is equal—or not excessively high. The
following result, the proof of which is constructive, establishes that σ admits a bal-
anced partition.

Proposition 3.2 Let n ≥ 3, and suppose vT σ < 0. Then there exists a balanced bi-
partition S = {S1, S2} or a balanced tri-partition S = {S1, S2, S3} of {1, . . . , n} with
respect to σ .

Proof Because σ is sorted in nonincreasing order, it is trivial to determine whether
there exists k such that σ1 +· · ·+σk = σk+1 +· · ·+σn. If so, then define S = {S1, S2},
where S1 = {1, . . . , k} and S2 = {k + 1, . . . , n}; S is the required bi-partition.

Otherwise, let k be the index such that

σ1 + · · · + σk−1 < σk + σk+1 + · · · + σn,

σ1 + · · · + σk−1 + σk > σk+1 + · · · + σn.

We certainly have k ≥ 2 because vT σ < 0; we also have k ≤ n − 1 because the
components of σ are sorted and because n ≥ 3. Now define S by

S1 = {1, . . . , k − 1}, S2 = {k}, S3 = {k + 1, . . . , n},
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and also define σ̄ according to (5). We claim that S is balanced. The first inequality
above shows σ̄1 < σ̄2 + σ̄3, while the second inequality shows σ̄3 < σ̄1 + σ̄2. Finally,
we have

σ̄2 = σk ≤ σ1 < (σ1 + · · · + σk−1) + (σk+1 + · · · + σn) = σ̄1 + σ̄3,

which follows because σ is sorted and because n ≥ 3. So S is the desired tri-
partition. �

We remark that, in the case of a balanced tri-partition, we may assume without
loss of generality that S has been defined so that the components of σ̄ are sorted
in nonincreasing order. Moreover, if we let v̄ = (1,−1,−1)T be as in Theorem 3.1
relative to σ̄ , then the three conditions (6) are equivalent to the single inequality
v̄T σ̄ < 0.

Using Propositions 3.1 and 3.2, the following theorem shows how to construct an
optimal solution of (2) easily.

Theorem 3.2 Let n ≥ 3, and suppose that σ ∈ �n satisfies σ > 0 and vT σ < 0.
Let S be any balanced bi- or tri-partition relative to σ , and define σ̄ by (5). Define
V̄ ∗ ∈ �|S|×(|S|−1) as follows:

(i) If |S| = 2, then V̄ ∗ = (1,−1)T .
(ii) If |S| = 3, then V̄ ∗ is as defined by (3) with respect to σ̄ .

In addition, define V ∗ ∈ �n×(|S|−1) row-by-row as

V ∗
i· = V̄ ∗

j · if i ∈ Sj

(
1 ≤ i ≤ n, 1 ≤ j ≤ |S|), (7)

and R∗ = V ∗(V ∗)T . Then R∗ is a rank-(|S|−1) optimal solution of (2). In particular,
σT R∗σ = 0 and σT V ∗ = 0.

Proof By construction, each row of V ∗ has unit norm so that R∗ is feasible for (2).
It remains to show that R∗ is optimal, which is implied by the following equation:

σT V ∗ =
n∑

i=1

σiV
∗
i· =

|S|∑
j=1

∑
i∈Sj

σiV
∗
i· =

|S|∑
j=1

∑
i∈Sj

σiV̄
∗
j ·

=
|S|∑
j=1

σ(Sj )V̄
∗
j · =

|S|∑
j=1

σ̄j V̄
∗
j · = σ̄ T V̄ ∗ = 0.

�

We remark that Theorem 3.2 provides only a single optimal solution R∗ of (2) and
that R∗ is dependent on the partition S . In general, (2) may have multiple optimal
solutions. However, R∗ is “minimal” in the sense that its rank, which equals 1 or 2,
is the smallest of all optimal solutions.

On a related note, we mention that, if (2) is solved via an off-the-shelf SDP
solver—rather than via the closed-form solution provided by Theorem 3.2—then in
general one would receive a high-rank optimal solution since such solvers work with
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full-rank interior points. Indeed, such a high-rank solution may be a convex combina-
tion of several low-rank solutions. In this sense, solving (2) via a standard SDP solver
does not reveal the structure of Theorem 3.2.

Theorem 3.2 can also be compared to Pataki (1998), which guarantees the exis-
tence of an optimal solution of (2) having rank approximately

√
2n. Pataki’s rank

result holds for any linear objective in (2), whereas our rank result uses the structure
of the specific objective of (2). Hence, our rank bound is much tighter than Pataki’s
in this context.

3.2 Examples

To illustrate the results of Theorems 3.1 and 3.2, we consider the following three
examples with U = {1, . . . ,6}, which differ only in the standard deviation of outlet 1:

σ 1 = (30,5,4,3,2,1),

σ 2 = (15,5,4,3,2,1),

σ 3 = (6,5,4,3,2,1).

To fix concepts, let R be the non-optimized correlation matrix⎛
⎜⎜⎜⎜⎜⎜⎝

1.0 −0.2 0.0 0.4 −0.2 −0.6
−0.2 1.0 −0.4 0.2 0.0 0.3
0.0 −0.4 1.0 −0.4 0.6 −0.2
0.4 0.2 −0.4 1.0 −0.2 −0.5

−0.2 0.0 0.6 −0.2 1.0 0.0
−0.6 0.3 −0.2 −0.5 0.0 1.0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Then the total centralization cost cR(U) in each example is

[(
σ 1)T

Rσ 1]1/2 = 29.8331,[(
σ 2)T

Rσ 2]1/2 = 15.5563,[(
σ 3)T

Rσ 3]1/2 = 8.2098.

Notice also that the cost cR(S) to the subset coalition S = {2, . . . ,6} is the same in
each example, namely 6.4031.

Now we consider the optimal R∗ in each example. Let v = (1,−1,−1,−1,

−1,−1)T , and note that vT σ 1 > 0, vT σ 2 = 0, and vT σ 3 < 0. Then, according to
Theorem 3.1, we have the following table of (partial) results:

Example vT σ R∗ cR∗(U)

σ 1 positive vvT vT σ 1

σ 2 zero vvT 0
σ 3 negative (n/a) 0
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It is worthwhile to examine the explicit form of R∗ in the case of σ 1 and σ 2:

R∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 −1 −1 −1 −1
−1 1 1 1 1 1
−1 1 1 1 1 1
−1 1 1 1 1 1
−1 1 1 1 1 1
−1 1 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

So outlet 1 is perfectly negatively correlated with outlets 2 through 6, and outlets
2 through 6 are perfectly positively correlated amongst themselves. Note also that
Theorem 3.1 does not provide the optimal solution for the case of σ 3, even though it
does provide the minimum cost, which is the gap that Theorem 3.2 addresses.

To calculate R∗ for the σ 3 case, Theorem 3.2 requires that we first construct a
balanced bi- or tri-partition of {1, . . . ,6} with respect to σ 3. For example,

S = {S1, S2, S3} = {{3,4,5,6}, {1}, {2}}
is a balanced tri-partition with

σ̄ = (σ̄1, σ̄2, σ̄3)
T = (

σ(S1), σ (S2), σ (S3)
)T = (10,6,5)T .

Then, according to (3),

V̄ ∗ =
⎛
⎝ 1.0000 0

−0.9250 0.3800
−0.8900 −0.4560

⎞
⎠

yields the optimal correlation matrix R̄∗ with respect to σ̄ via the formula

R̄∗ = V̄ ∗(V̄ ∗)T =
⎛
⎝ 1.0000 −0.9250 −0.8900

−0.9250 1.0000 0.6500
−0.8900 0.6500 1.0000

⎞
⎠ .

With this information in hand, Theorem 3.2 “pulls back” to determine an optimal
solution with respect to σ 3:

V ∗ =

⎛
⎜⎜⎜⎜⎜⎜⎝

−0.9250 0.3800
−0.8900 −0.4560
1.0000 0
1.0000 0
1.0000 0
1.0000 0

⎞
⎟⎟⎟⎟⎟⎟⎠
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and

R∗ = V ∗(V ∗)T

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1.0000 0.6500 −0.9250 −0.9250 −0.9250 −0.9250
0.6500 1.0000 −0.8900 −0.8900 −0.8900 −0.8900

−0.9250 −0.8900 1.0000 1.0000 1.0000 1.0000
−0.9250 −0.8900 1.0000 1.0000 1.0000 1.0000
−0.9250 −0.8900 1.0000 1.0000 1.0000 1.0000
−0.9250 −0.8900 1.0000 1.0000 1.0000 1.0000

⎞
⎟⎟⎟⎟⎟⎟⎠

.

One can also check that cR∗(U) = [(σ 3)T R∗σ 3]1/2 equals 0, as predicted.

3.3 Some comments on managerial decision making

As mentioned in Sect. 2.3, we consider the assumption of the ability to modify corre-
lations in an operational setting to be analogous to assumptions of perfect information
in stochastic situations. In particular, although it may not always be possible for man-
agers to modify correlations precisely, assuming this ability allows us to assess the
potential value of being able to do so. We believe the results of the previous subsec-
tions are properly viewed through this lens.

Indeed, Theorems 3.1 and 3.2 show the substantial potential value of correlation
modification: inventory costs can be minimized to max{0, σ1 − (σ2 + · · · + σn)} (as-
suming that the components of σ are sorted in nonincreasing order). Theorems 3.1
and 3.2 also give insights on how managers might work toward the optimal cost in an
operational setting, as we explain next.

First, the optimal correlation matrix R∗ can serve as a desired target for a manager.
Although it may be unrealistic to expect to achieve R∗ exactly, R∗ does present a
tangible example of improved correlations. Moreover, if R is the current correlation
structure, the manager can be sure that any movement in the direction R∗ − R will
reduce expected inventory costs.

Second, in each of the cases considered (vT σ positive, zero, or negative), the op-
timal solution R∗ provided is always of very low-rank (either rank 1 or rank 2 ac-
cording to Theorems 3.1 and 3.2). This structure on R∗ is somewhat non-intuitive.
Why should the optimal solution have such a property, particularly independent of the
number of outlets? We unfortunately do not have a satisfactory a priori explanation,
but it is interesting to understand the implications of this result.

The low-rank structure of R∗ shows that optimal centralization is achieved when
the outlets are partitioned into groups in accordance with the following guideline: for
any particular group, the sum of the standard deviations of the outlets in the group
should not be too large compared to the same measure for other groups. Said dif-
ferently, one group’s cost should not be too large compared to that of other groups.
When vT σ ≥ 0, the groups are {1} and {2, . . . , n}; when vT σ < 0, the groups corre-
spond to the balanced bi- or tri-partition of Theorem 3.2. Furthermore, the low-rank
structure of R∗ demonstrates that, in a sense, the correlations should be with respect
to groups only. All outlets within a group should be perfectly (positively) correlated,
and for each pair of groups, there should be a single correlation, common to all pairs
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of outlets between the groups. The examples of the previous subsection illustrate
these points.

For the manager trying to reduce his/her centralization costs, this gives a concep-
tually easy strategy to follow (even if managing correlations precisely is difficult).
First, partition outlets into a few groups so that costs (standard deviations) are bal-
anced. Then attempt to correlate the groups so as to minimize costs, using techniques
discussed in the introduction, for example. The low-rank matrix R∗ can serve as a
guide. In particular, it is not necessary to micromanage all n(n − 1)/2 pairs of corre-
lations.

Finally, a manager may be interested in alternate optimal solutions R∗, which
could be evaluated relative to some additional “soft constraints” (such as closeness
to the current correlation structure R). Using alternate balanced partitions, which
are easy to generate, these alternate solutions can be calculated in a straightforward
manner.

4 Fair allocations under optimized correlations

In this subsection, we assume that we have determined R∗ that minimizes the total
centralization cost cR(U), without affecting the demand distribution at each outlet
(see Sect. 3). With correlations fixed as R∗, we now turn our attention to allocating
the costs and benefits in a fair fashion (see Sect. 2).

By Theorem 3.1, we know that the optimal cost is positive if vT σ > 0 and 0
otherwise. In the second case, a = 0 is an obvious fair cost allocation. When only
nonnegative allocations are considered, a = 0 is in fact the only feasible allocation
and so is also the cost nucleolus.

For the case when cR∗(U) = vT σ > 0 and R∗ = vvT is the unique optimal so-
lution, the nucleolus can be computed in a closed form, as shown in Theorem 4.1
below. We remark that the theorem considers both nonnegative and unrestricted allo-
cations simultaneously and provides a nonnegative allocation that is the nucleolus in
both situations. For the statement of the theorem, note that e1 is the first coordinate
vector.

Theorem 4.1 If vT σ > 0 and, according to Theorem 3.1, R∗ = vvT and
cR∗(U) = vT σ , then the nucleolus of the cost game is (vT σ )e1.

The proof of this theorem is given in the Appendix.
This result says that outlet 1 should pay the entire costs of the centralization. One

intuitive explanation of the result is as follows. Because outlet 1 has a high standard
deviation of demand compared to all other outlets (i.e., vT σ > 0), the overall (opti-
mized) cost cR∗(U) is positive; if σ1 were smaller (specifically if vT σ were nonposi-
tive), then the overall (optimized) cost would be zero. Hence, the positive cost can be
attributed to (or “blamed on”) outlet 1, and so in fairness, outlet 1 should absorb all
costs. It is important to keep in mind that outlet 1 still benefits from the coalition in
that it is paying σ2 + · · · + σn less than it would if it were to act alone.
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5 Summary

The main purpose of this paper is to examine the cost optimization problem implied
by the newsvendor centralization arrangement when individual outlets experience
normally distributed demand and their inventory cost parameters are identical. In ad-
dition, it is paramount that the cost of the centralized arrangement be fairly assessed
to the individual outlets. The cost optimization problem has the form of a semidefinite
program of Goemans and Williamson (1995)—optimization over correlation matri-
ces. Tracing back to the statistics literature (Shapiro 1982) allows us to obtain a partial
classification of the optimal solutions of our SDP (Theorem 3.1). We complete the
classification of the optimal solutions by constructing an optimal correlation matrix
for any balanced partition relative to σ (Theorem 3.2).

This leads to the problem of calculating a fair cost allocation, expressed here as
the calculation of the nucleolus for the corresponding cooperative game. In principle,
it is a tedious process of solving n linear programs with an exponential number of
constraints. However, for the optimal solution of the corresponding SDP, we prove
that this can be done easily in a closed form (Theorem 4.1).

From the current study, there are some interesting open questions and possible
extensions. For example, newsvendor centralization problems with identical cost pa-
rameters are known to have a nonempty core, while the correlation optimization prob-
lem examined in this paper is restricted to normally distributed demands. For what
other interesting demand distributions can analysis like that of the paper be extended?
In addition, this paper has provided the solution of the “unconstrained” correlation
optimization, i.e., where we are allowed to shift correlations arbitrarily so as to mini-
mize cost. In reality, the ability to alter correlations could be limited in some manner,
which would constrain the SDP (2). It would be interesting to investigate such situa-
tions, for which a general purpose SDP solver is likely to be required.

Acknowledgements The authors are in debt to Alexander Shapiro for pointing out Theorem 3.1 and to
two anonymous referees who provided many helpful comments and suggestions.

Appendix: Proof of Theorem 4.1

We first discuss the procedure of Schmeidler (1969) for determining the nucleolus.
Recall that the nucleolus is calculated by solving a sequence of n linear programs
(LPs), starting with (1). Generally, once the kth LP has been solved, the (k + 1)st
LP is constructed as follows. Let εk be the optimal value of the kth LP, and let P k

denote the collection of proper subsets S �∈ P 1 ∪ · · · ∪ P k−1 of {1, . . . , n} for which
the inequality

cR∗(S) − a(S) ≥ ε
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is active in all optimal solutions of the kth LP. Then the (k + 1)st LP is

max ε

s.t. cR∗(S) − a(S) ≥ ε ∀S �∈ P 1 ∪ · · · ∪ P k, ∅ �= S � U,

cR∗(S) − a(S) = ε� ∀S ∈ P �, � = 1, . . . , k,

a(U) = cR∗(U).

(8)

It is proven by Schmeidler (1969) that the nth LP is guaranteed to have a unique
optimal solution, which is the nucleolus.

Our next step is to specialize the first LP (1) to the case of Theorem 4.1, i.e., when
R∗ = vvT is the unique optimal solution of (2) and the optimal cost cR∗(U) equals
vT σ = σ1 − (σ2 + · · · + σn) > 0. For this, the first important observation is that

cR∗(S) =
∣∣∣∣∑
i∈S

σivi

∣∣∣∣ =
{

σ1 − σ(S \ 1) if 1 ∈ S,

σ (S) if 1 �∈ S.

Defining S1 to be the collection of all proper subsets S of {1, . . . , n} having 1 ∈ S and
S c

1 to be the collection of S such that 1 �∈ S, (1) becomes

max ε

s.t. σ1 − σ(S \ 1) − a(S) ≥ ε ∀S ∈ S1,

σ (S) − a(S) ≥ ε ∀S ∈ S c
1,

a(U) = vT σ.

(9)

Also define T1 and T c
1 similarly to S1 and S c

1 except with respect to the ground
set {1, . . . , n − 1}. We consider the problem

max ε

s.t. (σ1 − σn) − σ(S \ 1) − a(S) ≥ ε ∀S ∈ T1,

σ (S) − a(S) ≥ ε ∀S ∈ T c
1 ,

a(U \ n) = vT σ,

(10)

which is the first-stage LP for calculating the nucleolus of the reduced-dimension
cost game given by

σ̄ = (σ1 − σn,σ2, . . . , σn−1)
T ∈ �n−1 (11)

with the same cost structure. The proof of Theorem 4.1 hinges on establishing the
following result, whose proof is given in Sect. 6.1.

Lemma 6.1 Let σ be given as in Theorem 4.1. During the process for calculating the
nucleolus a of the cost game with respect to σ , the second-stage LP ensures an = 0.
Moreover, the second-stage LP is equivalent to (10).
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The equivalence just stated in Lemma 6.1 has the following precise meaning: the
feasible sets of (10) and the second-stage LP are in bijective correspondence via the
map (a1, . . . , an−1) ↔ (a1, . . . , an−1,0).

With Lemma 6.1, Theorem 4.1 is easy to prove:

Proof Let a be the nucleolus. Lemma 6.1 establishes that an = 0. Moreover, the
second-stage LP is equivalent to (10) by Lemma 6.1, where (10) is itself the first-
stage nucleolus LP for σ̄ given by (11) with the same cost structure. Further, vT σ > 0
implies that σ̄ has the analogous property σ̄1 > σ̄2 + · · · + σ̄n−1. It then follows by
induction that 0 = an−1 = · · · = a2, which proves the theorem. �

6.1 Proof of Lemma 6.1

We will prove Lemma 6.1 in several steps, each of which helps characterize the
second-stage LP of the nucleolus calculation. To simplify the presentation, we con-
sider only the case that the allocation a is unrestricted (the proofs for a ≥ 0 are exactly
the same), and we also assume σn−1 > σn (it is not hard to handle the case when the
tail of σ is constant).

First, we show that ((vT σ )e1, σn) is an optimal solution of the first-stage LP.

Lemma 6.2 The vector (a, ε) = ((vT σ )e1, σn) is an optimal solution of the first-
stage LP (9).

Proof We first show that the proposed vector (a, ε) is feasible. Clearly a(U) = vT σ .
For convenience, let [n] denote the set {1, . . . , n}. Then, for S ∈ S1, we have

σ1 − σ(S \ 1) − a(S) = σ1 − σ(S \ 1) − vT σ = σ1 − σ(S \ 1) − (
σ1 − σ

([n] \ 1
))

= σ
([n] \ 1

) − σ(S \ 1) = σ
([n] \ S

) ≥ σn,

where the last inequality follows because [n] \ S is nonempty and σn is the smallest
component in σ . Next, for S ∈ S c

1 , we have

σ(S) − a(S) = σ(S) ≥ σn,

which follows because S is nonempty and σn is smallest. Overall, we see that the
proposed (a, ε) is feasible.

We can also show that any feasible (a, ε) has ε ≤ σn, which will prove the result.
Taking S = {n} and considering the constraint σ(S) − a(S) ≥ ε, we see σn − an ≥ ε.
In addition, taking S = {1, . . . , n − 1} and considering the constraint σ1 − σ(S \ 1) −
a(S) ≥ ε, we see that

σ1 − (σ2 + · · · + σn−1) − (a1 + · · · + an−1) ≥ ε.

Adding these two inequalities and using the fact that a(U) = vT σ = σ1 − (σ2 +· · ·+
σn), we conclude 2σn ≥ 2ε, as desired. �

In accordance with the procedure for calculating the nucleolus, our next step is
to determine which inequalities are active in every optimal solution of (9). We do
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so using a duality argument. Introducing a dual variable yS ≥ 0 for each inequality
constraint of (9) and a free dual variable λ for the equality constraint, the dual of (9)
is

min
∑
S∈S1

[
σ1 − σ(S \ 1)

]
yS +

∑
S∈S c

1

σ(S)yS − (
vT σ

)
λ

s.t. λ =
∑
S∈Sj

yS, ∀j = 1, . . . , n,

∑
∅�=S�U

yS = 1, y ≥ 0,

(12)

where, analogous to S1, for all j = 2, . . . , n, Sj is defined to be the collection of all
proper subsets S of {1, . . . , n} having j ∈ S.

Lemma 6.3 Consider the optimal solution (a, ε) = ((vT σ )e1, σn) of (9). The active
inequalities correspond precisely to the sets {1, . . . , n − 1} and {n}. As a result, in
every optimal dual solution (y,λ) of (12), it holds that yS = 0 for all other sets S.

Proof The proof of Lemma 6.2 shows that, with the optimal solution (a, ε), the in-
equalities of (9) reduce to

σ
([n] \ S

) ≥ σn ∀S ∈ S1,

σ (S) ≥ σn ∀S ∈ S c
1 .

From this, it is not difficult to see that equality is attained—and can only be attained—
for the sets {1, . . . , n − 1} and {n}. Complementary slackness proves the second part
of the lemma. �

Next, we show that the same inequalities are active even in the case of multiple
optimal solutions.

Proposition 6.1 Regarding (9), the inequalities which are active in every optimal
solution correspond precisely to the sets {1, . . . , n − 1} and {n}.

Proof We know from Lemma 6.3 that those inequalities not corresponding to
{1, . . . , n − 1} or {n} are inactive in the specific optimal solution provided by
Lemma 6.2. To prove the current proposition, it thus remains to show that the in-
equalities corresponding to {1, . . . , n − 1} or {n} are active in all optimal solutions
of (9).

Consider the dual (12). Lemma 6.3 implies that, at optimality, the dual simplifies
to

min
[
σ1 − σ

({2, . . . , n − 1})]y{1,...,n−1} + σny{n} − (
vT σ

)
λ

s.t. λ = y{1,...,n−1},

λ = y{n},

y{1,...,n−1} + y{n} = 1 y ≥ 0.



Newsvendor games: convex optimization of centralized inventory

It follows that λ = y{1,...,n−1} = yn = 1/2 with objective value σn. Thus, complemen-
tary slackness implies that the inequalities in (9) corresponding to {1, . . . , n − 1} and
{n} are active in all optimal solutions of (9). This proves the desired result. �

Now, with Proposition 6.1 in hand, we can construct the second-stage nucleo-
lus LP:

max ε

s.t. σ1 − σ(S \ 1) − a(S) ≥ ε ∀S ∈ S1 \ {{1, . . . , n − 1}},
σ (S) − a(S) ≥ ε ∀S ∈ S c

1 \ {{n}},
σ1 − σ

({2, . . . , n − 1}) − a
({1, . . . , n − 1}) = σn,

σ
({n}) − a

({n}) = σn,

a(U) = vT σ.

(13)

Note that the fourth constraint implies an = 0 so that the third is implied by a(U) =
vT σ . As a result, (13) simplifies to

max ε

s.t. σ1 − σ(S \ 1) − a(S) ≥ ε ∀S ∈ S1 \ {{1, . . . , n − 1}},
σ (S) − a(S) ≥ ε ∀S ∈ S c

1 \ {{n}},
a(U) = vT σ,

an = 0.

(14)

It is possible to simplify (14) further. Related to the first constraint, consider S ∈
S1 \ {{1, . . . , n − 1}} such that n �∈ S. We claim that the constraint for S ∪ n implies
the constraint for S. This is seen by using an = 0 to establish

σ1 − σ(S ∪ n \ 1) − a(S ∪ n) ≥ ε ⇐⇒ σ1 − σ(S \ 1) − a(S) ≥ ε + σn

=⇒ σ1 − σ(S \ 1) − a(S) ≥ ε.

Related to the second constraint, consider S ∈ S c
1 \ {{n}} such that n �∈ S. In this case,

we claim that the constraint for S implies the constraint for S ∪ n:

σ(S) − a(S) ≥ ε =⇒ σ(S) − a(S) ≥ ε − σn

⇐⇒ σ(S ∪ n) − a(S ∪ n) ≥ ε.

As a result, we can remove all inequality constraints of the first type for which n �∈ S

and all constraints of the second type which have n ∈ S so that (14) becomes

max ε

s.t. σ1 − σ(S \ 1) − a(S) ≥ ε ∀S ∈ S1 \ {{1, . . . , n − 1}} with n ∈ S,

σ (S) − a(S) ≥ ε ∀S ∈ S c
1 \ {{n}} with n �∈ S,

a(U) = vT σ,

an = 0.

(15)
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Now it easy to see that (15) is equivalent to (10), where an = 0 has been eliminated
(without consequence) from the problem. This establishes Lemma 6.1.
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