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Abstract

This paper examines contract practices between suppliers and retailers in the agricultural seed industry. We construct
and analyze single-retailer models of various contract types actually used in the industry, which include, for example, cer-
tain ‘‘bonus’’ and ‘‘penalty’’ features. With no assumption on the demand distribution, we establish sufficient conditions
for contract parameters to guarantee supply chain coordination. Under the assumption of uniform demand, we fully char-
acterize all coordinating contracts. In addition, we compare the models studied herein with other models in the literature
and demonstrate that current behavior in the agricultural seed industry is substantively different than that captured by
other models. Conversely, we argue why other existing models are not reasonable to implement in the agricultural seed
industry.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Supply chain management; OR in agriculture

1. Introduction

We consider the problem faced by a large supplier of agricultural seeds in setting the terms of trade with
multiple retailers. The supplier sells seeds to independent seed dealers (the retailers) who in turn sell the seeds
to individual farmers. Any seed sold in one year must have been produced in a previous growing season, so the
supplier may sell out of existing inventory: it is too late to produce additional seed once information on
demand starts to come in.

Each independent dealer faces an uncertain demand for each variety of seed. To determine how much seed
to order from the supplier, the dealer maximizes his expected profits. The problem faced by the supplier is how
to set the terms of trade so that each dealer’s ordering decision, driven by individual profit maximization, leads
to a result that is good for the supply channel, i.e., the supply chain, as a whole. In this paper, we examine
mechanisms actually employed to set the terms of trade with the independent seed dealers. A key question
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we ask is whether and under what conditions these mechanisms are capable of coordinating the supply chain
in the sense of maximizing total channel profits.

It is important to note that the mechanisms we shall examine are those that have been developed and are
currently employed by seed suppliers in the agricultural industry. We claim neither that these are the only
mechanisms possible nor that they are in every sense optimal. Indeed, many other mechanisms, that could the-
oretically be used in the seed industry, have been developed and proposed by other authors (see Section 2). We
do claim, however, that the actual mechanisms used are rational in the context of the agricultural seed indus-
try; we give a historical description of their development in Section 1.1.

Traditionally in the seed industry, the independent dealer has been able to return any unsold seed at the end
of the season for full credit. Since the supplier even pays for costs of returning the unsold seed, the indepen-
dent dealer bears no risk for ordering excess seed. As a result, in the absence of any other incentives, the inde-
pendent dealer has every incentive to order large amounts of seed that may not be sold. Doing so, however,
incurs extra costs for the supplier and the supply channel. The net result is that independent dealers tend to
order and stock far more seed than is optimal for the supply channel as a whole.

This paper examines two incentive systems actually used by a seed supplier with whom we worked, which
are intended to better coordinate independent dealer decisions with supply channel objectives. One system,
which we call the pure bonus system, is more widely used in the seed industry than the other, which we call
the mixed system.

In the pure bonus system, the independent dealer receives a bonus provided his actual sales meet or exceed a
specified percentage of the amount he ordered. The pure bonus system is believed by many observers to be an
effective incentive system for varieties of seeds (called hybrids) whose markets are older and well established.
Recently, however, the industry has experienced shorter product life cycles which implies, ceteris paribus, an
increase in the number of new hybrids being marketed at any given time. The intuition and experience of
industry observers suggest that the pure bonus system is less effective in these cases. (We will show in Section
4.1.1 that this intuition is correct: the situations in which the pure bonus system breaks down correspond to
newly introduced products.)

In response, the agricultural seed industry has developed a new system – the mixed system – of which the
intent is to more effectively coordinate newly introduced hybrids. The mixed system incorporates the bonus
system, but also adds to it a penalty system in which the dealer now pays a penalty if his sales equal or are
less than a specified percentage of the amount ordered.

For the assumption of arbitrary demand distributions, this paper studies the dealer’s behavior under the
pure bonus and mixed systems. Simple interpretations are presented, describing how the two systems allow
the supplier to affect the dealer in the desired fashion. Furthermore, we will show that the pure bonus system
is not always effective at coordination but that the supplier can always design a mixed system to coordinate
independent dealer decisions with supply channel objectives.

Motivated by discussions with a seed supplier and an independent dealer, who often use the uniform dis-
tribution to model demand, this paper then specializes its analysis to the case of the uniform distribution,
where necessary and sufficient conditions, which guarantee the pure bonus system can be effective at coordi-
nation, are provided. Furthermore, we provide a full classification of how the supplier can design a mixed sys-
tem that is effective. Finally, we show how the supplier can design the incentive system to achieve various
desired levels of dealer profitability while also being effective.

The use of the uniform distribution in practice appears to be a consequence of the short life cycles
of hybrids in the industry. Specifically, any given dealer will have at most a few years of demand history
for a particular hybrid; even well-established hybrids will have only 6–8 years of history. In such cases
where there are few data points, the uniform distribution is a reasonable choice. (See Section 4 for more
detail.)

To get some idea for the potential financial and operational impacts these decisions can have, note that
Fernandez-Cornejo (2004) reports that in 1997, total expenditures on seed by United States farmers totaled
over $6.7 billion. The two major seed stocks of corn and soybeans accounted for more than $2.3 billion
and $1.3 billion, respectively, in the same year. In terms of tons of seed, the figures for corn and soybeans
in 1997 are 580 and 2064 thousand tons, respectively. For corn alone, that translates into total sales of approx-
imately 25 million bags (at approximately 42–43 pounds per bag).
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1.1. Historical background of the seed industry

According to our sources in the seed industry, agricultural seed suppliers have traditionally allowed returns
at a buyback price of 100% of wholesale. The origin of the decision to use 100% buybacks is lost in the mists of
history, but probably arose from the feeling that, since margins in the seed industry are reasonably high, lost
sales are much more costly to the supplier than are returns. It is also worth keeping in mind that an individual
supplier has nothing close to monopoly power over independent dealers. An independent dealer can decide to
carry a competitor’s seed, so any attempt by a supplier to drastically change the terms of trade to the detriment
of its independent dealers is unlikely to be successful.

Of course, if the dealer bears no cost for over-ordering, he would have no incentive to restrain his most
optimistic scenarios for sales forecasts when placing orders with the seed supplier. Accordingly, the seed sup-
pliers needed to incorporate a mechanism to provide appropriate incentives to dealers. Although a variety of
options might have been possible (reduced buyback, for example), seed suppliers sought a mechanism that
would present itself as a clear win–win situation and hence not encounter any dealer resistance. They chose
to implement a bonus system in which the dealer is given a bonus or rebate on every unit sold, so long as total
sales exceed some specified percentage of the dealer’s order quantity. It is clear that the bonus system is in the
dealer’s favor, for he cannot do worse with the bonus system than without it. At the same time, it gives the
dealer incentive to reduce his order quantities to somewhat reasonable levels to make it more likely that he will
earn the bonus.

While the bonus system has been widely practiced by the agricultural seed industry for years, more recently
there have emerged, for reasons that shall be discussed in more detail later, concerns that it has become less
effective at coordinating the supply chain. Accordingly, the agricultural seed industry has begun experimenting
with a new penalty system in which the dealer receives a reduced buyback price for each unit of seed returned
whenever total returns exceed some pre-specified percentage of the amount ordered. (In the notation of Sec-
tion 3.4, this percentage is 1� p). If the pre-specified percentage were zero, then the penalty would be applied
to all returns, and, as we shall show later, the pure penalty model (i.e., no bonus features) with a pre-specified
percentage of zero is equivalent to an existing model of Pasternack (1985). Although this equivalence may be
of interest theoretically, it is of no practical concern. For reasons of dealer relations, seed suppliers cannot
abandon the current bonus system and move to a pure penalty model. A company doing so unilaterally would
literally be cutting its own throat.

In what follows, we shall examine in detail the pure bonus system model to determine when it does and does
not coordinate the supply chain. We shall also do the same for the newer mixed model that incorporates both
penalties and bonuses. Furthermore, we shall examine in some detail the entire spectrum of coordinating con-
tracts and their profit splitting effects. Finally, we also provide in Appendix A detailed proofs that seed com-
pany models are indeed different from previous models appearing in the literature.

1.2. Bonus and penalty systems in other industries

To provide some perspective on how key coordination issues arising in the agricultural seed industry – par-
ticularly the need for contractual mechanisms that force the dealer to accept some risk of over-ordering – may
also arise in other industries, we now describe a situation communicated to us by Ohlmann (2006).

The University of Iowa contracts with a media publisher to supply football game-day programs for sale at
the university’s home football games. Each summer, the university requests a certain number of programs for
each football game, which are then produced and supplied by the publisher prior to each game. A key feature
of the agreement is that the university receives the programs ‘‘on consignment’’ (no up-front cost), sells as
many programs as possible, receives money from the publisher for programs sold, and finally returns all
unsold programs to the publisher after each game. However, it is important to stress that, unlike typical con-
signment, the university controls the number of programs for sale (via its order quantity) as opposed to the
publisher.

The contract between the university and publisher specifies how much money the university receives for
each unit sold. It is clear that if the university receives a fixed amount, say $0.40, for each program sold, then
the university has every incentive to order large numbers of programs. Since this behavior is unsatisfactory for
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the publisher, the publisher has instead insisted on a contract which provides the university with an incentive
to moderate its order quantity. An example of the contract type actually used is the following. Although the
numbers are not exact (exact numbers are proprietary), they do represent the correct magnitude of actual con-
tract parameters:

Let Qi be the university’s order quantity for the ith game. If the university sells 0–50% of Qi, then it receives
$0.40 on each unit sold. If 50–75%, then $0.50, and if 75–100%, then $0.60. Moreover, if the university sells
over 90% of Qi, then it receives an additional payment – a lump-sum payment of $300 (independent of Qi

and the amount sold).

This type of contract clearly provides a strong incentive for the university to sell as large a percentage of its
order quantity as possible. Assuming that the university cannot affect demand, this would motivate the uni-
versity to order fewer programs.

So how does the university situation compare to that of the agricultural seed industry? Note that the bonus
system in the seed industry is actually a special case of the system used in the university situation (per game).
In particular, one can identify the per-unit profit received by the seed dealer (revenue minus wholesale) with
the base profit level of the university ($0.40 in the example above), and the bonus paid to the seed dealer is
identified with the incremental profit received by the university for selling higher percentages of Qi. In the seed
industry, there is only one threshold beyond which the bonus is applicable, whereas the university situation is
more general in that multiple thresholds are allowed. Finally, the seed situation has no lump-sum payment.
Note also that the penalty system in the seed industry has no counterpart in the university situation.

2. Literature review

There has been considerable interest recently in the study of contracts to coordinate supply chain ordering
policies. The simplest setting in these studies is that of a single supplier and one or more retailers. (In our appli-
cation, seed dealers are retailers. We will use the word ‘‘retailer’’ in this section in order to be consistent with
established terminology.) The usual objective is to determine contract parameters between the supplier and
retailer(s) so that the retailer will order a quantity of the good that maximizes total expected supply chain
profit. In the absence of appropriate parameters, the retailer may order a quantity that maximizes his expected
profit, but is sub-optimal for the supply chain as a whole. Excellent surveys of much of this work can be found
in Tsay et al. (1999), Lariviere (1999), and more recently, Cachon and Lariviere (2005). In what follows, we
will review only those models that are most closely related to the seed company setting.

For a review of related work in the economics literature, see Katz (1989). For related marketing literature,
see Jeuland and Shogan (1983) and Moorthy (1987) for the role of pricing in channel coordination.

Consider a simple supply chain with a single supplier and retailer. The retailer faces uncertain demand with
density function f and distribution function F. The wholesale price to the retailer is w while r is the retail price.
Unsold goods can be salvaged for v per unit and/or (depending on the contract) returned to the supplier for a
credit of a per unit. The retailer’s order quantity is denoted by Q. The supplier’s cost of goods is g per unit.
With these parameters, the usual newsvendor solution gives

Q�c ¼ F �1 r � g
r � v

� �
as the channel coordinating order quantity. As long as a > v, the profit maximizing retailer will return all un-
sold units to the supplier as opposed to salvaging those units. In this case, the profit maximizing retailer will
order

Q�d ¼ F �1 r � w
r � a

� �
:

For insight into the models we review below, see Fig. 1. In the figure, material flows are illustrated by solid
arrows while cash flows are illustrated by dashed arrows. The flows are labeled by numbers, and labels (1)–(5)
correspond to a material/cash flow pair, while labels (6)–(8) are only cash flows.
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Pasternack (1985) developed contract parameters that equated Q�c and Q�d . Lariviere (1999) explains Paster-
nack’s model as follows. (In Pasternack’s model, only (1)–(5) in Fig. 1 are relevant.) For any parameter
e 2 ð0; r � gÞ, if the supplier’s terms to the retailer are

fwðeÞ; aðeÞg ¼ r � e; r � e
r � v
r � g

� �� �
; ð1Þ

then Q�d ¼ Q�c , i.e., the retailer’s order quantity maximizes total expected supply chain profit. (We note that
since aðeÞ > v, the rational retailer will not salvage excess stock, instead returning such stock to the supplier.
Thus effectively, (4) is not used.) One of the key features of this contract is that the terms are completely inde-
pendent of the demand distribution F, and thus it can be offered to more than one retailer that may face dis-
tinctly different distributions of demand. However, when identical parameters fwðeÞ; aðeÞg are offered to
multiple retailers, individual retailers may receive wildly different portions of overall supply chain profit.

Tsay (1999) studied the concept of a Quantity Flexible (QF) contract. In this setting, the supplier’s contract
to the retailer is specified by parameters fw; d; ug, where w is the usual wholesale price and d 2 ½0; 1� and
u 2 ½�d;1Þ are ‘‘downside’’ and ‘‘upside’’ adjustments to an initial forecast q of order quantity by the retailer.
In essence, the retailer inputs his initial forecast q, and the supplier guarantees the production of at least
qð1þ uÞ units. (In fact, under appropriate assumptions, Tsay argues that the supplier has an incentive to pro-
duce the bare minimum dictated by the contract, i.e., exactly qð1þ uÞ units; see proposition 2 of his paper.) It
is important to emphasize that, in this model, manufacturing occurs after the retailer’s initial q. Then, after
receiving a (likely imperfect) signal of demand, the retailer submits his actual order quantity Q, which must
be at least qð1� dÞ according to the contract. Thus the supplier is exposed to a possible increase in the
original forecast but is also guaranteed a minimum order from the retailer. Tsay’s model uses (1)–(4) in
Fig. 1, and a number of different coordinating contracts are possible (although they depend upon the demand
distribution F).

Returning to the general situation, in the absence of returns to the supplier, in which case unsold units must
be salvaged, the retailer accepts the full risk of overstocking. As a result, the retailer typically tends to order
less than Q�c . Taylor (2002) developed a Target Rebate contract that induces the retailer to order more. It oper-
ates as follows. If demand exceeds some preset target level T, then the supplier will pay the retailer s per unit
(a rebate) for all sales above T. Thus Taylor’s model uses (1)–(4) and (6) in Fig. 1 where the cash flow on (6) is
s/unit on ½D� T �þ. The coordinating contract parameters fw; s; Tg developed by Taylor depend upon F and
thus different coordinating contracts would most likely be required for different retailers.

Fig. 1. Material and cash flows in the supply chain.
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Cachon and Lariviere (2005) outlined a revenue-sharing model that is shown to coordinate the supply
chain. In this model, for some given k 2 ð0; 1�, the supplier’s cost to the retailer is w ¼ kg. For each unit sold,
the retailer returns ð1� kÞr to the supplier and keeps kr. Unsold units are not returned to the supplier but are
salvaged. The retailer returns ð1� kÞv to the supplier for each unit salvaged, and keeps kv. The model uses (1)–
(4), (7), and (8) in Fig. 1. In this scenario, the retailer’s optimal order quantity is

Q�d ¼ F �1 kr � kg
kr � kv

� �
¼ Q�c ;

and so coordination occurs. System optimal expected profit is divided with a proportion k (a negotiating fac-
tor) going to the retailer while the proportion 1� k is earned by the supplier.

2.1. Initial comparisons with the literature

The model we study is fundamentally different than those studied previously. Here we provide insight into
how the seed company model differs from those of Pasternack, Tsay, and Taylor. More details are given in
Section 3.5 and in Appendix A.

A first important difference between the seed company model and both Pasternack’s and Taylor’s is that
changing the wholesale price w is not a realistic possibility in the seed industry as we describe in Section 3.
In contrast, Pasternack and Taylor assume the ability to adjust w as a term of the contract between supplier
and retailer. In particular, adjusting w can be used as a mechanism to divert a larger portion of channel profit
to the supplier or to the retailer. (We will show that, even with w fixed, coordination will still be possible in our
case, as well as the ability to divert profit to either one of the participants – see Section 4.)

One significant difference between the seed company model and Pasternack’s becomes clear in a multi-retai-
ler environment in which the same wholesale price must be charged to all retailers. As long as there is only one
retailer, Pasternack’s model achieves coordination and can also split total channel profits in any way desired
by changing the wholesale price and buyback price. When there are multiple retailers and sufficient supply,2 if
we can set up different wholesale prices and buybacks for each different retailer, then once again there is no
problem in coordinating and achieving any desired split of total channel profits. Suppose, however, that the
same wholesale price must be charged to every retailer. This is actually the case in the agricultural seed indus-
try, and it is easy to see why this might be so when the dealers are independent. In that case, there is, for each
retailer, a unique coordinating buyback. Since there is no flexibility to set the buyback while simultaneously
achieving coordination, the split of profits between supplier and dealer cannot be adjusted under Pasternack’s
model. In our case, however, we will show that the seed company model has enough built-in flexibility to
achieve any desired split of profits even when w is fixed for all retailers. (This result does assume that each
retailer gets his own contract with certain individualized parameters, namely, the bonus and penalty
parameters.)

As an aside, we mention that, in the United States, the federal Robinson-Patman Act of 1936 does allow the
supplier to offer a single ‘‘menu’’ of contracts to all retailers, from which each retailer can make its own choice.
One could hypothesize that a properly designed menu would allow the supplier to control profit portions.
However, when presented with any menu, all retailers will choose the same contract, namely the one with
the smallest wholesale price, making the menu useless for controlling profit portions. This observation follows
from a result of Pasternack, which establishes that, as the wholesale price increases within coordinating con-
tracts, the retailer gets a smaller and smaller portion of system profit.

Taylor’s model uses a different coordinating mechanism than the seed supplier. For Taylor, the target T is
set independent of the order quantity Q, and the retailer receives a rebate only on units sold above T. In the
seed model, the threshold beyond which the retailer receives a bonus is dependent on Q, and the retailer
receives a bonus on all units sold if he meets this threshold.

2 When supply is limited, channel coordination among multiple retailers can be extremely complicated. In the seed industry, limited
supply may occur, for example, when a new hybrid, which was grown one season ago, receives unexpectedly high demand this season
(when there is no time to manufacture more supply). Complicating issues include the retailers purposefully ordering much more than
needed and the supplier attempting to ration supply.
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Regarding how Tsay’s model relates to the seed company model, it is helpful to explain the operation of
the seed industry in a bit more detail. Each winter, the independent dealer orders seed that the supplier will
deliver the following spring. The seed must have been produced in a previous growing season (summer),
prior to the independent dealer’s order. Furthermore, the actual sales of seed from dealers to farmers takes
place in a very short period of time in the spring so that it is not feasible to consider updating demand
distributions.

Thus, Tsay’s model, which has an initial order forecast q before manufacturing occurs and also includes a
demand update before the actual order Q is placed, is not applicable to the actual situation encountered
herein.

With that in mind, it is worth noting that the models we investigate cannot, even in principle, be equivalent
to that of Tsay. The reasoning goes something like this. Tsay’s model takes advantage of updated information,
but the models we investigate do not. If the industry models produced the same results as Tsay’s model, then
we would have duplicated (without any additional information on demand) the same good results that could
be obtained with updated (perhaps perfect!) information. While such an outcome would be startling indeed,
we do not claim to have accomplished this miraculous feat. Indeed, in Appendix A we shall show formally that
Tsay’s model cannot be equivalent to those studied herein.

3. The pure bonus and mixed systems in practice

Our model of the seed supply channel assumes a single supplier selling a single product. Since we will be
looking at the contractual arrangements between the supplier and individual independent dealers, we assume
that there is a single independent dealer. We further assume that all production costs have already been
incurred by the supplier, which is consistent with the long lead times associated with seed production. The
independent dealer acquires units from the supplier at a wholesale price of w to be sold to individual farmers
at a retail price of r set by the supplier. Each unit ordered by the dealer also incurs a cost of s, which is
absorbed by the supplier. The cost s includes not only the one-way cost of transporting the unit to the dealer
but could in principle also include the cost of goods, g. Thus, s is to be regarded as the entire cost to the
supplier of delivering one unit to the dealer. For the particular application with which we are concerned,
the supplier must meet all demand out of inventory: the cost of producing the seed was incurred the previous
growing season and is a sunk cost, i.e., g ¼ 0. We assume 0 < s < w < r.

We emphasize the viewpoint that s, w, and r are exogenously given. For example, s has been previously
determined by certain logistical decisions. Also, the market for agricultural seeds is quite competitive: most
products have a variety of close substitutes marketed by competitors and the supplier has little pricing power
in the ultimate market. We assume, therefore, that market conditions provide r exogenously. Although the
supplier can (and does) determine w, even here the supplier is somewhat constrained by the fact that dealers
are independent and may sell a competing product instead if the supplier attempts to grab too large a share of
channel profits by setting w too high. Additionally, organizationally, w is set to be the same for all independent
dealers. What this paper will concern itself with is setting the terms of both pure bonus and mixed incentive
contracts that are drawn up individually for each independent dealer. Thus, w is assumed to be exogenous to
the seed company model.

Due to regulations in the agricultural seed industry, any unsold units at the end of a season may not be kept
by the dealer for sale in the following season. Instead, the dealer must return unsold units to the supplier, who
is then obligated to perform certain tests (e.g., germination tests), which guarantee the continued quality of the
seed, or may be required to repackage products or dispose of spoiled units. Associated with these transfers are
a one-way per-unit transportation cost of t (traditionally absorbed by the supplier) and an additional per-unit
operational cost of c (also absorbed by the supplier). Here again, we assume that both t and c are exogenously
given. The operational cost of c incurred by the supplier when seed is returned can include a salvage value
(which would reduce the operational cost or even drive it negative), so long as the salvage value is received
by the supplier. The cost c is to be regarded as the total cost exclusive of transportation costs (if positive)
or benefit (if negative) incurred by the supplier when seed is returned. We remark also that the dealer is
not allowed to discard unsold units himself due to environmental concerns over the chemicals commonly used
in coatings that are applied to the seed by the supplier to ensure proper germination.
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The dealer must decide how much seed to order before he realizes his true demand; this is the uncertainty
faced by the dealer. In this section, we assume that demand is distributed on the interval ½‘; u�, where
0 6 ‘ < u < þ1. By f and F, we denote the corresponding probability density function and its cumulative dis-
tribution function, and we assume that f and F are smooth on ½‘; u�. In particular, we have F ð‘Þ ¼ 0 and
F ðuÞ ¼ 1. We also assume that 0 < F ðQÞ < 1 for all Q 2 ð‘; uÞ; otherwise, demand actually occurs on a smaller
interval than ½‘; u�.

3.1. The optimal channel ordering quantity

From the perspective of the entire supply channel, determining the optimal quantity for the dealer to have
on-hand is a standard newsvendor problem with the per-unit underage cost of cu ¼ r � s and per-unit overage
cost of co ¼ sþ t þ c. Hence, an optimal ordering quantity Q for the entire channel satisfies

F ðQÞ ¼ cu

cu þ co
¼ r � s

r þ t þ c
: ð2Þ

Because F ðQÞ is non-decreasing from 0 to 1, (2) is guaranteed to have a solution, and in fact, for most typical
distributions, F ðQÞ is strictly increasing so that the solution is unique. For example, if f is positive in the inter-
val ð‘; uÞ, then F ðQÞ is strictly increasing. We let Q�c denote any particular solution of (2) and remark that the
following inequalities hold: ‘ < Q�c < u and 0 < F ðQ�cÞ < 1.

Stated simply, the supplier’s task of supply channel coordination is to set up a system, for which it is in the
best interest of the dealer to order precisely Q�c .

3.2. The basic system

The basic system allows the dealer to return all unsold units for full credit of w per unit. We assume that the
dealer will order some quantity Q 2 ½‘; u� for an ordering cost of wQ. As a function of Q, the dealer’s expected
revenue is

ERðQÞ ¼
Z Q

‘

ðrxþ wðQ� xÞÞf ðxÞdxþ
Z u

Q
ðrQÞf ðxÞdx

¼
Z Q

‘

ðrx� wxÞf ðxÞdxþ wQ
Z Q

‘

f ðxÞdxþ rQ
Z u

Q
f ðxÞdx

¼ ðr � wÞ
Z Q

‘

xf ðxÞdxþ wQF ðQÞ þ rQð1� F ðQÞÞ: ð3Þ

In total, the dealer’s expected profit, which we denote by EðQÞ, is ERðQÞ � wQ. We assume that the dealer will
maximize EðQÞ over ½‘; u�, and we denote his optimal choice by Q�d .

Because

ER0ðQÞ ¼ ðr � wÞQf ðQÞ þ wF ðQÞ þ wQf ðQÞ þ rð1� F ðQÞÞ � rQf ðQÞ ¼ wF ðQÞ þ r½1� F ðQÞ�; ð4Þ

we see that E0ðQÞ ¼ ðr � wÞ½1� F ðQÞ�, which shows that EðQÞ is a strictly increasing function of Q, so that the
expected profit is maximized in all cases at u. In other words, Q�d ¼ u. Since Q�c < u, we conclude that the basic
system does not coordinate the supply channel.

Evidently, the policy of accepting unrestricted returns places no risk of overages onto the dealer, and so the
dealer responds by ordering the maximum quantity so as to minimize his chance of having too few units on
hand. Precisely this behavior has prompted the supplier to implement a bonus system, as we discuss next.

3.3. The pure bonus system

In the pure bonus system, the supplier sets two parameters, b P 0 and b 2 ð‘=u; 1�, and the system works as
follows: the dealer will receive a bonus of b on each unit sold if he sells at least bQ units; otherwise, he gets no
bonus. The intuition behind this system is that a sufficiently generous bonus will induce the dealer to order less
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for fear of losing the prospective bonus. We call each pair ðb; bÞ a pure bonus system. Note that setting b ¼ 0
recovers the basic system.

Also note that any value of b less than or equal to ‘=u would guarantee the bonus for the dealer since
demand will be at least ‘ and since ‘ ¼ ð‘=uÞu P ð‘=uÞQ. Under such a scenario, the dealer would simply order
u units as under the basic system. Since the intent of the bonus system is to encourage the dealer to order less,
we restrict b to be greater than ‘=u.

The bonus is merely a money transfer between the two members of the channel. As a consequence, the
bonus does not impact the channel profits, but it does influence the profit of the independent dealer, as well
as his optimal ordering quantity. In this sense, the dealer’s optimal order quantity, denoted as Qb�

d , is a func-
tion of the pair ðb; bÞ.

In order to describe the dealer’s expected profit, we introduce the following simple function:
hbðQÞ ¼ maxf‘; bQg. Then the dealer’s expected bonus is given by

EBðQÞ ¼
Z Q

hbðQÞ
ðbxÞf ðxÞdxþ

Z u

Q
ðbQÞf ðxÞdx ¼ b

Z Q

hbðQÞ
xf ðxÞdxþ bQ

Z u

Q
f ðxÞdx

¼ b
Z Q

hbðQÞ
xf ðxÞdxþ bQð1� F ðQÞÞ; ð5Þ

so that the dealer’s expected profit is

EbðQÞ ¼ ERðQÞ þ EBðQÞ � wQ;

where ERðQÞ is given by (3).
We investigate Qb�

d , i.e., the Q that maximizes EbðQÞ, and so we consider ðEbÞ0ðQÞ. Because hbðQÞ is differ-
entiable everywhere except at Q ¼ ‘=b, we have the following expression for EB0ðQÞ:

EB0ðQÞ ¼ b½1� F ðQÞ� Q 2 ½‘; ‘=bÞ;
b½1� F ðQÞ � b2Qf ðbQÞ� Q 2 ð‘=b; u�:

�
ð6Þ

By combining (4) and (6), we have

ðEbÞ0ðQÞ ¼ ðr � wÞ½1� F ðQÞ� þ b½1� F ðQÞ� Q 2 ½‘; ‘=bÞ;
ðr � wÞ½1� F ðQÞ� þ b½1� F ðQÞ � b2Qf ðbQÞ� Q 2 ð‘=b; u�:

�
ð7Þ

This derivative shows that the dealer’s expected profit is strictly increasing until at least Q ¼ ‘=b; so the dealer
will take at least ‘=b units, i.e., Qb�

d P ‘=b.
Unfortunately, the bonus system is not sufficient for channel coordination in every situation, that is, in

some cases, there exists no pure bonus system ðb; bÞ such that Qb�
d ¼ Q�c . This fact is described by the following

proposition.

Proposition 3.1. Let �f be the maximum value of f. If

Q�c �f þ F ðQ�cÞ 6 1; ð8Þ
then there exists no pure bonus system that coordinates the supply channel.

Proof. Consider an arbitrary pure bonus system ðb; bÞ; we may assume b > 0. Since Qb�
d P ‘=b, we need

b P ‘=Q�c to even have a chance of coordination. This in turn implies Q�c 2 ½‘=b; uÞ. We will show that Q�c can-
not maximize the dealer’s expected profit.

By (7), the right-hand derivative of EbðQÞ at Q�c satisfies

ðr � wÞ½1� F ðQ�cÞ� þ b½1� F ðQ�cÞ � b2Q�cf ðbQ�cÞ�
P ðr � wÞ½1� F ðQ�cÞ� þ b½1� F ðQ�cÞ � Q�cf ðbQ�cÞ�
P ðr � wÞ½1� F ðQ�cÞ� þ b½1� F ðQ�cÞ � Q�c �f �
P ðr � wÞ½1� F ðQ�cÞ� > 0:

Since Q�c < u, this derivative implies that Q�c does not maximize EðQÞ. h
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A natural question is whether the converse of Proposition 3.1 holds. We will actually demonstrate in Sec-
tion 4 that it does hold in the case of uniform demand, but in general, the converse does not hold, as demon-
strated by the example in the following subsection.

3.3.1. Counterexample to converse of Proposition 3.1

Let f be the symmetrically truncated normal distribution

f ðxÞ :¼
0 �1 < x < ‘;

nðxÞ=j ‘ 6 x 6 u;

0 u < x <1;

8><
>:

where nðxÞ :¼ e�ðx�lÞ2=ð2r2Þ=r
ffiffiffiffiffiffi
2p
p

is the regular normal distribution with mean l :¼ ð‘þ uÞ=2 and standard
deviation r and where j :¼

R u
‘

nðxÞdx is the area under the normal curve between ‘ and u. Suppose
r :¼ 2sþ t þ c so that ðr � sÞ=ðr þ t þ cÞ ¼ 1=2, which implies F ðQ�cÞ ¼ 1� F ðQ�cÞ ¼ 1=2 by (2), and so
Q�c ¼ ð‘þ uÞ=2. Also suppose b P ‘=Q�c , which is necessary for coordination.

First consider that b > ‘=Q�c . Using that Q�c ¼ ð‘þ uÞ=2, we have

ðEbÞ0ðQ�cÞ ¼
1

2
ðr � wþ bÞ � 1

2
ð‘þ uÞbb2f ðbQ�cÞ ð9Þ

from (7). So a necessary condition for a particular ðb; bÞ to be a coordinating system is

r � wþ b� ð‘þ uÞbb2f ðbQ�cÞ ¼ 0;

which implies

ð‘þ uÞbb2�f P ð‘þ uÞbb2f ðbQ�cÞ ¼ r � wþ b: ð10Þ
When b ¼ ‘=Q�c , the necessary condition becomes that the right-hand derivative of Eb is non-positive, i.e.,

r � wþ b� ð‘þ uÞbb2f ðbQ�cÞ 6 0;

which in turn implies the outer inequality of (10). In our situation, �f ¼ ðr
ffiffiffiffiffiffi
2p
p

jÞ�1, so that in both cases (either
b > ‘=Q�c or b ¼ ‘=Q�c) a necessary condition for ðb; bÞ to coordinate is

b2 P
ðr � wþ bÞr

ffiffiffiffiffiffi
2p
p

j
ð‘þ uÞb :

To disprove the converse, we need an example in which no coordination is possible but the inequality
Q�c �f þ F ðQ�cÞ > 1 still holds. In our case, this inequality is

‘þ u

r
ffiffiffiffiffiffi
2p
p

j
> 1: ð11Þ

Our strategy will be to illustrate parameters that simultaneously satisfy (11) and

ðr � wþ bÞr
ffiffiffiffiffiffi
2p
p

j
ð‘þ uÞb > 1: ð12Þ

Then (12) will imply that the necessary condition stated in the previous paragraph is incompatible with the
constraint b 6 1, which in turn will imply that no coordination is possible.

Given the flexibility in choosing c, s, and t (which define r :¼ 2sþ t þ c) as well as b, it is not difficult to see
that (12) can be satisfied for any realization of ‘, u, r, and j. Thus, it remains only to illustrate that (11) holds
for some parameters. So let r :¼ ðu� ‘Þ=6 so that j � 0:9973 and (11) becomes

‘þ u
u� ‘ >

1

6

ffiffiffiffiffiffi
2p
p

j � 0:4166;

which is clearly satisfied for all 0 6 ‘ < u.
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3.4. The mixed system

In the mixed system, the supplier sets ðb; bÞ and implements a bonus system as before. In addition, the sup-
plier sets two additional parameters, p P 0 and p 2 ð‘=u; b�, and enforces a penalty system on top of the bonus
system as follows: the dealer is charged a penalty p on every unit returned if he sells less than or equal to pQ
units; otherwise, he avoids the penalty. The intuition behind the penalty is that the more units Q a dealer
orders, the more likely he will be unable to meet the ‘‘no-penalty’’ threshold of pQ, and so a sufficiently severe
penalty will thus entice the dealer to order less. So as to not have a system in which a dealer could simulta-
neously receive a penalty and a bonus, we restrict p 6 b. We call each quadruple ðb; b; p; pÞ a mixed bonus-pen-

alty system. Note that setting p ¼ 0 recovers the pure bonus system.
Also note that any value of p less than or equal to ‘=u would guarantee that the dealer receives no penalty

since demand will be at least ‘ and since ‘ ¼ ð‘=uÞu P ð‘=uÞQ. Under such a scenario, the dealer would simply
order as under the pure bonus system corresponding to ðb; bÞ. Since the intent of the mixed system is to
encourage the dealer to order less than under the pure bonus system, we restrict p to be greater than ‘=u.

Like the bonus, the penalty is simply a money transfer between members of the channel, so that channel
profits are unchanged. On the other hand, the dealer’s optimal ordering quantity, denoted by Qm�

d , is affected.
(Qm�

d can be thought of as a function of the parameters ðb; b; p; pÞ.) Similar to the pure bonus case, we intro-
duce a function to help us describe the dealer’s expected penalty: hpðQÞ ¼ maxf‘; pQg. Then the dealer’s
expected penalty is

EP ðQÞ ¼
Z hpðQÞ

‘

ðpðQ� xÞÞf ðxÞdx ¼ pQ
Z hpðQÞ

‘

f ðxÞdx� p
Z hpðQÞ

‘

xf ðxÞdx

¼ pQF ðhpðQÞÞ � p
Z hpðQÞ

‘

xf ðxÞdx: ð13Þ

Note that EP ðQÞ is expressed as a positive amount that the dealer must pay. Hence, the dealer’s total expected
profit under the mixed system is EmðQÞ ¼ ERðQÞ þ EBðQÞ � EP ðQÞ � wQ, where ERðQÞ and EBðQÞ are given
by (3) and (5).

Because of the non-differentiability of hpðQÞ at ‘=p, the derivative of EP ðQÞ is expressed over two intervals
as

EP 0ðQÞ ¼
0 Q 2 ½‘; ‘=pÞ;
p½ðp� p2ÞQf ðpQÞ þ F ðpQÞ� Q 2 ð‘=p; u�:

�
ð14Þ

Combining (14) with (4) and (6), we have

ðEmÞ0ðQÞ ¼

ðr � wÞ½1� F ðQÞ� þ b½1� F ðQÞ� Q 2 ½‘; ‘=bÞ;
ðr � wÞ½1� F ðQÞ� þ b½1� F ðQÞ � b2Qf ðbQÞ� Q 2 ð‘=b; ‘=pÞ;
ðr � wÞ½1� F ðQÞ� þ b½1� F ðQÞ � b2Qf ðbQÞ� Q 2 ð‘=p; u�:
�p½ðp� p2ÞQf ðpQÞ þ F ðpQÞ�

8>>><
>>>:

ð15Þ

An important property of the mixed system is that it can coordinate in all demand situations, as the fol-
lowing proposition illustrates.

Proposition 3.2. The mixed bonus-penalty system

ðb; b; p; pÞ ¼ 0; 1;
ðr � wÞ½1� F ðQ�cÞ�

F ðQ�cÞ
; 1

� �
:

coordinates the supply channel.

Proof. Using that b ¼ 0 and b ¼ p ¼ 1, (15) simplifies to

ðEmÞ0ðQÞ ¼ ðr � wÞ½1� F ðQÞ� � pF ðQÞ
over the entire interval ½‘; u�. Note that ðEmÞ0ðQÞ is non-increasing with ðEmÞ0ð‘Þ > 0 and ðEmÞ0ðuÞ < 0. So
EmðQÞ is concave, and any Q satisfying ðEmÞ0ðQÞ ¼ 0 maximizes the dealer’s expected profit.
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We claim that E0ðQ�cÞ ¼ 0. By the choice for p, we have

E0ðQ�cÞ ¼ ðr � wÞ½1� F ðQ�cÞ� �
ðr � wÞ½1� F ðQ�cÞ�

F ðQ�cÞ

� �
F ðQ�cÞ ¼ 0;

as desired. h

It is also interesting to consider the following question: given an existing pure bonus system ðb; bÞ, in which
the dealer orders more than Q�c , is it possible to find a penalty pair ðp; pÞ such that ðb; b; p; pÞ coordinates the
supply channel? A positive answer would, for example, allow the supplier to correct a non-coordinating bonus
system without changing the terms of the bonus to the dealer. (Lowering the bonus would likely be viewed
negatively by the dealer.) We will show in the next section that, under the assumption of uniform demand,
this is always possible. Under arbitrary distributions of demand, the situation is more complex, but it is pos-
sible to show the following: given ðb; bÞ, there exists ðp; pÞ such that ðEmÞ0ðQ�cÞ ¼ 0, which is a necessary con-
dition for Qm�

d to equal Q�c .

3.5. Relationship with other models in the literature

The buyback model of Pasternack (1985) is a special case of the mixed system. To see this, for any coor-
dinating buyback, simply set p ¼ r � a, b ¼ 0, and b ¼ p ¼ 1 in the mixed system. Cachon and Lariviere
(2005) also show that their revenue-sharing model is a special case of Pasternack’s buyback model. It follows
that it is also a special case of the mixed system. Tsay’s (1999) QF model and the mixed system described in
this paper seem to have no non-trivial overlap. Taylor’s (2002) target rebate model differs from the bonus sys-
tem considered in this paper in that Taylor’s model pays a bonus (rebate) on only those units sold above some
target level, T. The bonus system pays a bonus (rebate) on all units sold, so long as total sales meets or exceeds
a target level. As in Taylor’s model, the coordinating contract parameters developed under the pure bonus or
mixed systems may depend upon the distribution of demand, F, and thus different coordinating contracts
would, in general, be required for different dealers. (The differences between the seed company models and
existing models are discussed in more detail in Appendix A.)

4. The case of uniform demand

In this section, we assume uniform demand, i.e., f ðQÞ equals 1=ðu� ‘Þ for Q 2 ½‘; u� and zero elsewhere.
Accordingly, F ðQÞ ¼ ðQ� ‘Þ=ðu� ‘Þ for Q 2 ½‘; u� and

Q�c ¼ ‘þ
r � s

r þ t þ c

� �
ðu� ‘Þ: ð16Þ

The assumption of uniform demand is strong and accordingly requires explanation. In short, the use of the
uniform distribution stems from practical difficulties in estimating demand for a hybrid.

In the seed industry, individual hybrids have relatively short product life cycles (on the order of 6–8 years),
and demand for a typical hybrid over its life cycle follows an S-shaped curve at the beginning with a subse-
quent decline towards the end. It is thus difficult to estimate demand for a given hybrid accurately for the fol-
lowing reasons: (i) at best, only a small number of data points representing demand are available; (ii) these
data points are actually individual observations of several different random variables due to the fact that
demand is non-stationary over time. Additionally, although it is tempting to think one could aggregate
demand information across different hybrids, it is hard to see how this could work in practice since, at any
given point in time, the different hybrids would be at different points in their life cycles. Moreover, the life
cycles in general would be of different lengths and magnitudes.

On the other hand, dealers and seed company representatives have communicated to us that they do in fact
have some feeling for the support of the demand distribution, that is, lower and upper bounds on potential
demand. In such a situation, the uniform distribution appears a natural, conservative choice. Still, one may
ask: Is there any theoretical justification for using the uniform distribution in situations that lack full knowl-
edge of the demand distribution?
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Researchers have developed a variety of robust optimization techniques for inventory problems when the
distribution is not known (see Scarf, 1958; Gallego and Moon, 1993; Vairaktarakis, 2000; Schweitzer and
Cachon, 2000). Most relevant to this paper is the work of Perakis and Roels (2006) (see also Roels and Pera-
kis, 2006) who build upon Bertsimas and Popescu (2002) and Popescu (2005) and who use semidefinite opti-
mization to derive minimax regret order quantities for the newsvendor problem under various assumptions on
what is known about the distribution. In particular, if the distribution has a known finite support (as in our
case) or is known to be symmetric, they show that the robust minimax regret order quantity is the same as the
optimal order quantity for the traditional newsvendor problem (maximizing expected profits) with a uniform
demand distribution.3

Thus, the work of Perakis and Roels allows us to assert that, since all we can reasonably infer about the
distribution of demand in our case is that it has a known support, it is reasonable to assume a uniform demand
distribution since doing so is equivalent to minimizing maximum regret.

4.1. The pure bonus system

In the pure bonus system, the assumption of uniform demand allows a specialization of the results of Sec-
tion 3. In this subsection, we:

(i) characterize the dealer’s optimal order quantity, Qb�
d ;

(ii) provide necessary and sufficient conditions, which prove the existence of a coordinating pure bonus sys-
tem ðb; bÞ; and

(iii) classify fully all coordinating pure bonus systems ðb; bÞ (when they exist).

Substituting the formulas for f and F into the derivative of the dealer’s expected profit under the pure bonus
system – this is ðEbÞ0ðQÞ given by Eq. (7) – we have

ðEbÞ0ðQÞ ¼ 1

u� ‘
ðr � wþ bÞðu� QÞ Q 2 ½‘; ‘=bÞ;
ðr � wþ bÞðu� QÞ � bb2Q Q 2 ð‘=b; u�:

�
ð17Þ

This formula immediately gives us an interesting property of the dealer’s expected profit function, namely that
(as expected) EbðQÞ strictly increases on ð‘; ‘=bÞ. In addition, EbðQÞ is a strictly concave quadratic function on
ð‘=b; uÞ, and the unique critical point of this quadratic function is

�Qðb; bÞ :¼ r � wþ b

r � wþ ð1þ b2Þb

 !
u: ð18Þ

It is important to note that �Qðb; bÞ < u but that �Qðb; bÞ may be less than ‘=b. In other words, the quadratic
function, which describes the second piece of EbðQÞ over the interval ½‘=b; u�, may not actually attain its max-
imum in this same interval. If it in fact does not, then it is decreasing on the interval, and the dealer’s profit is
maximized at ‘=b. We summarize these observations in the following proposition.

Proposition 4.1. Consider the pure bonus system ðb; bÞ. Under the assumption of uniform demand, the dealer’s

optimal order quantity is Qb�
d ¼ maxf‘=b; �Qðb; bÞg.

It is also interesting to revisit Proposition 3.1 in the case of uniform demand. Recall the inequality of the
proposition, Q�c �f þ F ðQ�cÞ 6 1, which under the assumption of uniform demand becomes

Q�c
1

u� ‘

� �
þ Q�c � ‘

u� ‘

� �
6 1() Q�c 6 u=2:

3 Perakis’ and Roels’ work can, interestingly enough, be viewed as further validation of the Principle of Insufficient Reason (PIR) first
enunciated by Bernoulli (1896, pp. 88–89), popularized by Laplace et al. (1814, pp. iv–vii) , re-named the Principle of Indifference by
Keynes (1921, pp. 52–53), and further validated by Sinn (1980) who showed that two of the axioms required for expected utility imply the
PIR. Luce and Raiffa (1957, p. 284) give a clear characterization of the PIR as asserting that ‘‘if one is completely ignorant as to which
state among s1; s2; . . . ; sn obtains, then one should behave as if they are equally likely.’’
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So the proposition reads:

If Q�c 6 u=2, then there exists no pure bonus system that coordinates the supply channel.

As it turns out, the converse is true, which we show next.

Proposition 4.2. Under the assumption of uniform demand, there exists a pure bonus system that coordinates the

supply channel if and only if Q�c > u=2. In particular, if Q�c > u=2, then

ðb; bÞ ¼ ðr � wÞðu� Q�cÞ
2Q�c � u

; 1

� �

coordinates.

Proof. By Proposition 3.1, we already know that the existence of a pure bonus system that coordinates implies
Q�c > u=2, and so it remains to prove the converse.

Suppose Q�c > u=2, and consider the pure bonus system ðb; bÞ as described in the statement of the
proposition. Note that b is positive and finite since Q�c > u=2. By substituting values for ðb; bÞ in the formula
(18) for �Qðb; bÞ we see

�Qðb; bÞ ¼ r � wþ b

r � wþ ð1þ b2Þb

 !
u ¼ 1þ bðr � wÞ�1

1þ ð1þ b2Þbðr � wÞ�1

 !
u ¼ 1þ ðu� Q�cÞð2Q�c � uÞ�1

1þ 2ðu� Q�cÞð2Q�c � uÞ�1

 !
u

¼ 2Q�c � uþ ðu� Q�cÞ
2Q�c � uþ 2ðu� Q�cÞ

� �
u ¼ Q�c

u

� �
u ¼ Q�c : ð19Þ

So by Proposition 4.1, we have Qb�
d ¼ maxf‘=b;Q�cg ¼ maxf‘;Q�cg ¼ Q�c , as desired. h

We can actually go one step further and characterize all the pure bonus systems ðb; bÞ that coordinate the
supply channel. Before stating the precise description, however, we give a verbal description along with Fig. 2.
Roughly speaking, all coordinating systems ðb; bÞ are described by the positive branch of the hyperbolic rela-
tionship specified between b and b when one sets �Qðb; bÞ ¼ Q�c . Fig. 2 depicts three different realizations of this
hyperbola. When the underlying parameters (e.g., ‘, u, r, etc.) of the problem change, one can imagine the
hyperbola shifting left and right in ðb; bÞ-space; the hyperbola also stretches up and down. If the hyperbola
moves too far to the right, then it becomes infeasible in the sense that b > 1 for all points on the hyperbola;
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Fig. 2. Graph of the coordinating pure bonus systems under three scenarios.
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this is scenario C. If the hyperbola moves too far to the left, then it ‘‘bumps into’’ the vertical line b ¼ ‘=Q�c ,
which corresponds to the case when Qb�

d ¼ ‘=b, and the coordinating pairs become the union of a hyperbola
and a straight-line ray on which b can be made arbitrarily large; this is scenario B. Finally, if the hyperbola is
somewhere in the middle, then it is feasible without bumping into the line b ¼ ‘=Q�c ; this is scenario A.

In Fig. 2, all scenarios have ð‘; u; r;w; cÞ ¼ ð500; 1500; 90; 80; 20Þ. Scenario A has ðs; tÞ ¼ ð35; 35Þ and
Q�c � 879; scenario B has ðs; tÞ ¼ ð0; 0Þ and Q�c � 1318; and scenario C has ðs; tÞ ¼ ð60; 35Þ and Q�c � 707.
For A, the asymptote of the hyperbola is to the right of ‘=Q�c so that there is no straight-line ray. For B,
the asymptote is to the left of ‘=Q�c so that the ray is present. For C, the asymptote is to the right of b ¼ 1,
which indicates that there are no (feasible) coordinating pairs; note also that Q�c 6 u=2 in this case.

Theorem 4.3. Under the assumption of uniform demand, the collection of all pure bonus systems that coordinate

the supply channel is the union of two curves in the space of ðb; bÞ systems: HbðQ�cÞ [LbðQ�cÞ, where

HbðQ�cÞ :¼ ðb; bÞ : b ¼ ðr � wÞðu� Q�cÞ
ð1þ b2ÞQ�c � u

> 0;
‘

Q�c
6 b 6 1; b > ‘=u

( )

is a hyperbolic curve and

LbðQ�cÞ :¼ ðb; bÞ : b P
ðr � wÞðu� Q�cÞ
ð1þ b2ÞQ�c � u

> 0;
‘

Q�c
¼ b; b > ‘=u

( )

is a straight-line ray. Moreover, one of the three following situations must occur:

(i) HbðQ�cÞ is non-empty while LbðQ�cÞ is empty (scenario A in Fig. 2).

(ii) both sets are non-empty (scenario B in Fig. 2); or

(iii) both sets are empty (scenario C in Fig. 2).

Proof. For convenience, denote HbðQ�cÞ by H, LbðQ�cÞ by L, and �Qðb;bÞ by �Q.
We first note two necessary properties for any coordinating pure bonus system ðb; bÞ: since taking b equal

to 0 recovers the basic system, which never coordinates, a coordinating ðb; bÞ must have b > 0; and since
Qb�

d P ‘=b, the parameter b must satisfy b P ‘=Q�c to even have a chance of coordination.
We now show that any coordinating system ðb; bÞ must be in H [L. So, in accordance with Proposition

4.1, assume that ðb; bÞ satisfies Q�c ¼ maxf‘=b; �Qg. We consider two cases:

• Q�c ¼ �Q. Since b > 0, the equation Q�c ¼ �Q implies

b ¼ ðr � wÞðu� Q�cÞ
ð1þ b2ÞQ�c � u

> 0;

which shows ðb; bÞ 2H.
• Q�c ¼ ‘=b. Because Q�c ¼ maxf‘=b; �Qg, Q�c P �Q. Using that b > 0, this inequality implies

b P
ðr � wÞðu� Q�cÞ
ð1þ b2ÞQ�c � u

> 0:

Hence, ðb; bÞ 2L.

Straightforward reverse arguments show that any ðb; bÞ 2H [L is a coordinating system.
To prove the final statement of the theorem, it suffices to show that it is impossible for L to be non-empty

while H is empty. Said differently, L 6¼ ; should imply H 6¼ ;. Indeed, if L 6¼ ;, then, by Proposition 4.2, we
know that Q�c > u=2, in which case the system

ðb; bÞ ¼ ðr � wÞðu� Q�cÞ
2Q�c � u

; 1

� �

coordinates. This specific system, in turn, is clearly in H, showing that H 6¼ ;. h
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We remark that, if ‘ > 0, then HbðQ�cÞ simplifies to

ðb; bÞ : b ¼ ðr � wÞðu� Q�cÞ
ð1þ b2ÞQ�c � u

> 0;
‘

Q�c
6 b 6 1

( )
;

and if ‘ ¼ 0, then LbðQ�cÞ is empty.

4.1.1. What situations lead to ineffective bonus systems?

In light of Proposition 4.2 and Theorem 4.3, it may also be of interest to understand how the condition for
effectiveness of pure bonus systems relates to the following observation. According to seed company represen-
tatives, the pure bonus system has been used as the sole coordinating mechanism until recently, when its effec-
tiveness as a coordinating mechanism has come into question for some hybrids. Specifically, it is widely
believed that the pure bonus system works well for most of the older established hybrids that have been out
on the market for several years, but that its use breaks down for newly introduced hybrids. This belief, if war-
ranted, is of increasing concern because the industry, due to greater genomics competition, is seeing ever shorter
product life cycles. Thus, the market will likely see an increasingly larger percentage of hybrids in the early stages
of their product life cycle. This in turn would imply that the pure bonus system would break down for an increas-
ingly larger percentage of their currently marketed products. We shall argue that newly introduced hybrids are
exactly those for which the conditions for an effective pure bonus system are least likely to be met.

First of all note that if Q�c > u=2, then Proposition 4.2 implies we can find a pure bonus system that will
coordinate the channel. Thus, if we are to run into trouble (i.e., if we are unable to coordinate), it must be
when Q�c 6 u=2, which according to Eq. (16), is when

‘

u
þ r � s

r þ t þ c

� �
1� ‘

u

� �
6

1

2
:

There are two situations, which are relevant for newly introduced hybrids, that make it more likely for
coordination to not be possible. First, the heightened uncertainty of demand for new hybrids (e.g., we have
little prior market history on these products) means there is a greater span between the forecast lower and
upper bounds, ‘ and u. As a result the ratio ‘=u is smaller, which, roughly speaking, makes it more likely
for the above inequality to hold since the left-hand side decreases as ‘=u decreases, which in turn means an
ineffective bonus system.

The second situation relates to c, for which the above inequality shows that with ‘‘high’’ values of c, coor-
dination will be difficult or impossible. To see how this might occur, recall that c is the cost incurred by the
seed company (in addition to the cost of transporting the seed back to the warehouse) when unsold seed is
returned. If the hybrid in question happened to be a newly released one and consequently much more likely
to be in short overall supply, a surplus of seed at one dealer could have been sold elsewhere had it not been
sent to that particular dealer. So the cost, c, would include an additional cost representing the opportunity cost
of lost profit. To be specific, let us suppose that ‘ ¼ 100 and u ¼ 1000. In this case, for parameter values of r, s,
and t (r � s ¼ 75, r þ t ¼ 115, say) that might actually used by seed companies, the inequality would become
c P 53:75. This is a cost limit that a new hybrid in short supply could easily exceed. Thus, pure bonus systems
are likely to work for established products but break down in the case of newly introduced products.

4.2. The mixed system

As shown in the previous subsection, it is possible under the assumption of uniform demand to classify fully
the pure bonus systems ðb; bÞ that coordinate the supply channel. In this subsection, we ask:

For the mixed system, is it also possible to obtain a full classification of quadruples ðb; b; p; pÞ that
coordinate?

To answer this question, we take the following two-stage approach: for a given pure bonus system ðb; bÞ, we
determine the penalty parameters ðp; pÞ that coordinate (if any). Recall the basic constraints on the parame-
ters: b P 0, b 2 ð‘=u; 1�, p P 0, and p 2 ð‘=u; b�.
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For a specific ðb; bÞ, define Kðb; bÞ to be the collection of ðp; pÞ pairs such that the mixed system ðb; b; p; pÞ
coordinates the supply channel. We will show the following classification:

If ðb;bÞ satisfies. . . Then Kðb; bÞ is. . .

Qb�
d < Q�c empty

Qb�
d ¼ Q�c not empty, but there is effectively no penalty

Qb�
d > Q�c and b < ‘=Q�c empty

Qb�
d > Q�c and b P ‘=Q�c HmðQ�c ; b; bÞ [LmðQ�c ; b; bÞ 6¼ ;

where HmðQ�c ; b; bÞ is a hyperbolic curve and LmðQ�c ; b; bÞ is a straight-line ray. The first two cases are ‘‘trivial’’
in the sense that intuition suggests the dealer will only order less when a penalty system is instituted on top of an
existing bonus system, and if the dealer is already ordering too little or just the right amount, then a penalty
cannot help coordinate. The third case is also trivial because the dealer always orders ‘=b, which is greater than
Q�c in this situation; in other words, setting b < ‘=Q�c is a sure way to guarantee that coordination will not hap-
pen. The fourth case is the most interesting because it describes the situation where the dealer is ordering too
much under a sensible bonus system (sensible because b P ‘=Q�c). Our results will show that the coordination
can occur by choosing ðp; pÞ in a hyperbola or straight-line ray, which is very similar to the classification of pure
bonus systems. Unlike pure bonus systems, however, the union of the hyperbola and ray of ðp; pÞ pairs is always
non-empty, indicating that coordination is always possible for ðb; bÞ pairs where Qb�

d > Q�c and b P ‘=Q�c .
To show these results, our first step is to examine more closely the relationship between the dealer’s

expected profit under the pure bonus system ðb; bÞ and under the mixed system ðb; b; p; pÞ. For this we recall
the equations for the dealer’s expected profit:

EbðQÞ :¼ ERðQÞ þ EBðQÞ � wQ;

EmðQÞ :¼ ERðQÞ þ EBðQÞ � wQ� EP ðQÞ;

where ER is the expected revenue given by (3), EB is the expected bonus given by (5), wQ is the cost incurred
by the dealer to purchase the goods from the supplier, and EP is the expected penalty (expressed as a positive
amount the dealer must pay) given by (13).

Clearly, the only difference between Eb and Em is the (negative) penalty term �EP . By substituting in (13) for
f and F according to the uniform distribution and performing some straightforward simplifications, we have

EP ðQÞ ¼
0; Q 2 ½‘; ‘=p�;

p
u�‘

1
2
pð2� pÞQ2 � ‘Qþ 1

2
‘2

	 

; Q 2 ½‘=p; u�:

(

This equation reveals some interesting properties of EP: (i) it is continuous, i.e., EP ð‘=pÞ ¼ 0; (ii) it is strictly
convex on ½‘=p; u� when p > 0; and (iii) it is strictly increasing on ½‘=p; u� when p > 0.

We can use these properties of EP to establish an interesting relationship between the maximizers of Eb and
Em on the interval ½‘; u�. Recall from the previous subsection that the maximizer of Eb is Qb�

d :¼
maxf‘=b; �Qðb; bÞg, where �Qðb;bÞ is given by (18). Letting Qm�

d denote the (unique) maximizer of Em, we have
the following result relating Qb�

d and Qm�
d .

Proposition 4.4. Qm�
d ¼ Qb�

d if and only if p ¼ 0 or p 6 ‘=�Qðb; bÞ. Otherwise, Qm�
d < Qb�

d .

Proof. The case when p ¼ 0 is clear, and so we assume p > 0. The proof will make use of the properties of
EP ðQÞ outlined above and the fact that Eb ¼ Em þ EP .

First, suppose Qb�
d 6 ‘=p. Then the maximum of Eb occurs in an interval, namely ½‘; ‘=p�, over which Eb is

identical to Em because EP is zero in this interval. Since Eb > Em on the remaining interval ð‘=p; u�, it follows
that Qb�

d also maximizes Em, i.e., Qm�
d ¼ Qb�

d .
Now suppose Qb�

d > ‘=p. Then the derivative ðEbÞ0 of Eb, which exists in the open interval ð‘=p; uÞ, vanishes

at Qb�
d , i.e., ðEbÞ0ðQb�

d Þ ¼ 0. Since EP is increasing on this interval, it follows from the equation Eb ¼ Em þ EP
that ðEmÞ0ðQb�

d Þ < 0. In other words, Em is decreasing at and around the point Qb�
d . Furthermore, since we now
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know that Eb decreases on the interval ½Qb�
d ; u�, we can actually conclude more, namely that Em is decreasing

before Qb�
d and continues to decrease all the way to u. This shows that the maximizer of Em must occur before

Qb�
d , i.e., Qm�

d < Qb�
d .

So, when p > 0, we have Qm�
d 6 Qb�

d , and equality holds if and only if Qb�
d 6 ‘=p. The result of the

proposition now follows from the following observation, which uses the fact that p 6 b: Qb�
d 6 ‘=p

() maxf‘=b; �Qðb; bÞg 6 ‘=p() �Qðb; bÞ 6 ‘=p. h

As an immediate corollary, we characterize the coordinating parameters ðp; pÞ for all ðb; bÞ such that
Qb�

d 6 Q�c .

Corollary 4.5. Assume uniform demand, and let ðb; bÞ be a pure bonus system. Then:

• if Qb�
d < Q�c , Kðb; bÞ ¼ ;;

• if Qb�
d ¼ Q�c ,

Kðb; bÞ ¼ fðp; pÞ : p ¼ 0; p 2 ð‘=u; b�g [ fðp; pÞ : p > 0; p 2 ð‘=u;minf‘=�Qðb; bÞ; bg�g;
the second set of which is empty if and only if ‘ ¼ 0.

It thus remains to characterize the coordinating parameters ðp; pÞ for those ðb; bÞ such that Qb�
d > Q�c . One

simple case is given in the next proposition.

Proposition 4.6. Assume uniform demand, and let ðb; bÞ be a pure bonus system such that b < ‘=Q�c (which
ensures Qb�

d > Q�c). Then Kðb; bÞ ¼ ;.

Proof. Consider any parameters ðp; pÞ. The formula for ðEmÞ0 demonstrates that Em is increasing on
the interval ½‘; ‘=b� since neither the bonus or penalty are applicable for order quantities in this interval.
So the dealer will take at least ‘=b > Q�c , i.e., Qm�

d > Q�c . This shows that ðp; pÞ is ineffective at
coordinating. h

We now consider the final case, when Qb�
d > Q�c and b P ‘=Q�c . Here are a few important facts that we will

use:

• We have maxf‘=b; �Qðb; bÞg ¼ Qb�
d > Q�c P ‘=b. Hence, Qb�

d ¼ �Qðb; bÞ > Q�c .

• Let p be such that p > ‘=�Qðb; bÞ. Because �Qðb; bÞ > ‘=p, we know that Eb is increasing all the way up to
‘=p. Since Em matches Eb up to ‘=p, this implies Qm�

d P ‘=p. In fact, using arguments similar to that of
the pure bonus case,

Qm�
d ¼ maxf‘=p; Q̂ðb; b; p; pÞg;

where Q̂ðb; b; p; pÞ is the unique critical point of the strictly concave quadratic, which describes Em on the
interval ½‘=p; u�.

• It is not difficult to see that the formula for Q̂ðb; b; p; pÞ is

Q̂ðb; b; p; pÞ ¼ ðr � wþ bÞuþ p‘

r � wþ ð1þ b2Þbþ ppð2� pÞ
: ð20Þ

• If p P ‘=Q�c , then Q�c is contained in the interval ½‘=p; u� on which EP is increasing. So Q�cpð2� pÞ � ‘ > 0.

We are now ready to state the result.

Theorem 4.7. Assume uniform demand, and let ðb; bÞ be a pure bonus system such that b P ‘=Q�c and Qb�
d > Q�c .

Then Kðb; bÞ ¼HmðQ�c ; b; bÞ [LmðQ�c ; b; bÞ, where

HmðQ�c ; b; bÞ :¼ ðp; pÞ : p ¼ ð
�Qðb; bÞ � Q�cÞðr � wþ ð1þ b2ÞbÞ

Q�cpð2� pÞ � ‘ > 0;
‘

Q�c
6 p 6 b; p > ‘=u

� �
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is a hyperbolic curve and

LmðQ�c ; b; bÞ :¼ ðp; pÞ : p P
ð�Qðb; bÞ � Q�cÞðr � wþ ð1þ b2ÞbÞ

Q�cpð2� pÞ � ‘ > 0;
‘

Q�c
¼ p; p > ‘=u

� �

is a straight-line ray. In particular, both sets are non-empty if ‘ > 0; on the other hand, if ‘ ¼ 0, then HmðQ�c ; b; bÞ
is empty while LmðQ�c ; b; bÞ is non-empty.

Proof. For convenience, denote HmðQ�c ; b; bÞ by H, LmðQ�c ; b; bÞ by L, �Qðb; bÞ by �Q, and Q̂ðb; b; p; pÞ by Q̂.
The proof relies heavily on the facts pointed out before the statement of the theorem. In addition,

Proposition 4.4 gives two necessary conditions for any coordinating pair ðp; pÞ: p > 0 and p > ‘=�Q. Note that
the inequality �Q > Q�c shows that p P ‘=Q�c ) p > ‘=�Q. We mention this because the following paragraphs
will deal only with p satisfying p P ‘=Q�c , and yet we would like to make clear that p > ‘=�Q for all p
considered.

We show that any coordinating pair ðp; pÞ must be in H [L. So we assume that we have ðp; pÞ which
satisfies Q�c ¼ maxf‘=p; Q̂g. Note that this implies Q�c P ‘=p, which in turn shows Q�cpð2� pÞ � ‘ > 0. We
consider two cases:

• Q�c ¼ Q̂. Using that �Q > Q�c and Q�cpð2� pÞ � ‘ > 0, it is not difficult to see that the equation Q�c ¼ Q̂
implies

p ¼ ð
�Q� Q�cÞðr � wþ ð1þ b2ÞbÞ

Q�cpð2� pÞ � ‘ > 0;

which shows ðp; pÞ 2H.
• Q�c ¼ ‘=p. Because Q�c ¼ maxf‘=p; Q̂g, we know that Q�c P Q̂. Using that �Q > Q�c and Q�cpð2� pÞ � ‘ > 0,

this inequality implies

p P
ð�Q� Q�cÞðr � wþ ð1þ b2ÞbÞ

Q�cpð2� pÞ � ‘ > 0;

Hence, ðp;pÞ 2L.

Straightforward reverse arguments show that any ðp; pÞ 2H [L coordinates the mixed system ðb; b; p; pÞ.
The non-emptiness of both H and L follows easily from the inequalities �Q > Q�c and

Q�cpð2� pÞ � ‘ > 0. h

4.3. Varying the dealer’s profit while maintaining coordination

A common issue in the literature on supply chain coordination is to determine how the dealer’s expected
profit changes among alternative channel-coordinating systems. For example, in Pasternack’s buyback model,
it can be shown that any portion of the optimal channel profit may be diverted to the dealer by simply altering
the wholesale price in a specific way.

In this section, we consider the same issue in the context of our supplier and dealer. Here, however, the
supplier does not have the flexibility to alter the wholesale price as in Pasternack’s model; instead, w is
assumed to be exogenously given. The flexibility in the seed company model lies in the parameters
ðb; b; p; pÞ of the mixed bonus-penalty system. We will show how one can adjust these parameters to divert
varying levels of profit to the dealer.

One practical way in which this information could be used by the supplier relates to the real-world situation
in which a penalty is instituted as a corrective measure for an existing bonus system, which has been ineffective
at coordinating the channel. In order to reduce the chance that the independent dealer will be unhappy with
his profit in the coming season and subsequently sell seed for another supplier in future seasons, the supplier
may wish to set up a system that guarantees the dealer a certain amount of (expected) profit, e.g., no less than
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what the dealer received the previous season. The next result shows that the supplier can do exactly this while
achieving coordination.

Theorem 4.8. Among all coordinating quadruples ðb; b; p; pÞ, the dealer’s expected profit is minimized at

ðb; b; p; pÞ ¼ 0; 1;
ðr � wÞ½1� F ðQ�cÞ�

F ðQ�cÞ
; 1

� �
:

Moreover, the dealer’s expected profit may be adjusted to any level above this minimum by a continuous adjust-

ment of ðb; b; p; pÞ, while maintaining coordination. In particular, the dealer’s expected profit is unbounded by tak-

ing b!1.

Before proving the theorem, we point out the obvious consequence of unbounded dealer profits, namely
that supplier profits will go to �1. So, in reality, the supplier will certainly not allow unbounded dealer profits
to occur. The intent of the theorem, however, is to describe the full range of flexibility available to the supplier
in determining the dealer’s expected profits.

Proof. We first note that a pure penalty system (i.e., when b ¼ 0 and p > 0) always guarantees less dealer
profit than a pure bonus system (i.e., when b > 0 and p ¼ 0). So the minimum dealer profit cannot occur at a
pure bonus system.

We next claim that a coordinating mixed system always guarantees more dealer profit than a coordinating
pure penalty system. Our first step is to show that the specific class of coordinating mixed systems in which
p ¼ b always guarantees more profit. We consider mixed systems ðb; b; p; pÞ in which the dealer’s optimal
ordering quantity under the pure bonus system ðb; bÞ is too high, i.e., Qb�

d > Q�c , and in which b P ‘=Q�c ,
ðp; pÞ 2HmðQ�c ; b; bÞ [LmðQ�c ; b; bÞ, and p ¼ b. This implies, in particular, that

p ¼ ð
�Qðb; bÞ � Q�cÞðr � wþ ð1þ b2ÞbÞ

Q�cbð2� bÞ � ‘ > 0:

We consider what happens when b is lowered, while b is fixed and ðp; pÞ are given by the specified relation-
ships. Note that lowering b does not violate the inequality Qb�

d > Q�c , and so lowering b does not violate coor-
dination. In this situation, it can be shown that the derivative of dealer profit with respect to b is

‘2xþ ð2� bÞbðQ�cÞ
2ðuþ 2xÞ � ‘Q�cðuþ 3xÞ

Q�cð2� bÞb� ‘ ;

where x :¼ u� ð1þ b2ÞQ�c . Note that x > 0 because Qb�
d > Q�c . Since ð2� bÞb is minimized at ‘=Q�c over

b 2 ½‘=Q�c ; 1�, we certainly have

‘2xþ ð2� bÞbðQ�cÞ
2ðuþ 2xÞ � ‘Q�cðuþ 3xÞP ‘2xþ 2� ‘

Q�c

� �
‘

Q�c

� �
ðQ�cÞ

2ðuþ 2xÞ � ‘Q�cðuþ 3xÞ

¼ ‘ðQ�c � ‘Þðuþ xÞP 0:

Since the denominator of the above derivative is positive, we conclude that dealer profit decreases (more pre-
cisely, does not increase) as b is lowered. Hence, we can lower b all the way to 0 to minimize dealer profit,
which results in a pure penalty system.

Our second step is to show that a general mixed system gives more profit than one in which p ¼ b, which
will prove the claim. So consider a general coordinating mixed system, that is, ðb; b; p; pÞ with b P ‘=Q�c ,
Qb�

d > Q�c , and ðp; pÞ 2HmðQ�c ; b; bÞ [LmðQ�c ; b; bÞ. How does profit vary among different ðp; pÞ in
HmðQ�c ; b; bÞ [LmðQ�c ; b; bÞ? It is clear that, among the components making up profit, only the expected
penalty changes, and moreover, the expected penalty is 0 for all ðp; pÞ 2Lm. Since ðp; pÞ 2HmðQ�c ; b; bÞ is
parametrized by p, we can calculate the derivative of the penalty over HmðQ�c ; b; bÞ with respect to p:

‘Q�cðQ�c � ‘Þð1� pÞp
Q�cpð2� pÞ � ‘ P 0:

So the penalty is maximized (i.e., the dealer’s profit is minimized) when p ¼ b, as desired.
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So far we have shown that dealer profit is minimized at a pure penalty system. Similar to the argument of
the previous paragraph, it is not difficult to see that taking p ¼ 1 minimizes profit among all coordinating pure
penalty systems, which proves the first statement of the theorem.

Now we discuss how one can adjust the dealer’s profit to any level above the minimum. For simplicity, we
imagine that we currently have attained the minimum and consider keeping b ¼ p ¼ 1 while increasing b and
then adjusting p to maintain coordination. We know from the above argument that dealer profit increases in
this situation, and that coordination is maintained as long as the inequality Qb�

d > Q�c does not become
violated. It is not difficult to see that

Qb�
d > Q�c () u > ð1þ b2ÞQ�c ¼ 2Q�c :

If no coordinating pure bonus system exists, then we know from Proposition 4.2 that Qb�
d > Q�c holds for

b!1, which guarantees unbounded profits for the dealer. On the other hand, if a pure bonus system does
exist, then eventually a large enough b causes Qb�

d ¼ Q�c , or equivalently, �Qðb; bÞ ¼ Q�c , which in turn implies
p ¼ 0. In other words, raising b eventually leads us to a pure bonus system. Then, among all pure bonus sys-
tems, lowering b towards ‘=Q�c causes b!1, which guarantees unbounded profits for the dealer. h

5. Practical application and conclusion

With unlimited returns at full wholesale price, retailers have every incentive to order excessive quantities
from their supplier. In an attempt to mitigate this behavior in the agricultural seed industry, suppliers have
instituted a bonus system whereby if returns are not too excessive, dealers (retailers) are paid a per unit bonus
on sales. In some instances, the bonus system is effective in lowering dealer orders to the point where total
supply chain (channel) expected profit is maximized, i.e., supply chain coordination is achieved. However,
when a dealer’s orders are still too large, suppliers have added on a penalty system (for too many returns)
to lower dealer orders even further.

For an arbitrary demand density function, we have characterized instances where a pure bonus system is
not an effective coordinating tool and have shown that a mixed system (bonus and penalty) can always be
designed to provide coordination. In the case where demand is uniformly distributed, we provide a complete
description of coordinating parameters for the pure bonus system (when possible) as well as for the mixed sys-
tem (always possible).

In practice, the formulas developed in this paper can be easily applied to calculate coordinating contract
parameters. For example, if the seed supplier wishes to correct an existing, non-coordinating bonus contract
by instituting a penalty while keeping the same bonus, then Theorem 4.7 gives a simple, linearly constrained
set in which the coordinating parameters are found. Alternatively, if the seed supplier wishes to institute a
mixed system to guarantee that the dealer receives a certain level of expected profit, then one can find coor-
dinating parameters with an easily implementable search procedure based on Theorem 4.8.

A concluding thought: Although we do not hold that mixed systems are ideal coordinating tools, it may be
the case (as it is in the agricultural seed industry) that competitive norms do not allow more rational control
levers (such as wholesale price adjustments). However, even with severe constraints on parameters such as
wholesale price, we have shown that supply chain coordination is still possible via mixed systems, while dealer
expected profits are not affected in any negative way.
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Appendix A

In this appendix, we formally compare the seed company model with those of Pasternack, Taylor, and Tsay
and show that seed company model is not a special case of any of these three. Models are compared on the
basis of the cash flows they generate.
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A.1. Pasternack’s model

In a number of ways, the mixed system of Section 3.4 appears similar to Pasternack’s model of ‘‘unlimited
returns at partial credit’’ (Pasternack, 1985). One may ask if the bonus and penalty introduced in this paper
are somehow related to Pasternack’s credit (or ‘‘buyback’’) paid by the supplier to the dealer for each returned
unit.

However, we claim that the seed company model is more general than Pasternack’s in the following
sense: under the assumptions (i) that demand is uniform, (ii) w is exogenously given in both models,
and (iii) coordination is achieved in both models, there exist contract parameters for the seed company
model, which, under various realizations of demand, generate net cash flows for the supplier and dealer
that cannot be reproduced by any choice of contract parameters in Pasternack’s model. Conversely, the cash
flows determined by any Pasternack model can be replicated by a specific realization of the seed company
model.

Before exploring the details of this claim, it is worthwhile to mention two points. First, in contrast to seed
company model, Pasternack’s model allows for the dealer to salvage left-over units (if salvaging is more prof-
itable than returning), while the seed company model allows for a return cost paid by the supplier to external
actors (e.g., return transportation costs). It is not difficult to see that either of these two elements could be
included in the other model without altering the key components of the model. Second, Pasternack’s original
model treats w as a contract parameter, whereas seed company model treats it as exogenous. Thus, we will
compare the two models on the basis of the stricter requirement that w is fixed.

To see the difference between the two models, let c2 be the buyback price in Pasternack’s model. (The sym-
bol c2 matches Pasternack’s original notation.) To achieve coordination in the face of an arbitrary distribution
of demand, Pasternack provides a linear equation for c2 in terms of w (and other exogenous parameters).
Thus, since w is fixed, there exists exactly one realization of Pasternack’s model that coordinates, which in turn
determines expected supplier and dealer profit.

With c2 chosen to coordinate in Pasternack’s model, the parameters ðb; b; p; pÞ ¼ ð0; 1;w� c2; 1Þ replicate
Pasternack’s model due to the following three observations: (i) since b ¼ 0, there is no bonus at all; (ii) since
p ¼ 1, the dealer is guaranteed to be charged a penalty p on each unit returned; and (iii) because the dealer is
credited w but pays p ¼ w� c2, the net per-unit buyback value to the dealer is w� ðw� c2Þ ¼ c2, just as in
Pasternack’s model.

In contrast, not every realization of the seed company model can be replicated by Pasternack’s. We have
illustrated in Section 4.3 (particularly via Theorem 4.8) that, under the assumption of uniform demand, there
is an entire continuum of contract parameters for the mixed system, which divert varying levels of expected

profit to the dealer. Since Pasternack’s model has only one realization that coordinates, this shows that
Pasternack’s cannot generate the same expected cash flows as the seed company model, which in turn means
that Pasternack’s cannot generate the same cash flows under all realizations of demand.

The above arguments make it clear that Pasternack’s model is less general. Ultimately, the difference
between the mixed system and Pasternack’s model derives from the nonlinear, discontinuous nature of the
bonus and penalty schemes.

A.2. Taylor’s model

We will demonstrate that it is impossible for Taylor’s model to replicate every instance of the seed com-
pany model. In particular, consider the pure bonus model ðb; bÞ with b > 0, and let ðs; T Þ be an instance of
Taylor’s. (As in the previous subsection, we assume that w is fixed.) We will make the (generous) assumption
that Taylor’s model is able to replicate the cash flows of the seed company model up until demand is realized.
In particular, we assume that Taylor’s model induces the retailer to take the same Q as in the seed company
model.

After demand D has been realized and sales S ¼ minfQ;Dg have occurred, the retailer receives:

• a bonus cash flow of bS under the seed company model if and only if S P bQ;
• a rebate cash flow of sðS � T Þ under Taylor’s model if and only if S P T .
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If Taylor’s model is to replicate the seed company’s fully, then these two cash flows must be equal under all
realizations of demand, and so it must hold that bQ ¼ T and bS ¼ sðS � T Þ. These equalities imply

s ¼ b
S

S � bQ

� �

for all sales levels S. Such an equality would require that b equals 0, but we have b > 0. Hence, the above
equality cannot hold, and so there is no instance of Taylor’s model which replicates the seed company’s under
all realizations of demand.

A.3. Tsay’s model

We claim that the seed company model is not a special case of Tsay’s model. Recall that Tsay’s model
incorporates an initial order-quantity forecast q, which is then updated to the final order quantity
Q 2 ½qð1� dÞ; qð1þ uÞ� after a signal of market demand is received by the retailer. In contrast, the seed com-
pany model specifies only the order quantity Q, which is essentially unrestricted (other than being within the
natural limits of demand).

Let us assume that the seed company model is a special case of Tsay’s. Then it must be a special case even in
the situation in which the retailer receives perfect information regarding demand just before he places his order
Q. (One can imagine availability of perfect information as a ‘‘state of the world,’’ which is applicable to both
models.) In such a situation, the dealer will take Q ¼ D in the seed company model, but will take

Q ¼ minfmaxfqð1� dÞ;Dg; qð1þ uÞg
in Tsay’s model.

What is the corresponding cash flow to the retailer? In the seed company model, since the retailer orders
Q ¼ D, he sells D and returns nothing. Also, no matter the choice of bonus and penalty parameters
ðb; b; p; pÞ, he receives the bonus and incurs no penalty. So the total cash flow to the retailer is
Dðr þ b� wÞ. For Tsay’s model, the retailer’s cash flow depends on three cases:

(i) If D 2 ½qð1� dÞ; qð1þ uÞ�, then Q ¼ D, and the retailer’s cash flow is Dðr � wÞ.
(ii) If D < qð1� dÞ, then Q ¼ qð1� dÞ, and the retailer’s cash flow is Dðr � wÞ þ ½qð1� dÞ � D�ðv� wÞ,

where v is the salvage value.
(iii) If D > qð1þ uÞ, then Q ¼ qð1þ uÞ, and the retailer’s cash flow is qð1þ uÞðr � wÞ.

Under the assumption that r, w, and v are exogenously given (which is the case in the seed company setup)
and because we have assumed that the seed company model is a special case of Tsay’s, there must be a choice
of b, which makes the seed company cash flow equal to Tsay’s for all values of D. From case (i) above, this
implies b ¼ 0, so that the seed company cash flow is Dðr � wÞ, which clearly does not equal the flows in (ii) and
(iii). Due to this contradiction, it thus follows that the seed company model is not a special case of Tsay’s.

Under the weaker assumption that the retail price, wholesale price, and salvage value can be different in the
two models, it is still impossible to make the case flows equal for all values of D. Let r1 and w1 correspond to
the seed company model, and let r2, w2, and v2 correspond to Tsay’s model. Then case (i) above causes us to
equate Dðr1 þ b� w1Þ and Dðr2 � w2Þ, which implies r1 þ b� w1 ¼ r2 � w2. Hence, the cash flow in (ii) equals
Dðr1 þ b� w1Þ þ ½qð1� dÞ � D�ðv2 � w2Þ, which is clearly less than the seed company cash flow
Dðr1 þ b� w1Þ.
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