
Math. Program., Ser. A (2008) 113:259–282
DOI 10.1007/s10107-006-0080-6

F U L L L E N G T H PA P E R

A finite branch-and-bound algorithm for nonconvex
quadratic programming via semidefinite relaxations

Samuel Burer · Dieter Vandenbussche

Received: 27 June 2005 / Accepted: 30 October 2006 / Published online: 12 December 2006
© Springer-Verlag 2006

Abstract Existing global optimization techniques for nonconvex quadratic
programming (QP) branch by recursively partitioning the convex feasible set
and thus generate an infinite number of branch-and-bound nodes. An open
question of theoretical interest is how to develop a finite branch-and-bound
algorithm for nonconvex QP. One idea, which guarantees a finite number of
branching decisions, is to enforce the first-order Karush-Kuhn-Tucker (KKT)
conditions through branching. In addition, such an approach naturally yields
linear programming (LP) relaxations at each node. However, the LP relax-
ations are unbounded, a fact that precludes their use. In this paper, we propose
and study semidefinite programming relaxations, which are bounded and hence
suitable for use with finite KKT-branching. Computational results demonstrate
the practical effectiveness of the method, with a particular highlight being that
only a small number of nodes are required.

Keywords Nonconcave quadratic maximization · Nonconvex quadratic
programming · Branch-and-bound · Lift-and-project relaxations · Semidefinite
programming

This author was supported in part by NSF Grants CCR-0203426 and CCF-0545514.

S. Burer (B)
Department of Management Sciences,
University of Iowa, Iowa City, IA 52242-1000, USA
e-mail: samuel-burer@uiowa.edu

D. Vandenbussche
Axioma, Inc., Marietta, GA 30068, USA

260 S. Burer, D. Vandenbussche

1 Introduction

This paper studies the problem of maximizing a quadratic objective subject to
linear constraints:

max
1
2

xTQx + cTx (QP)

s.t. Ax ≤ b

x ≥ 0

where x ∈ R
n is the variable and (Q, A, b, c) ∈ R

n×n × R
m×n × R

m × R
n are the

data. We will refer to the feasible set of (QP) as

P := {x ∈ R
n : Ax ≤ b, x ≥ 0}.

Any quadratic program (or “QP”) over linear constraints can be put in the
above standard form, and without loss of generality, we assume Q is symmet-
ric. If Q is negative semidefinite, then (QP) is solvable in polynomial time [14].
Here, however, we consider that Q is indefinite or positive semidefinite, in which
case (QP) is an NP-hard problem [19]. Nevertheless, our goal is to obtain a
global maximizer.

The difficulty in optimizing (QP) is that it harbors many local maxima. Much
of the literature on nonconvex quadratic programming has focused on obtaining
first-order or (weak) second-order Karush–Kuhn–Tucker (KKT) critical points,
which have a good objective value, using nonlinear programming techniques
such as active-set or interior-point methods. The survey paper by Gould and
Toint [9] provides information on such methods. On the other hand, a variety
of global optimization techniques can solve (QP) exactly. For example, Sher-
ali and Tuncbilek [23] developed a Reformulation–Linearization-Technique
(RLT) for solving nonconvex QPs. For a review of several global optimiza-
tion methods for nonconvex QP, see the work by Pardalos [18]. Floudas and
Visweswaran [5] also present a general survey, including local and global optimi-
zation methods, various applications, and special cases. Off-the-shelf general–
purpose global optimization software, such as BARON [20], is also available
for solving (QP).

Existing global optimization techniques for (QP) work by recursively par-
titioning the polyhedron P. In this way, each node of the branch-and-bound
tree essentially considers the quadratic optimization restricted to just a portion
of P. To calculate a bound at each node, convex relaxations (typically linear
programs) are employed. This basic framework allows for various branching
and bounding strategies, but due to the convex nature of P, it may theoreti-
cally be necessary to subdivide P infinitely (i.e., to generate an infinite branch-
and-bound tree) in order to verify global optimality in exact arithmetic. The
following statement from Sherali and Tuncbilek [22] provides an illustration
of a typical convergence result for existing global optimization approaches for
(QP): “The algorithm either terminates finitely with an optimal solution, or

A finite branch-and-bound algorithm 261

else an infinite sequence of nodes is generated such that, along any infinite
branch of the branch-and-bound tree, any accumulation point of the sequence
of solutions of the convex relaxations is optimal.” We are unaware of any
methods that can verify optimality in a finite number of nodes (using exact
arithmetic).

It is important to point out that these same methods can verify “ε-optimality”
in a finite number of nodes, though an a priori bound on the number of nodes
required is still unknown. Also, in practice, concerns of an infinite tree are quite
irrelevant due to the inexact nature of floating-point arithmetic.

For the box-constrained case of (QP) when (A, b) = (I, e) and e is the all-ones
vector, there has been a considerable amount of effort towards solving (QP)
exactly. In fact, it is possible in this case to develop a finite branch-and-bound
algorithm, as has been shown in the recent work of Vandenbussche and Nemha-
user [25,26]. The key idea in their approach—developed from ideas of Hansen
et al. [10]—is to explicitly account for the Lagrange multipliers in addition to
the original x. This approach allows for logical branching on the first-order
KKT conditions, which in turn enables the implicit enumeration and compar-
ison of all first-order KKT points to obtain a global maximum. The natural
convex relaxations at each node are linear programs (or “LPs”), which are
actually unbounded. However, by exploiting the specific structure of the box-
constrained case, it is possible to bound the LPs easily, completing the specifica-
tion of a full, finite branch-and-bound algorithm for this case. Vandenbussche
and Nemhauser further enhanced this approach by incorporating cuts for the
convex hull of first-order KKT points to develop a highly efficient branch-and-
cut implementation.

It is straightforward to extend the finite KKT-branching for the box-
constrained case to (QP) generally. We use this as the basic idea for finite
branching in this paper. In doing so, however, one still encounters LP relax-
ations that are unbounded. Unfortunately, there is no obvious way to bound the
relaxations as Vandenbussche and Nemhauser have done in the box-constrained
case. Thus, we will propose and investigate the alternative use of semidefinite
programming (or “SDP”) relaxations.

SDP relaxations of quadratically constrained quadratic programs (QCQPs),
of which (QP) is a special case, have been studied by a number of research-
ers. One of the first efforts in this direction was made by Lovász and Schrijver
[16], who developed a hierarchy of SDP relaxations for 0–1 linear integer pro-
grams, where one can think of the constraint xi ∈ {0, 1} as the quadratic equality
x2

i = xi. Later, approximation guarantees using SDP relaxations were obtained
for specific problems, the premiere example being the Goemans and William-
son [8] analysis of the maximum cut problem on graphs; see also [17,27]. In
particular, Ye [27] establishes a 4/7-approximation guarantee for the box-con-
strained case of (QP). Recent work by Bomze and de Klerk [3] has studied
strong SDP relaxations of nonconvex QP over the simplex. Sherali and Frati-
celli [21] discuss the use of semidefinite cuts to improve RLT relaxations of QPs,
and Anstreicher [2] gives insight into how including semidefiniteness improves
RLT relaxations. Probably one of the most general approaches for relaxing

262 S. Burer, D. Vandenbussche

QCQPs has been proposed by Kojima and Tunçel [12], who provide an exten-
sion of the Lovász–Schrijver approach to any optimization problem that can be
expressed by a quadratic objective and (a possibly infinite number of) quadratic
constraints. The result is a recursively defined sequence of convex relaxations
that can provide a global optimum in a finite number of applications. In a
follow-up paper, Kojima and Tunçel [13] also develop several different SDP
relaxations for linear complementarity problems, a special class of QCQPs. To
our knowledge, no one has studied in detail the specific SDP relaxations that
we consider in this paper.

A first goal of this paper is to demonstrate how SDP relaxations, when
employed in branch-and-bound with finite KKT-branching, do not suffer the
same drawbacks as LP relaxations and consequently yield the first finite branch-
and-bound algorithm for globally solving (QP). We begin in Sect. 2 by consid-
ering the so-called “KKT” reformulation of (QP). This leads naturally to the
idea of finite branching, which we explain in detail. We also discuss the asso-
ciated LP relaxations and their unboundedness. Then, in Sect. 3, we construct
SDP relaxations and show how they address the issue of unboundedness. We
also establish the finite branch-and-bound result. An important aspect is estab-
lishing the correctness of the branch-and-bound algorithm, which turns out to
be a non-trivial task. We continue in Sect. 4 by discussing ways of strength-
ening the relaxations. Together with the results of Sect. 3, this paper presents
two different SDP relaxations of the first-order KKT conditions of (QP). The
relaxations are based heavily on ideas from the work of Lovász and Schrijver
[16] mentioned above, but we incorporate important elements that reflect and
exploit the specific structure of the problem at hand.

A second goal of this paper is to investigate the practical aspects of our
method. In Sect. 5, we describe how the SDP relaxations are incorporated into
an implementation of the branch-and-bound algorithm. We present detailed
computational results, which demonstrate the effectiveness of our branch-and-
bound algorithm on a number of different problem classes. One highlight is
that the algorithm consistently requires only a small number of nodes in the
branch-and-bound tree.

We remark that the current study has been motivated to a large extent
by a recent work of the authors (Burer and Vandenbussche [4]), which pro-
vides efficient computational techniques for solving the Lovász–Schrijver SDP
relaxations of 0–1 integer programs. Such SDPs—including the related ones
introduced in this paper—are too large to be solved with conventional SDP
algorithms, and so the ability to solve these types of SDPs is an indispensable
component of this paper.

Finally, we would like to provide caution that the global optimization tech-
niques described in this paper are not the best choice if one wishes only to
compute a good, but not necessarily global, solution of (QP). For such a
purpose, quicker, more scalable methods exist—such as the approximation
algorithm of Ye [27] or the nonlinear optimization techniques of Absil and
Tits [1].

A finite branch-and-bound algorithm 263

1.1 Terminology and notation

In this section, we introduce some of the notation that will be used throughout
the paper. R

n refers to n-dimensional Euclidean space. The norm of a vector
x ∈ R

n is denoted by ‖x‖ := √
xTx. We let ei ∈ R

n represent the i-th unit vector.
R

n×n is the set of real, n × n matrices; Sn is the set of symmetric matrices in
R

n×n; and Sn+ is the set of positive semidefinite symmetric matrices. The spe-
cial notations R

1+n and S1+n are used to denote the spaces R
n and Sn with

an additional “0-th” entry prefixed or an additional 0-th row and 0-th column
prefixed, respectively. Given a matrix X ∈ R

n×n, we denote by X·j and Xi· the
j-th column and i-th row of X, respectively. The inner product of two matrices
A, B ∈ R

n×n is defined as A • B := trace(ATB), where trace(·) denotes the sum
of the diagonal entries of a matrix. Given two vectors x, z ∈ R

n, we denote their
Hadamard product by x◦z ∈ R

n, where [x◦z]j = xjzj. Finally, diag(A) is defined
as the vector with the diagonal of the matrix A as its entries.

2 Finite branching and unbounded multipliers

In this section, we review a general method for reformulating (QP) as an LP
with complementarity constraints (see [6]) and detail how this reformulation
leads to a finite-branching scheme to solve (QP). We then discuss the unbound-
edness of the natural LP relaxations in this scheme, and Sect. 3 will discuss our
approach for handling the unboundedness.

2.1 The KKT reformulation and finite branching

By introducing nonnegative multipliers y and z for the constraints Ax ≤ b and
x ≥ 0 in P, respectively, any locally optimal solution x of (QP) must have the
property that the sets

Gx :=
{
(y, z) ≥ 0 : ATy − z = Qx + c

}

Cx := {(y, z) ≥ 0 : (b − Ax) ◦ y = 0, x ◦ z = 0}

satisfy Gx ∩ Cx �= ∅. In words, Gx is the set of multipliers where the gradient
of the Lagrangian vanishes, and Cx consists of those multipliers satisfying com-
plementarity with x. The condition Gx ∩ Cx �= ∅ specifies that x is a first-order
KKT point.

One can show the following property of KKT points.

Proposition 2.1 (Giannessi and Tomasin [6]) Suppose x ∈ P and (y, z) ∈ Gx ∩
Cx. Then xTQx + cTx = bTy.

Proof We first note that (y, z) ∈ Cx implies (Ax)Ty = bTy and xTz = 0. Next,
pre-multiplying the equality ATy − z = Qx + c by xT yields xTQx + cTx =
(Ax)Ty − xTz = bTy, as desired.

264 S. Burer, D. Vandenbussche

This shows that (QP) may be reformulated as the following linear program
with complementarity constraints:

max
1
2

bTy + 1
2

cTx (KKT)

s.t. x ∈ P (y, z) ∈ Gx ∩ Cx.

By dropping (y, z) ∈ Cx, we obtain a natural LP relaxation:

max
1
2

bTy + 1
2

cTx (RKKT)

s.t. x ∈ P (y, z) ∈ Gx.

The reformulation (KKT) suggests a finite branch-and-bound approach,
where complementarity is recursively enforced using linear equations. A par-
ticular node of the tree is specified by four index sets Fx, Fz ⊆ {1, . . . , n} and
Fb−Ax, Fy ⊆ {1, . . . , m}, which satisfy Fx ∩Fz = ∅ and Fb−Ax ∩Fy = ∅. These in-
dex sets correspond to complementarities that are enforced via linear equations
in the following restriction of (KKT):

max 1
2 bTy + 1

2 cTx

s.t. x ∈ P, (y, z) ∈ Gx ∩ Cx

xj = 0, j ∈ Fx

zj = 0, j ∈ Fz

Ai·x = bi, i ∈ Fb−Ax

yi = 0, i ∈ Fy.

(1)

At a given node, the branch-and-bound algorithm will solve a convex relaxation
of (1). Due to the presence of the linear equations, one can relax the nonconvex
quadratic constraint (y, z) ∈ Cx and yet still maintain (partial) complementarity
via the linear equations: we have xjzj = 0 for all j ∈ Fx∪Fz, and (bi−Ai·x)yi = 0
for all i ∈ Fb−Ax ∪ Fy.

Branching on a node involves selecting some j ∈ {1, . . . , n}\(Fx ∪Fz) or some
i ∈ {1, . . . , m}\ (Fb−Ax ∪Fy) and then creating two children, one with j ∈ Fx and
one with j ∈ Fz (if a j was selected), or one with i ∈ Fb−Ax and one with i ∈ Fy

(if an i was selected). We remark that the root node in the tree has all four index
sets empty, and a leaf node is specified by sets satisfying Fx ∪ Fz = {1, . . . , n}
and Fb−Ax ∪ Fy = {1, . . . , m}.

2.2 The issue of unboundedness

Of course, any branch-and-bound approach depends heavily on the relaxations
solved at each node. The most natural relaxation of (1) is the LP gotten by sim-
ply dropping (y, z) ∈ Cx. (Other relaxations may certainly be possible, e.g., the

A finite branch-and-bound algorithm 265

SDP relaxations described in later sections.) However, there is a fundamental
problem with using linear programing relaxations, namely that (RKKT), which
is the relaxation at the root node, has an unbounded objective (under mild
assumptions), as we detail in the next proposition and corollary.

Proposition 2.2 If P is nonempty and bounded, then the set

R :=
{
(�y, �z) ≥ 0 : AT�y − �z = 0

}

contains nonzero points. Moreover:

• bT�y ≥ 0 for all (�y, �z) ∈ R; and
• if P has an interior, then bT�y > 0 for all nonzero (�y, �z) ∈ R.

Proof To prove both parts of the proposition, we consider the primal LP
max

{
dTx : x ∈ P

}
and its dual min

{
bTy : ATy − z = d, (y, z) ≥ 0

}
for a specific

choice of d.
Let d = e. Because P is nonempty and bounded, the dual has a feasible point

(y, z). It follows that (�y, �z) := (y, z + e) is a nontrivial element of R.
Next let d = 0, and note that the dual feasible set equals R, which immedi-

ately implies the second statement of the proposition.
To prove the third statement, keep d = 0 and let x0 be an interior-point of P.

Note that x0 is optimal for the primal. Complementary slackness thus implies
that (0, 0) is the unique optimal solution of the dual, which proves the result.

Corollary 2.3 If P is bounded with interior, then (RKKT) has unbounded objec-
tive value.

Proof We first note that R defined in Proposition 2.2 is the recession cone of Gx
(for arbitrary x). Hence, (RKKT) contains a nontrivial direction of recession
(�y, �z) in the variables (y, z) such that bT�y > 0, which proves that it has an
unbounded objective value.

In the remainder of the paper, we make the following mild assumptions,
which are in line with Corollary 2.3:

Assumption 2.4 P is bounded. In particular, P is contained in the unit box {x ∈
R

n : 0 ≤ x ≤ e}.
Assumption 2.5 P contains an interior point, i.e., there exists x ∈ P such that
Ax < b and x > 0.

Note that, if P is bounded but not inside the unit box, then Assumption
2.4 can be enforced by a simple variable scaling. Likewise, if P does not satisfy
Assumption 2.5, then dimension-reduction techniques can be used to transform
P into an equivalent polyhedron, which has an interior.

We remark that, although Corollary 2.3 only establishes the unbounded-
ness of the root-node LP relaxation (RKKT), it easy to see that many of

266 S. Burer, D. Vandenbussche

the nodes in the branch-and-bound tree will have unbounded LP relaxations,
again stemming from the unboundedness of (y, z). One cannot expect the LP
relaxations to be bounded until many complementarities have been fixed by
branching.

3 Finite branch-and-bound via SDP

We have discussed in Sect. 2 how bounding the Lagrange multipliers (y, z)

becomes an issue when attempting to execute finite KKT-branching. We now
show how this obstacle can be overcome by an application of semidefinite
programming, and as a result, we establish the first finite branch-and-bound
algorithm for (QP).

3.1 An SDP relaxation of the KKT formulation

We first introduce a basic SDP relaxation of (QP). Our motivation comes from
the SDP relaxations of 0–1 integer programs introduced by Lovász and Schrij-
ver [16]. Consider a matrix variable Y, which is related to x ∈ P by the following
quadratic equation:

Y =
(

1
x

) (
1
x

)T

=
(

1 xT

x xxT

)
. (2)

From (2), we observe the following:

• Y is symmetric and positive semidefinite, i.e., Y ∈ S1+n+ (or simply Y � 0);
• if we multiply the constraints Ax ≤ b of P by some xi, we obtain the qua-

dratic inequalities b xi − Ax xi ≥ 0, which are valid for P; these inequalities
can be written in terms of Y as

(
b
∣∣ − A

)
Yei ≥ 0 ∀i = 1, . . . , n;

• the objective function of (QP) can be modeled in terms of Y as

1
2

xTQx + cTx = 1
2

(
0 cT

c Q

)
•

(
1 xT

x xxT

)
= 1

2

(
0 cT

c Q

)
• Y.

For convenience, we define

K :=
{
(x0, x) ∈ R

1+n : Ax ≤ x0 b, (x0, x) ≥ 0
}

and

Q̃ := 1
2

(
0 cT

c Q

)
,

A finite branch-and-bound algorithm 267

which allow us to express the second and third properties above more simply
as Yei ∈ K and xTQx/2 + cTx = Q̃ • Y. In addition, we let M+ denote the set
of all Y satisfying the first and second properties:

M+ := {Y � 0 : Yei ∈ K ∀i = 1, . . . , n} .

Then we have the following equivalent formulation of (QP):

max Q̃ • Y

s.t. Y =
(

1 xT

x xxT

)
∈ M+

x ∈ P.

Finally, by dropping the last n columns of the equation (2), we arrive at the
following linear SDP relaxation of (QP):

max Q̃ • Y (SDP0)

s.t. Y ∈ M+, Ye0 = (1; x)

x ∈ P.

We next combine this basic SDP relaxation with the LP relaxation (RKKT)
introduced in Section 2 to obtain an SDP relaxation of (KKT). More specifically,
we consider the following optimization over the combined variables (Y, x, y, z)

in which the two objectives are equated using an additional constraint:

max Q̃ • Y (SDP1)

s.t. Y ∈ M+, Ye0 = (1; x)

x ∈ P, (y, z) ∈ Gx

Q̃ • Y = (bTy + cTx)/2. (3)

This optimization problem is a valid relaxation of (KKT) if the constraint (3) is
valid for all points feasible for (KKT), which indeed holds as follows: let (x, y, z)

be such a point, and define Y according to (2); then (Y, x, y, z) satisfies the first
four constraints of (SDP1) by construction and the constraint (3) is satisfied due
to Proposition 2.1 and (2).

3.2 Properties of the SDP relaxation

In this short subsection, we establish two key properties of the SDP relaxa-
tion (SDP1)—ones which will allow us to establish the finite branch-and-bound
procedure in the next subsection.

First, unlike the LP relaxation (RKKT), the SDP relaxation (SDP1) is
bounded.

268 S. Burer, D. Vandenbussche

Proposition 3.1 The feasible set of (SDP1) is bounded.

Proof We first argue that the feasible set of (SDP0) is bounded. By Assump-
tion 2.4, the variable x is bounded, and hence Ye0 is as well. Because Y is
symmetric, this in turn implies that the 0-th row of Y is bounded. Now consider
Yei ∈ K for i ≥ 1. The recession cone corresponding to the constraint Yei ∈ K
is

{
(r0, r) ∈ R

1+n+ | Ar − br0 ≤ 0
}

=
{
(0, r) ∈ R

1+n+ | Ar ≤ 0
}

,

where the equality follows from the fact that the 0-th component of Yei is
bounded. Note that for any (0, r) in the cone, we know r is in the recession
cone of P, which is {0} by Assumption 2.4. Hence, we may conclude that Yei is
bounded.

We now show that the recession cone of the feasible set of (SDP1) is trivial.
Using the definition of R in Proposition 2.2 as well as the result of the previous
paragraph, the recession cone is

{
(�Y, �x, �y, �z) : (�Y, �x) = (0, 0), (�y, �z) ∈ R, bT�y = 0

}
.

However, Assumption 2.5 and Proposition 2.2 imply bT�y > 0 for all nontrivial
(�y, �z) ∈ R. So the recession cone is trivial.

Second, we prove another important property of (SDP1), namely that if its
optimal solution yields a first-order KKT point (x̄, ȳ, z̄), then x̄ is optimal for
(QP).

Proposition 3.2 Suppose (x̄, ȳ, z̄) is part of an optimal solution for (SDP1). If
(ȳ, z̄) ∈ Cx̄, then x̄ is an optimal solution of (QP).

Proof Let (Ȳ, x̄, ȳ, z̄) be an optimal solution of (SDP1). In particular, (3) holds,
i.e.,

Q̃ • Ȳ = 1
2

bTȳ + 1
2

cTx̄.

Because (ȳ, z̄) ∈ Gx̄∩Cx̄, Proposition 2.1 implies (bTȳ+cTx̄)/2 = x̄TQx̄/2+cTx̄.
So Q̃ • Ȳ equals the function value at x̄. Since Q̃ • Ȳ is an upper bound on the
optimal value of (QP), it follows that x̄ is an optimal solution.

3.3 Finite branch-and-bound

In Sect. 2.1, we have described the basic approach for constructing a branch-and-
bound algorithm for (QP) by recursively enforcing complementarities through
branching. We now incorporate (SDP1) and establish the finite branch-and-
bound algorithm.

A finite branch-and-bound algorithm 269

We first point out that, although the SDP relaxation (SDP1) has been con-
structed as a relaxation of (KKT), it is easy to extend the same ideas to yield
an SDP relaxation of the restricted KKT subproblem (1) associated with each
node. The only modification is the inclusion of the linear equalities represented
by Fx, Fz, Fb−Ax, and Fy into the definitions of P, Gx, and K in the natural way.
For example, at any node, we define

K :=
⎧⎨
⎩

Ax ≤ x0 b, (x0, x) ≥ 0
(x0, x) ∈ R

1+n : Ai·x = x0 bi ∀ i ∈ Fb−Ax

xj = 0 ∀ j ∈ Fx

⎫⎬
⎭ .

Moreover, the properties outlined in Propositions 3.1 and 3.2 also hold for the
SDP relaxations at the nodes: (a) each relaxation is bounded; and (b) if the
solution of a particular relaxation yields a KKT point (x̄, ȳ, z̄), then x̄ is an opti-
mal solution of (1). We also point out a simple observation: (c) if the relaxation
is infeasible, then (1) is infeasible.

Overall, the branch-and-bound algorithm starts at the root node, and begins
evaluating nodes, adding or removing nodes from the tree at each stage. Evalu-
ating a node involves solving the SDP relaxation and then fathoming the node
(if possible) or branching on the node (if fathoming is not possible and if the
node is not a leaf). The algorithm finishes when all nodes generated by the algo-
rithm have been fathomed. In order to prove that our algorithm does indeed
finish, it is necessary to establish that all leaf nodes will be fathomed. Otherwise,
they cannot be eliminated from the tree since they cannot be branched on. This
we term the correctness of the algorithm.

We explain fathoming in a bit more detail. Fathoming a node (i.e., eliminat-
ing it from further consideration) is only allowable if we can guarantee that its
associated subproblem (1) contains no optimal solutions of (QP), other than
possibly the solution (x̄, ȳ, z̄) obtained from the relaxation. Such a guarantee
can be obtained in two ways. First, if the relaxation is infeasible, then (1) is
infeasible so that it contains no optimal solutions. Second, we can fathom if the
relaxed objective value at (x̄, ȳ, z̄) is equal to or less than the (QP) objective of
some x ∈ P. In particular, we compare the relaxed value with the (QP) value of
x̄ itself as well as that of other solutions encountered at other nodes. Because
the (QP) value of x̄ cannot be greater than the relaxed value, fathoming occurs
due to x̄ only when the two values are equal, i.e., when the relaxation has no
gap.

Accordingly, to have a correct branch-and-bound algorithm, it must be the
case that (when feasible) the SDP relaxation has no gap at a leaf node. This
is established by the property (ii) above because the solution (x̄, ȳ, z̄) at a leaf
node is a KKT point by construction.

Thus, we have established the key theoretical result of the paper, which is
stated carefully in the theorem and proof below. We stress that the theorem is
concerned with the solution of (QP) in exact arithmetic.

270 S. Burer, D. Vandenbussche

Theorem 3.3 The branch-and-bound approach for (QP), which employs
KKT-branching and SDP relaxations of the type (SDP1), is both correct and
finite.

Proof We prove the theorem under two different models of computation. The
first proof, which assumes exact arithmetic, shows the essence of the result,
while the second establishes the result under the more realistic bit model.

Under the assumption of exact arithmetic, we are able to obtain the exact
solution of the SDP relaxations. Then the branch-and-bound approach is well-
defined because the SDP relaxations are bounded (refer to property (i) above);
finiteness is ensured by KKT branching; and correctness is guaranteed by the
discussion above the theorem.

Under the bit model of computation, we are only able to obtain an approx-
imate solution of the SDP relaxation (since the solution may have irrational
entries, for example). However, it is easy to see that the SDP relaxation at a
leaf node is equivalent to the natural LP relaxation of (1) in the sense that both
types of relaxations yield the same solution (x̄, ȳ, z̄). Thus, at the leaf nodes, the
SDPs can be solved exactly under the bit model because the LPs can be solved
exactly. Combined with well-definition and finiteness as above, this establishes
the correctness of algorithm.

4 SDP relaxations for quadratic programs

In this section, we investigate SDP relaxations of KKT further, a particular
goal being techniques for strengthening the relaxation (SDP1). As a result we
propose a strengthened relaxation called (SDP2).

In Sect. 3.1, we introduced SDP relaxations (SDP0) and (SDP1). Although
(SDP0) was not appropriate for use with KKT-branching because the multipli-
ers (y, z) do not appear explicitly, a natural question arises: how much tighter
is (SDP1) than (SDP0)? Although we have been unable to obtain a precise
answer to this question, some simple comparisons of the two relaxations reveal
interesting relationships, as we describe next.

For each x ∈ P and any Hx such that Gx ∩ Cx ⊆ Hx ⊆ Gx, define

δ(x, Hx) := 1
2

min
{

bTy : (y, z) ∈ Hx

}
+ 1

2
cTx.

We first point out that Proposition 2.1 implies δ(x, Gx ∩ Cx) = (bTy + cTx)/2
for all (y, z) ∈ Gx ∩ Cx. Hence, one can actually reformulate (KKT) as

max {δ(x, Gx ∩ Cx) : x ∈ P} .

Thus, for an approximation Hx of Gx ∩ Cx, δ(x, Hx) can be interpreted as a
conservative under-approximation of δ(x, Gx ∩ Cx). Since relaxations of (KKT)
depend at least in part on how closely Gx ∩ Cx is approximated by some Hx

A finite branch-and-bound algorithm 271

(given either explicitly or implicitly), it turns out that δ(x, Hx) is a surrogate for
understanding the tightness of Hx. Note also that Hx ⊆ H′

x implies δ(x, Hx) ≥
δ(x, H′

x).
In particular with Hx := Gx, we can characterize those (Y, x), which are

feasible for (SDP0) but not for (SDP1), i.e., ones with no (y, z) ∈ Gx such that
(Y, x, y, z) is feasible for (SDP1). We say the point is cut off by (SDP1).

Proposition 4.1 Let (Y, x) be feasible for (SDP0). Then (Y, x) is cut off by
(SDP1) if and only if δ(x, Gx) > Q̃ • Y.

Proof Suppose Q̃ • Y < δ(x, Gx), which implies Q̃ • Y < (bTy + cTx)/2 for all
(y, z) ∈ Gx. Hence, (Y, x) cannot be feasible for (SDP1) because it contains the
constraint Q̃ • Y = (bTy + cTx)/2.

When Q̃ • Y ≥ δ(x, Gx), we know that Q̃ • Y ≥ (bTy + cTx)/2 for at least one
(y, z) ∈ Gx, namely a solution defining δ(x, Gx). Using Proposition 2.2 along
with Assumptions 2.4 and 2.5, we can adjust (y, z) so that bTy increases to satisfy
(3), while maintaining (y, z) ∈ Gx. This yields (Y, x, y, z) feasible for (SDP1).

This proposition essentially demonstrates that the added variables and con-
straints, which differentiate (SDP1) from (SDP0), are effective in tightening the
feasible set when δ(x, Gx) is greater than Q̃ • Y for a large portion of (Y, x).

From a practical standpoint, we have actually never observed a situation in
our test problems for which the optimal value of (SDP1) is strictly lower than
that of (SDP0). We believe this is evidence that the specific function δ(x, Gx)

is rather weak, i.e., it is often less than or equal to Q̃ • Y. Nevertheless, the
perspective provided by Proposition 4.1 gives insight into how one can tighten
the SDP relaxations. Roughly speaking, the proposition tells us there are two
basic ways to tighten:

(i) lower Q̃•Y, that is, tighten the basic SDP relaxation (SDP0) so that (Y, x)

better approximates (2);
(ii) raise δ(x, Gx), that is, replace Gx in the KKT relaxation (SDP1) with an

Hx that better approximates Gx ∩ Cx.

We will see in the next section that enforcing complementarities in branch-and-
bound serves to accomplish both (i) and (ii), and this branching significantly
tightens the SDP relaxations as evidenced by a small number of nodes in the
branch-and-bound tree. In addition, we will introduce below a second SDP
relaxation of (KKT) that is constructed in the spirit of (i) and (ii).

Before we describe the next relaxation, however, we would like to make a
comment about the specific constraint (3) in (SDP1), which equates the objec-
tives of (SDP0) and (RKKT). Though this constraint is key in bounding the
feasible set of (SDP1) and in developing the perspective given by Proposi-
tion 4.1, we have found in practice that it does not tighten the SDP relaxation
unless many complementarity constraints have been fixed through branching.
Moreover, SDPs that do not include (3) can often be solved much more quickly
than ones that do. So, while (3) is an important constraint theoretically (we will
discuss additional properties below and in Sect. 5), we have found that it can

272 S. Burer, D. Vandenbussche

be sometimes practically advantageous to avoid. We should remark, however,
that, to maintain boundedness, dropping (3) does require one to include valid
bounds for (y, z)—bounds that should be computed in a preprocessing phase
that explicitly incorporates (3). We will discuss this in more detail in the next
section.

The SDP that we introduce next relaxes (KKT) by handling the quadratic
constraints (y, z) ∈ Cx directly. We follow the discussion at the beginning of
Sect. 2, except this time we focus on the variables (x, y, z) instead of just x. Let
Ŷ be related to (x, y, z), which is a feasible solution of (KKT), by the following
quadratic equation:

Ŷ =

⎛
⎜⎜⎝

1
x
y
z

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
x
y
z

⎞
⎟⎟⎠

T

=

⎛
⎜⎜⎝

1 xT yT zT

x xxT xyT xzT

y yxT yyT yzT

z zxT zyT zzT

⎞
⎟⎟⎠ . (4)

Defining n̂ := n + m + n,

K̂ :=
{
(x0, x, y, z) ∈ R

1+n̂ : Ax ≤ x0 b, ATy − z = Qx + x0 c, (x0, x, y, z) ≥ 0
}

,

and

Q̂ := 1
2

⎛
⎜⎜⎝

0 cT 0 0
c Q 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠

and letting Ŷxy and Ŷxz denote the xy- and xz-blocks of Ŷ, respectively, we
observe the following:

• Ŷ ∈ S1+n̂+ (or simply Ŷ � 0);
• Ŷei ∈ K̂ for all i = 1, . . . , n̂;
• using Proposition 2.1, the objective of (KKT) can be expressed as Q̂ • Ŷ;
• similar to (SDP1), the equation Q̂ • Ŷ = (bTy + cTx)/2 is satisfied;
• the condition (y, z) ∈ Cx is equivalent to diag(AŶxy)=b ◦ y and diag(Ŷxz)=0.

We let M̂+ denote the set of all Ŷ satisfying the first and second properties:

M̂+ :=
{

Ŷ � 0 : Ŷei ∈ K̂ ∀i = 1, . . . , n̂
}

.

By dropping the last n̂ columns of the equation (4), we arrive at the following
relaxation:

A finite branch-and-bound algorithm 273

max Q̂ • Ŷ (SDP2)

s.t. Ŷ ∈ M+, Ŷe0 = (1; x; y; z)

x ∈ P, (y, z) ∈ Gx

Q̂ • Ŷ = (bTy + cTx)/2

diag(AŶxy) = b ◦ y, diag(Ŷxz) = 0.

We remark that, similar to (SDP1), (SDP2) can be tailored to derive a related
SDP relaxation for each each node in the branch-and-bound tree.

Clearly (SDP2) is at least as strong as (SDP1), though it is much bigger. We
can see its potential for strengthening (SDP1) through the perspective of (i)
and (ii) above. By lifting and projecting with respect to (x, y, z) and the linear
constraints x ∈ P, (y, z) ∈ Gx, we accomplish (i), namely we tighten the rela-
tionship between the original variables and the positive semidefinite variable.
By incorporating the “diag” constraints, which represent complementarity, we
are indirectly tightening the constraint (y, z) ∈ Gx by reducing it to a smaller
one that better approximates Gx ∩ Cx. The computational results will confirm
the strength of (SDP2) over (SDP1).

5 The branch-and-bound implementation

In this section, we describe our computational experience with the branch-and-
bound algorithm for (QP) using both SDP relaxations (SDP1) and (SDP2).

5.1 Implementation details

One of the most fundamental decisions for any branch-and-bound algorithm is
the method employed for solving the relaxations at the nodes of the tree. As
mentioned in the introduction, we have chosen to use the method proposed
by Burer and Vandenbussche [4] for solving the SDP relaxations because of its
applicability and scalability for SDPs of the type (SDP1) and (SDP2). For the
sake of brevity, we only describe the features of the method that are relevant
to our discussion, since a number of the method’s features directly affect key
implementation decisions.

The algorithm uses a Lagrangian constraint-relaxation approach, governed
by an augmented Lagrangian scheme to ensure convergence, that focuses on
obtaining subproblems that only require the solution of convex quadratic pro-
grams over the constraint set K or K̂, which are solved using CPLEX by ILOG,
Inc. [11]. In particular, constraints such as (3) are relaxed with explicit dual vari-
ables. By the nature of the method, a valid upper bound on the optimal value
of the relaxation is available at all times, which makes the method a reasonable
choice within branch-and-bound even if the relaxations are not solved to high
accuracy. For convenience, we will refer to this method as the AL method.

274 S. Burer, D. Vandenbussche

Recall that the boundedness of (y, z) in (SDP1) and (SDP2) relies on the
equality constraint (3). So, in principle, relaxing this constraint with an unre-
stricted multiplier λ can cause problems for the AL method because its sub-
problems may have unbounded objective value corresponding to bTy → ∞.
(This behavior was actually observed in practice.) Hence to ensure that the sub-
problems in the AL method remain bounded, one must restrict λ ≤ 0 so that
the term λ bTy appears in the subproblem objective. In fact, it is not difficult to
see that this is a valid restriction on λ.

Early computational experience demonstrated that (3) often slows down the
solution of the SDP subproblems, mainly due to the fact that it induces cer-
tain dense linear algebra computations in the AL subproblems. On the other
hand, removing this constraint completely from (SDP1) and (SDP2) had little
negative effect on the quality of the relaxations at the top levels of the branch-
and-bound tree. As pointed out in Sect. 4, (3) is unlikely to have any effect until
many complementarities have been fixed, that is, until Hx gets close to Gx ∩ Cx.
Of course, it is theoretically unwise to ignore (3) because both the boundedness
of (y, z) and the correctness of branch-and-bound depend on it. (We were able
to generate an example of a leaf node that would not be fathomed if (3) was
left out.)

It is nevertheless possible to drop (3) in most of the branch-and-bound relax-
ations and still manage the boundedness and correctness issues:

• In a preprocessing phase, we include (3) and compute bounds on (y, z). To
compute these bounds, we solve two SDPs, with objectives eTy and eTz,
respectively, which yield valid upper bounds for yi and zj since y, z ≥ 0. We
solve these to a loose accuracy. The resulting bounds for y and z are then
carried throughout all branch-and-bound calculations.

• At the leaf nodes, instead of (SDP1) or (SDP2), we substitute the natural
LP relaxation of (1), which correctly fathoms leaf nodes. (In our computa-
tions branch-and-bound completed before reaching the leaf nodes, and so
we actually never had to invoke this LP relaxation.)

So we chose to remove (3) from all calculations except the preprocessing for
upper bounds on (y, z). Excluding the constraint usually did not result in an
increase in the number of nodes in the branch-and-bound tree, and so we were
able to realize a significant reduction in overall computation time.

To further expedite the branch-and-bound process, we also attempted to
tighten (SDP1) by adding constraints of the form Y(e0 − ei) ∈ K, which are
valid due to Assumption 2.4. Note that, while the constraint x ≤ e may be
redundant for P, the constraints Y(e0 − ei) ∈ K are generally not redundant for
the SDP. Although these additional constraints do increase the computational
cost of the AL method, the impact is small due to the decomposed nature of
the AL method. Moreover, the benefit to the overall branch-and-bound per-
formance is dramatic due to strengthened bounds coming from the relaxations.

In the case of (SDP2), we can add similar constraints. Assuming that bounds
for (y, z) have already been computed as described above, we can then rescale
these variables so that they, like x, are also contained in the unit box. We now

A finite branch-and-bound algorithm 275

may add Ŷ(e0 − ei) ∈ K̂ to tighten (SDP2). (Note that we chose to scale (y, z)

in the case of (SDP1) as well; see first item in the next paragraph.)
Some final details of the branch-and-bound implementation are:

• Complementarities to branch on are chosen using a maximum normalized
violation approach. Given a primal solution (x̄, ȳ, z̄) and slack variables
s̄ := b − Ax̄ obtained from a relaxation, we compute argmaxj{x̄jz̄j} and
argmaxi{s̄iȳi/ŝi}, where ŝi is an upper bound on the slack variable that has
been computed a priori in a preprocessing phase (in the same way as bounds
for (y, z) are computed). Recall that x, y, and z are already scaled to be in
the unit interval and hence the violations computed are appropriately nor-
malized. We branch on the resulting index (i or j) corresponding to the
highest normalized violation.

• After solving a relaxation, we use x̄ as a starting point for a QP solver based
on nonlinear programming techniques to obtain a locally optimal solution
to (QP). In this way, we obtain good lower bounds that can be used to
fathom nodes in the tree.

• We use a best bound strategy for selecting the next node to solve in the
branch-and-bound tree.

• Upon solution of each relaxation of the branch-and-bound tree, a set of dual
variables is available for those constraints of the SDP relaxation that were
relaxed in the AL method. These dual variables are then used as the initial
dual variables for the solution of the next subproblem, in effect performing
a crude warm-start, which proved extremely helpful in practice.

• We use a relative optimality tolerance for fathoming. In other words, for
a given tolerance ε, a node with upper bound zub is fathomed if (zub −
zlb)/zlb < ε, where zlb is the value of the best primal solution found thus
far. In our computations, we experiment with ε = 10−6 and ε = 10−2, which
we refer to as default and 1% optimality tolerances, respectively.

5.2 Computational results

We tested our SDP-based branch-and-bound on several types of instances. Our
primary interest is the performance of (SDP1) compared to that of (SDP2), but
we also consider the effect of different optimality tolerances (default versus
1%). In total, each instance was solved four times, representing the various
choices of relaxation type and optimality tolerance. All computations were per-
formed on a Pentium 4 running at 2.4 GHz under the Linux operating system.
A summary of our conclusions is as follows:

• In all cases, the number of nodes required is small, and when a 1% opti-
mality tolerance is used, the vast majority of problems solve in one node.
This illustrates the strength of the SDP relaxations.

• Runs with (SDP2) often require significantly fewer nodes than those
with (SDP1), indicating the strength of (SDP2) over (SDP1). In runs
where (SDP1) takes fewer nodes, numerical inaccuracy when solving

276 S. Burer, D. Vandenbussche

(SDP2)—a consequence of the size and complexity of (SDP2)—appears
to be an important contributing factor.

• For all instances tested, runs with (SDP1) outperform those with (SDP2) in
terms of CPU time.

• In absolute terms, the CPU times of the runs range from quite reasonable
(a few seconds on the smallest instances using (SDP1) and a 1% tolerance)
to quite large (a few days on the largest instances using (SDP2) and the
default tolerance). The bottleneck is the solution of the SDPs. The small
number of nodes indicates that improved SDP solution techniques will have
a significant impact on overall CPU times.

Related to the last point, we should note that it is possible to tweak the imple-
mentation so that the subproblems are not solved to a high level of accuracy,
especially at nodes with small depth in the branch-and-bound tree. This way
you may enumerate a few more nodes but may save in total CPU time.

5.2.1 Box-constrained instances

We tested our methodology on the 54 instances of box-constrained QPs intro-
duced by Vandenbussche and Nemhauser [26]. These instances range in size
from 20 to 60 variables and have varying densities for the matrix Q. To compare
(SDP1) and (SDP2), we present log–log plots of the number of nodes and CPU
times in Figs. 1 and 2 for both default and 1% optimality tolerances. Observe
that the number of nodes required for any instance is quite small and that
(SDP2) requires fewer nodes than (SDP1). This reflects the fact that (SDP2) is
at least as tight as (SDP1). Also, the overall time required by (SDP1) is signifi-
cantly smaller than that for (SDP2). (One comment on the graphics: the plots in
Fig. 1 may appear to have fewer than 54 points, but in actuality there are many
overlapping points.)

5.2.2 Applications: inventory and scheduling models

We also tested our method on problems motivated by models in inventory
theory and scheduling.

The inventory model, which we briefly describe here, has been presented by
Lootsma and Pearson [15]. Suppose there are q products, having sales rates
si and production rates pi ∀i = 1, . . . , q. The products are to be produced on
one machine according to a sequence σ ∈ Z

2n, where 0 ≤ σj ≤ q indicates
that product σj will be produced in the j-th production period. If σj = 0, then
the machine is idle in period j. We assume that σ2j = 0 ∀j = 1, . . . , n and
σ2j+1 �= 0 ∀j = 0, . . . , n − 1. Using this data, we can define an activity matrix
aij ∀i = 1, . . . , q, j = 1, . . . , 2n with

aij =
{

pi − si if i = σj

−si otherwise.

A finite branch-and-bound algorithm 277

100

10

1

100101

(S
D

P 2)

(SDP1)

Default optimality tolerance

100

10

1

100101

(S
D

P 2)
(SDP1)

1% optimality tolerance

(b)(a)

Fig. 1 Nodes required for (SDP1) and (SDP2) on box-constrained instances (both default and
1% optimality tolerances)

105

104

103

102

10

1

105

104

103

102

10

1

105104103102101 105104103102101

(S
D

P 2)

(SDP1)

Default optimality tolerance

(S
D

P 2)

(SDP1)

1% optimality tolerance

(b)(a)

Fig. 2 CPU times required for (SDP1) and (SDP2) on box-constrained instances (both default
and 1% optimality tolerances)

Finally, denote ci as the inventory holding cost for product i. We want to find
initial inventories vi for each product and the length of each production period
tj ∀j = 1, . . . , 2n. The objective is to minimize holding costs over one production
cycle of a given length T and to make the production cycle repeatable. Lootsma
and Pearson [15] showed that this problem may be modeled as a nonconvex QP:

278 S. Burer, D. Vandenbussche

min
q∑

i=1

ci

2n∑
j=1

⎡
⎣

⎛
⎝vi +

j−1∑
k=1

aiktj

⎞
⎠ tj + 1

2
aijt2j

⎤
⎦

s.t. vm +
2j∑

k=1

amktk ≥ 0, ∀j = 1, . . . , n − 1, m = σ2j+1

2n∑
j=1

tj = T

2n∑
j=1

aijtj ≥ 0 ∀i = 1, . . . , q

vi ≥ 0 ∀i, tj ≥ 0 ∀j

It is easy to see that we may replace the equality with
∑2n

j=1 tj ≥ T; we may also
assume T = 1. In addition, any optimal solution will have vi ≤ si, and hence we
may rescale the initial inventory variables to be contained in the unit interval.
The resulting QP, which fits our standard form, has 2n + q nonnegative vari-
ables and n + q inequality constraints. We randomly generated three instances
for each parameter pair (n, q) ∈ {10, 20} × {4, 6} for a total of 12 instances.
Production rates p are integers uniformly generated from the interval [40, 50],
while the sales rates are integers ranging uniformly over [1, 5]. Lastly, the σ

vector was produced by first assigning each product to a random time period
(this guarantees that each product will have at least some production time), and
then randomly assigning products to the remaining time periods.

The QP derived from a scheduling problem is developed by Skutella [24]
and solves the scheduling problem Rm||∑n

j=1 wjCj, i.e. scheduling n jobs on m
parallel unrelated machines to minimize the weighted sum of completion times.
The data for this problem consist of weights wj for each job j = 1, . . . , n and
processing times pij for job j on machine i. For each machine i, an ordering ≺i
of the jobs is defined by setting j ≺i k if wj/pij > wk/pik or wj/pij = wk/pik and
j < k.

Defining binary variables aij to indicate if job j is assigned to machine i, a
discrete model for this scheduling problem is

min
n∑

j=1

wj

⎡
⎣

m∑
i=1

aij

⎛
⎝pij +

∑
k≺ij

aikpik

⎞
⎠

⎤
⎦

st
m∑

i=1

aij = 1 ∀j (IQP)

aij ∈ {0, 1} ∀i, j

Skutella [24] showed that the optimal objective value does not decrease by
relaxing the integrality restrictions and moreover that one can construct an

A finite branch-and-bound algorithm 279

100

10

1

100101

(S
D

P 2)

(SDP1)

Default optimality tolerance

100

10

1

0.1
1001010.1

(S
D

P 2)

(SDP1)

1% optimality tolerance

(a) (b)

Fig. 3 Nodes required for (SDP1) and (SDP2) on scheduling (+) and inventory (�) instances
(both default and 1% optimality tolerances)

1051041031021010.1 1051041031021010.1

(S
D

P 2)

(SDP1)

105

104

103

102

10

1

0.1

105

104

103

102

10

1

0.1

(S
D

P 2)

(SDP1)

(a) (b)

Default optimality tolerance 1% optimality tolerance

Fig. 4 CPU times required for (SDP1) and (SDP2) on scheduling (+) and inventory (�) instances
(both default and 1% optimality tolerances)

optimal integer solution from an optimal fractional solution. By further replac-
ing each constraint

∑
i aij = 1 with

∑
i aij ≥ 1, which clearly does not affect

the problem, we can bring the scheduling problem into our standard form.
We randomly generated three scheduling instances for each parameter pair
(n, m) ∈ {(10, 2), (10, 3), (20, 2), (20, 3), (30, 2)} for a total of 15 instances. Pro-
cessing times were integers varying uniformly over the interval [10, 50], while
the weights, wj, ranged from 1 to 10.

We compare the number of nodes required by (SDP1) and (SDP2) in Fig.
3. Unlike with the box-constrained instances, (SDP2) is not the clear winner.

280 S. Burer, D. Vandenbussche

100

10

1

100101

(S
D

P 2
)

(SDP1)

Default optimality tolerance

100

10

1

100101

(S
D

P 2
)

(SDP1)

1% optimality tolerance

(a) (b)

Fig. 5 Nodes required for (SDP1) and (SDP2)on Globallib (+) and random (�) instances (both
default and 1% optimality tolerances)

105

104

103

102

10

1

105

104

103

102

10

1

105104103102101 105104103102101

(S
D

P 2)

(SDP1)

(S
D

P 2)

(SDP1)

(a) (b)

Default optimality tolerance 1% optimality tolerance

Fig. 6 CPU times required for (SDP1) and (SDP2)on Globallib (+) and random (�) instances
(both default and 1% optimality tolerances)

Upon closer inspection, we believe that instances where (SDP2) requires mores
nodes can be attributed to the inaccurate solution of the much larger SDP
relaxations for (SDP2). In either case, however, very few nodes were required.
In particular, when a 1% optimality tolerance is used, almost all instances can
be solved at the root, which indicates the strength of the proposed SDP relax-
ations. In Fig. 4, we compare CPU times for both types of relaxations in log-log
plots. Once we again we see that runs with (SDP1) take significantly less time.

A finite branch-and-bound algorithm 281

5.2.3 Globallib and random instances

To further test our algorithm, we used QP instances from Globallib [7], a col-
lection of nonlinear programming problems, many of which are nonconvex.
In particular, we selected any linearly constrained, bounded, nonconvex QP
whose number of variables ranged between 10 and 50. In order to use these
instances within our framework, we scaled the variables to be restricted to the
unit interval. However, this rescaling introduced some occasional numerical
failures in CPLEX when solving convex QP subproblems in the AL method.
We have omitted instances where such issues where encountered. Overall, we
report on approximately 20 Globallib instances.

We also randomly generated 24 interior-feasible QPs with general constraints
Ax ≤ b as well as the constraints 0 ≤ x ≤ e to ensure boundedness. These
instances range in size from 10 to 20 variables and 1 to 20 general constraints
and have fully dense Q and A matrices. The entries of A are uniformly gener-
ated integers over the range [−5, 5] and the entries of Q and c range from −50
to 50. The right hand side, b, was obtained by rounding up each entry of 1

2 Ae.
In Figs. 5 and 6, we compare the number of nodes required for both relax-

ation types in a log-log plot. Similar conclusions hold as for runs previously
mentioned.

Acknowledgments The authors would like to thank the editors and anonymous referees for
numerous suggestions that have improved the paper immensely.

References

1. Absil, P.-A., Tits, A.: Newton-KKT interior-point methods for indefinite quadratic pro-
gramming. Manuscript, Department of Electrical and Computer Engineering, University of
Maryland, College Park, MD, USA (2006). To appear in Computational Optimization and
Applications

2. Anstreicher, K.M.: Combining RLT and SDP for nonconvex QCQP. Talk given at the Workshop
on Integer Programming and Continuous Optimization, Chemnitz University of Technology,
November 7–9 (2004)

3. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear, semi-
definite and copositive programming. J. Global Optim. 24(2), 163–185 (2002). Dedicated to
Professor Naum Z. Shor on his 65th birthday

4. Burer, S., Vandenbussche, D.: Solving lift-and-project relaxations of binary integer programs.
SIAM J. Optim. 16(3), 726–750 (2006)

5. Floudas, C., Visweswaran, V.: Quadratic optimization. In: Horst, R., Pardalos, P. (eds.) Hand-
book of Global Optimization, pp. 217–269. Kluwer Academic Publishers (1995)

6. Giannessi, F., Tomasin, E.: Nonconvex quadratic programs, linear complementarity problems,
and integer linear programs. In: Fifth Conference on Optimization Techniques (Rome, 1973),
Part I, pp. 437–449. Lecture Notes in Computer Science, vol. 3. Springer, Berlin Heidelberg
New York (1973)

7. Globallib: http://www.gamsworld.org/global/globallib.htm
8. Goemans, M., Williamson, D.: Improved approximation algorithms for maximum cut and sat-

isfiability problems using semidefinite programming. J. ACM 42, 1115–1145 (1995)
9. Gould, N.I.M., Toint, P.L.: Numerical methods for large-scale non-convex quadratic

programming. In: Trends in Industrial and Applied Mathematics (Amritsar, 2001), vol. 72
of Appl. Optim., pp. 149–179. Kluwer Academic Publishers, Dordrecht (2002)

282 S. Burer, D. Vandenbussche

10. Hansen, P., Jaumard, B., Ruiz, M., Xiong, J.: Global minimization of indefinite quadratic func-
tions subject to box constraints. Naval Res. Logist. 40(3), 373–392 (1993)

11. ILOG, Inc.: ILOG CPLEX 9.0, User Manual (2003).
12. Kojima, M., Tunçel, L.: Cones of matrices and successive convex relaxations of nonconvex

sets. SIAM J. Optim. 10(3), 750–778 (2000)
13. Kojima, M., Tunçel, L.: Some fundamental properties of successive convex relaxation methods

on LCP and related problems. J. Global Optim. 24(3), 333–348 (2002)
14. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: Polynomial solvability of convex quadratic pro-

gramming. Dokl. Akad. Nauk SSSR 248(5), 1049–1051 (1979)
15. Lootsma, F.A., Pearson, J.D.: An indefinite-quadratic-programming model for a continuous-

production problem. Philips Res. Rep. 25, 244–254 (1970)
16. Lovász, L., Schrijver, A.: Cones of matrices and set-functions and 0–1 optimization. SIAM J.

Optim. 1, 166–190 (1991)
17. Nesterov, Y.: Semidefinite relaxation and nonconvex quadratic optimization. Optim. Methods

Softw. 9, 141–160 (1998)
18. Pardalos, P.: Global optimization algorithms for linearly constrained indefinite quadratic prob-

lems. Comput. Math. Appl. 21, 87–97 (1991)
19. Pardalos, P.M., Vavasis, S.A.: Quadratic programming with one negative eigenvalue is

NP-hard. J. Global Optim. 1(1), 15–22 (1991)
20. Sahinidis, N.V.: BARON a general purpose global optimization software package. J. Glob.

Optim. 8, 201–205 (1996)
21. Sherali, H.D., Fraticelli, B.M.P.: Enhancing RLT relaxations via a new class of semidefinite

cuts. J. Global Optim. 22, 233–261 (2002)
22. Sherali, H.D., Tuncbilek, C.H.: A global optimization algorithm for polynomial programming

problems using a reformulation-linearization technique. J. Global Optim. 2(1), 101–112 (1992)
Conference on Computational Methods in Global Optimization, I (Princeton, NJ, 1991).

23. Sherali, H.D., Tuncbilek, C.H.: A reformulation-convexification approach for solving noncon-
vex quadratic programming problems. J. Global Optim. 7, 1–31 (1995)

24. Skutella, M.: Convex quadratic and semidefinite programming relaxations in scheduling. J.
ACM 48(2), 206–242 (2001)

25. Vandenbussche, D., Nemhauser, G.: A polyhedral study of nonconvex quadratic programs with
box constraints. Math. Program. 102(3), 531–557 (2005)

26. Vandenbussche, D., Nemhauser, G.: A branch-and-cut algorithm for nonconvex quadratic pro-
grams with box constraints. Math. Program. 102(3), 559–575 (2005)

27. Ye, Y.: Approximating quadratic programming with bound and quadratic constraints. Math.
Program. 84(2, Ser. A), 219–226 (1999)

	A finite branch-and-bound algorithm for nonconvex quadratic programming via semidefinite relaxations
	Abstract
	Introduction
	Terminology and notation
	Finite branching and unbounded multipliers
	The KKT reformulation and finite branching
	The issue of unboundedness
	Finite branch-and-bound via SDP
	An SDP relaxation of the KKT formulation
	Properties of the SDP relaxation
	Finite branch-and-bound
	SDP relaxations for quadratic programs
	The branch-and-bound implementation
	Implementation details
	Computational results
	Box-constrained instances
	Applications: inventory and scheduling models
	Globallib and random instances

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

