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Abstract. We revisit a regularization technique of Mészáros for handling free variables within
interior-point methods for conic linear optimization. We propose a simple computational strategy,
supported by a global convergence analysis, for handling the regularization. Using test problems from
benchmark suites and recent applications, we demonstrate that the modern code SDPT3 modified to
incorporate the proposed regularization is able to achieve the same or significantly better accuracy
over standard options of splitting variables, using a quadratic cone, and solving indefinite systems.
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1. Introduction. Conic linear optimization, and in particular semidefinite op-
timization, has arisen since the early 1990s as an increasingly powerful and useful
technique for tackling a variety of problems arising from both applications and the-
ory. We refer the reader to the SDP webpage of Helmberg [8] as well as the books of
de Klerk [5] and Wolkowicz, Saigal, and Vandenberghe [30] for thorough coverage of
the theory and algorithms in this area, as well as of several application areas where
researchers in conic linear optimization have made significant contributions.

Conic linear optimization refers to the class of optimization problems where a lin-
ear function of a variable x is optimized subject to linear constraints on the elements of
x and the additional constraint that x lie in a symmetric self-dual cone. This includes
linear programming (LP) problems as a special case, namely, when the cone is the non-
negative orthant. Since all of these cones can be described as a conic section of the cone
of positive semidefinite matrices (in a polynomially bounded dimension, see [6]), at-
tention has focused particularly on the development of algorithms for solving semidef-
inite linear optimization, commonly referred to as semidefinite programming (SDP).
Beyond LP and SDP, a third specific cone that is useful in applications is the second-
order (or Lorentz) cone, which gives rise to second-order cone programming (SOCP).

As a result, a variety of algorithms for solving LP, SOCP, and SDP problems,
including polynomial-time infeasible path-following interior-point methods (IPMs),
have been implemented and benchmarked (see, e.g., [18]), and several excellent solvers
are available. Two of these solvers handle LP, SOCP, and SDP in a unified way,
namely, SeDuMi [25] and SDPT3 [26].

Notwithstanding the substantial progress made in recent years, work continues
on methods and software for conic linear optimization. One outstanding issue is that
of handling free variables.
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Handling free variables in conic linear optimization is an important modeling and
algorithmic issue for IPMs. The issue arises from the fact that nearly all theories
and algorithms for IPMs are based on the following standard-form primal and dual
problems:

min
{
cTx : Ax = b, x ∈ K

}
and max

{
bT y : AT y + s = c, s ∈ K

}
,

where K is the symmetric self-dual cone (specifically, a direct product of linear,
semidefinite, and second-order cones). However, in many applications, free variables
naturally appear in the primal. Examples of such applications occur in quantum chem-
istry [36], polynomial optimization problems [21, 12], and combinatorial optimization
problems [13, 2], among others.

Allowing free variables, the (nonstandard) primal problem is

(1) min
{
cTx + gT z : Ax + Ez = b, x ∈ K

}
with the corresponding dual problem

(2) max
{
bT y : AT y + s = c, ET y = g, s ∈ K

}
.

We denote by (n, p,m, n) the dimensions of the vectors (x, z, y, s), respectively, which
determines the sizes of the data (A, b, c, E, g).

Theoretically, it is not so difficult to extend standard-form IPMs to handle (1)–(2).
However, computation is not so easy. Each iteration of IPMs for the standard-form
problem is based on solving a positive definite linear system, and accordingly most
codes use high-quality, fast, sparsity-preserving implementations of the Cholesky fac-
torization. When free variables are present, the corresponding system is still invertible
but becomes indefinite, which makes it more difficult to solve in a quick, stable fash-
ion. We emphasize that free variables are a computational issue and not a theoretical
one.

Researchers have attempted various alternative ways to handle free variables com-
putationally. Each method can be viewed as an attempt to enable the use of the
Cholesky factorization.

Probably the simplest and most often suggested method is to split the variable z
into a difference z+ − z− of nonnegative vectors z+ ≥ 0 and z− ≥ 0 which transforms
(1)–(2) into standard form. The effect in the dual is that the equality ET y = g is split
into ET y ≥ g and ET y ≤ g. In part because of its simplicity, this approach is often
implemented as the default behavior for interior-point methods (e.g., in the LP code
LIPSOL [34] that is the basis of Matlab’s large-scale LP solver). For interior-point
methods, this splitting of variables can be problematic because the primal optimal
solution set becomes unbounded and the dual feasible set has no interior. Empirically,
a typical behavior is that z+ and z− individually become unbounded, while their
difference z stays bounded. For LP, Wright [31] asserts that, for methods which
achieve superlinear convergence, the tendency of z+ and z− to grow large is mitigated
in a satisfactory manner. Also, an alternative way to handle the splitting of variables
in LP that leads to the solution of a symmetric quasi-definite system [27] is outlined
in [28]. However, the recent results in [29, 9] suggest that the degeneracy caused by
splitting free variables in SDP problems makes it difficult to solve the resulting SDPs
stably and/or highly accurately.

A quick overview of other alternative methods for handling free variables is as
follows:
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1312 MIGUEL F. ANJOS AND SAMUEL BURER

• One can convert to standard form by eliminating z in the equations Ax+Ez =
b. However, structural properties of (A,E) such as sparsity tend to be de-
stroyed by such an approach. In the context of SDP, Kobayashi, Nakata, and
Kojima [9] consider this approach and in particular make efforts to manage
the loss of sparsity by eliminating z via different bases.

• One can convert to standard form by adding an auxiliary scalar variable z0

and requiring that (z0, z) be in a second-order cone. To the best of our
knowledge, this was first suggested by Andersen [1], who reports good results
and improved accuracy when solving SOCPs. This approach is also available
as an option in the most recent release of SeDuMi, version 1.1 (see [23]).

• One can handle the free variables directly and regularize the indefinite sys-
tem faced at each iteration, i.e., make the system symmetric quasi-definite by
perturbing it in a controlled way. This approach was suggested by Mészáros
[17] in the context of LP. Beyond permitting the use of the Cholesky factor-
ization, another advantage of regularization is that the structure of (A,E) is
not destroyed. On the other hand, the downside of this approach is that the
solution of the system is also perturbed, and care must be taken to ensure
that the global convergence of the method is not negatively affected.

Finally, we reiterate that one certainly still has the option to handle the free variables
directly and solve the indefinite systems ((7) below). In fact, this is the default
option of SDPT3 version 3.02, ostensibly because the authors of the software found
this approach better than, say, splitting variables.

It seems safe to say that no consensus has been reached on how to handle free
variables in all cases. Indeed, it is our opinion (and that of Kobayashi, Nakata, and
Kojima [9]) that solving general conic linear optimization problems with free variables
in a reliably stable and accurate manner remains a relevant research topic.

In this paper, we revisit the regularization method of Mészáros [17] and formalize
a strategy for handling and updating the regularization so that global convergence is
not affected. In contrast to the strategy suggested by Mészáros, which is based on
iterative refinement and is somewhat ad hoc, our strategy is supported by a global
convergence result. Using the code SDPT3, we illustrate the effectiveness of our
regularization strategy on a diverse collection of problems. Our approach achieves
the same or significantly better accuracy over the approaches of splitting variables,
using a quadratic cone, and solving indefinite systems.

1.1. Some remarks. A few remarks are in order. First, our intention in this
paper is not to claim that regularization is the best in all situations. Indeed, this is
most likely not the case. Instead, we simply hope to establish that regularization,
properly handled, is a viable alternative to other methods for handling free variables.
(One consequence is that we have chosen not to compare with the method of elimi-
nating z as in [9] in part because careful comparisons are given in [9] and because we
prefer to maintain the structure of (A,E).)

Second, there are several different publicly available codes for LP, SOCP, and/or
SDP on which we could test the regularization. Ultimately, we have chosen to test
SDPT3 for several reasons: We wished to test both SOCP and SDP, which SDPT3
can handle; SDPT3’s algorithm matches the algorithmic framework of our analysis
very closely; and SDPT3’s code is easily accessible, customizable, and verifiable in
Matlab.

Finally, significant variation between different codes makes it unclear whether
regularization would have the same effect within all codes as it does with SDPT3.
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For example, tests that we have performed indicate that split variables perform quite
well within SeDuMi. This is to be expected because, by design, the homogeneous
self-dual embedding model used by SeDuMi has a bounded optimal solution set, and
thus the iterates cannot diverge to infinity. Hence, SeDuMi will not suffer additional
numerical instabilities from the splitting; in fact, split variables perform so well in
SeDuMi that there does not appear to be much room for improvement in SeDuMi using
regularization. In our opinion, these code-by-code differences make the discussion of
free variables richer.

1.2. Structure of this paper. This paper is structured as follows. In section 2,
we recall the basic framework of infeasible primal-dual path-following algorithms. In
section 3, we summarize the key ideas behind a global convergence result of Kojima,
Megiddo, and Mizuno [10], and in section 4, we recall the regularization approach
originally proposed by Mészáros [17]. In section 5, we propose a specific methodology
to update the regularization at each iteration and extend the analysis of Kojima,
Megiddo, and Mizuno [10] to show that the resulting infeasible primal-dual path-
following method is globally convergent. In section 6, we report computational results
which show that the proposed regularization leads to an overall improvement in the
performance of SDPT3 for instances with free variables. Finally, section 7 summarizes
our findings and mentions some possible directions for future research.

2. The basic infeasible primal-dual path-following framework. In this
section, we recall the basic framework of infeasible primal-dual path-following algo-
rithms, which is implemented in nearly all interior-point codes for conic linear op-
timization. Even though standard texts treat the standard-form problem, we state
the framework with respect to the problems (1)–(2). To recover the standard-form
framework, one can simply take p = 0.

For simplicity, the framework (and indeed all of the results in the paper) are stated
with K expressed as a linear cone; i.e., the SOCP and SDP cases are not explicitly
handled. By now, it is well known that all standard convergence results for LP can
be extended to SOCP and SDP. With this in mind and in hopes of keeping this paper
as clean and accessible as possible, we choose to state everything in terms of LP.

Without loss of generality, we make the standard assumptions that A has full-
row rank and E has full-column rank. We also assume that both (1)–(2) are interior
feasible so that strong duality holds. Strong duality occurs when both primal and
dual attain their optimal values with no gap; i.e., there exists a primal-dual feasible
point (x, z, y, s) such that μ(x, s) = 0, where μ(x, s) := xT s/n is the (scaled) duality
gap.

A consequence of these assumptions is that, for all ν > 0, the system

Ax + Ez = b,(3a)

AT y + s = c,(3b)

ET y = g,(3c)

XS e = ν e,(3d)

(X,S) ∈ K0 ×K0(3e)

has a unique solution, which we write as (xν , zν , yν , sν). (We adopt common notation
in the field of IPMs, so that X := Diag(x), S := Diag(s), K0 := int(K), and e denotes
the vector of all ones.) The set C := {(xν , zν , yν , sν) : ν > 0} is called the central path
and is a smooth trajectory that converges to the primal-dual optimal solution set as
ν → 0 (note, for example, that μ(xν , sν) = ν).
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Given an initial point (x1, z1, y1, s1)—which is not necessarily primal-dual feasible
but does satisfy (x1, s1) ∈ K0×K0—the kth iteration of the path-following framework
attempts to solve (3) for some νk ∈ (0, μ(xk, sk)) by taking a step via Newton’s
method. More specifically, the system

AΔxk + EΔzk = rkp ,(4a)

ATΔyk + Δsk = rkd1
,(4b)

ETΔyk = rkd2
,(4c)

SkΔxk + XkΔsk = rkc ,(4d)

where

rkp := b−Axk − Ezk,(5a)

rkd1
:= c−AT yk − sk,(5b)

rkd2
:= g − ET yk,(5c)

rkc := νk e−XkSke,(5d)

is solved for (Δxk,Δzk,Δyk,Δsk), and a step size αk ∈ (0, 1] is selected such that

(xk+1, zk+1, yk+1, sk+1) := (xk, zk, yk, sk) + αk(Δxk,Δzk,Δyk,Δsk)

satisfies μ(xk+1, sk+1) < μ(xk, sk) and (xk+1, sk+1) ∈ K0 ×K0. By construction,

(6) (rk+1
p , rk+1

d1
, rk+1

d2
) = (1 − αk)(r

k
p , r

k
d1
, rkd2

).

In other words, one can interpret a single iteration as decreasing the duality gap and
decreasing infeasibility, while staying inside the cone. (An important technical issue
is whether (4) is uniquely solvable. This is guaranteed by (xk, sk) ∈ K0 × K0; see
also below.)

Various implementations of the above basic framework are possible. For example,
many implementations do not monitor the decrease of μ since, in practice, a decrease
is typically observed all the way to the boundary of K0 ×K0. Most implementations
also take different step sizes in the primal and dual spaces. Another popular variant
is the predictor-corrector strategy of Mehrotra [16], which provides a highly effective
scheme for choosing νk and for altering (Δxk,Δzk,Δyk,Δsk) so that the central path
is followed more closely.

The Newton system can be reduced to the following smaller system (where the
superscript k is understood):

(7)

(
AXS−1AT E

ET 0

)(
Δy
Δz

)
=

(
AXS−1rd1 −AS−1rc + rp

rd2

)
.

If p > 0 (i.e., if there are free variables), then this system is indefinite. On the other
hand, if p = 0, then the system is positive definite and can be solved with the Cholesky
factorization.

3. A basic global convergence analysis. As discussed in section 2, the infea-
sible primal-dual path-following framework reduces both the gap and the infeasibility
in each iteration. Global convergence is achieved if the gap and infeasibility converge
to zero. In this section, we recapitulate the first global convergence result, which
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was given by Kojima, Megiddo, and Mizuno [10] (for the case of LP with no free
variables). This will serve as the basis of the results in section 5. (Some comments
on why we have chosen to present the approach of Kojima, Megiddo, and Mizuno are
given below in section 3.2.)

We caution the reader that we do not present Kojima, Megiddo, and Mizuno’s
method verbatim, but instead we make some simplifying assumptions. The simpli-
fications are for the sake of brevity; all of the fundamental content is retained. For
example, Kojima, Megiddo, and Mizuno analyze the use of different primal and dual
step sizes, whereas we analyze a common step size. Another simplification is the
following assumption: The initial point (x1, z1, y1, s1) satisfies (r1

p, r
1
d1

) = (0, 0) so

that (rkp , r
k
d1

) = (0, 0) for all k. Our reasons for this assumption are as follows: The
essentials of the global convergence result are clear with only one infeasible equation,
and the assumption rkd2

�= 0 is sufficient to develop the techniques of section 5. In

accordance with this assumption, we will write rk := rkd2
to streamline notation. Also

to make notation easier, we let μk := μ(xk, sk).
Within the framework of section 2, convergence results typically require some

restrictions on the iterates. Kojima, Megiddo, and Mizuno require that the iterates
remain in a neighborhood of the central path having the following form, which is
dependent on constants γ ∈ (0, 1) and β > 0:

(8)
N (γ, β) := {(x, z, y, s) ∈ K0×�p×�m×K0 : XS e ≥ γ μ(x, s) e, ‖r(y)‖ ≤ β μ(x, s)},

where r(y) := g−ET y. In particular, γ and β should be chosen so that (x1, z1, y1, s1) ∈
N (γ, β). At times we will write N := N (γ, β) for convenience. The neighborhood
aids the convergence analysis by guaranteeing that the iterates do not get too close
to the cone boundary and that infeasibility decreases at the same rate as the duality
gap.

The precise algorithm is stated as Algorithm 1. Note that the algorithm depends
on user-defined tolerances ε > 0 and ω > 0 as well as a duality gap “dampening”
factor σ ∈ (0, 0.99). In addition, the algorithm also utilizes the following definitions
for α ∈ [0, 1]:

(xα, zα, yα, sα) := (xk, zk, yk, sk) + α(Δxk,Δzk,Δyk,Δsk),

μα := μ(xα, sα).

The convergence result is stated next.

Algorithm 1. Infeasible Path-Following Algorithm.

Let ε > 0, ω > 0, σ ∈ (0, 0.99), and (x1, z1, y1, s1) ∈ N be given.

for k = 1, 2, 3, . . . do
If μk ≤ ε or ‖(xk, sk)‖1 ≥ ω, then stop.
Set νk := σμk and solve (4) for (Δxk,Δzk,Δyk,Δsk).
Set (xk+1, zk+1, yk+1, sk+1) = (xαk

, zαk
, yαk

, sαk
), where αk ∈ (0, 1] is the largest

step size such that the relations

(xα, zα, yα, sα) ∈ N ,(9)

μα ≤ (1 − 0.01α)μk(10)

hold for every α ∈ [0, αk].
end for
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Theorem 3.1 (see [10]). Let γ ∈ (0, 1), β > 0, and an initial point (x1, z1, y1, s1) ∈
N (γ, β) be given. Suppose, moreover, that positive tolerances ε and ω and a damp-
ening factor σ ∈ (0, 0.99) are specified. Then Algorithm 1 eventually generates an
iterate (xk, zk, yk, sk) ∈ N (γ, β) such that μk ≤ ε or ‖(xk, sk)‖1 ≥ ω. If the first case
occurs, then ‖rk‖ ≤ β ε as well.

If the second case occurs, then Kojima, Megiddo, and Mizuno show that the
infeasibility of (1)–(2) is implied over a wide region of the primal-dual ground space
K×�p×�m×K. Although this information is not a full infeasibility certificate, the
intuition is that this is a strong indication of infeasibility, especially when ω is large.

The key to establishing Theorem 3.1 is to prove the existence of a positive constant
α∗ such that αk ≥ α∗ for all k generated by the algorithm. We state this lemma and
prove the theorem; portions of the proof of the lemma, which are relevant to section
5, are given below in section 3.1.

Lemma 3.2 (see [10]). Suppose that there exists some constant η > 0 such that,
for all k generated by the algorithm,

|Δxk
i Δski − γ (Δxk)TΔsk/n | ≤ η ∀ i = 1, . . . , n,(11a)

| (Δxk)TΔsk/n | ≤ η.(11b)

Then αk ≥ α∗ > 0, where

(12) α∗ := min

{
1,

(1 − γ)σε

η
,
σε

η
,
(0.99 − σ)ε

η

}
.

Proof of Theorem 3.1. The proof is by contradiction. Assume that Algorithm
1 does not terminate. Then the entire infinite sequence {(xk, zk, yk, sk)} lies in the
compact set

N ∗ := { (x, z, y, s) ∈ N : μ(x, s) ≥ ε, ‖(x, s)‖1 ≤ ω } .

Combining this with the fact that the Newton direction is a continuous function of the
iterates (since (4) is nonsingular for each k), any continuous function of the direction
is uniformly bounded over all k. So the hypothesis of Lemma 3.2 holds, implying that
αk ≥ α∗ for all k. Thus, by Algorithm 1, the duality gap is decreased by at least
a multiplicative factor of 1 − 0.01α∗ < 1 in each iteration, and so μk → 0, which
contradicts the assumption that Algorithm 1 does not terminate.

3.1. Proof of Lemma 3.2. Assume that (11) holds for all k generated by the
algorithm, and note also that

(13) μk ≥ ε

for the same k. We define rα := g − ET yα and recall that rα = (1 − α) r by (6).
Using the definitions of N and Algorithm 1 together with the following three

propositions, the proof of Lemma 3.2 is straightforward. We give only the proof of
Proposition 3.4 because of its relevance for the results in section 5. The super- and
subscripts k are dropped since the arguments below are irrespective of k.

Proposition 3.3 (see [10]). XαSα e ≥ γ μα e for all α ≤ (1 − γ)σ ε/η.
Proposition 3.4 (see [10]). ‖rα‖ ≤ βμα for all α ≤ σε/η.
Proof. Recall the standard relation

(14) μα = (1 − (1 − σ)α)μ + α2ΔxTΔs/n.
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Thus, we have

βμα − ‖rα‖ = β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖

= (1 − α)(βμ− ‖r‖) + βασμ + βα2ΔxTΔs/n

≥ βασμ− βα2η ≥ αβ [σε− αη] ,

where the first equality follows from (14), the first inequality follows from (x, z, y, s) ∈
N and (11b), and the second inequality follows from (13). This proves the result.

Proposition 3.5 (see [10]). μα ≤ (1 − 0.01α)μ for all α ≤ (0.99 − σ)ε/η.

3.2. Other convergence results. Before proceeding, we discuss other known
convergence results for the infeasible framework of section 2 and explain why we have
chosen to analyze the result of Kojima, Megiddo, and Mizuno [10].

Following the above global convergence result of Kojima, Megiddo, and Mizuno
and Zhang [32] strengthened the result by proving that an ε-approximate optimal
solution is delivered within O(n2) iterations (if an optimal solution exists). In par-
ticular, Zhang resolved the ambiguity surrounding Kojima, Megiddo, and Mizuno’s
infeasibility “certificate” ‖(x, s)‖1 > ω. For example, under the assumption of primal-
dual interior feasibility, all iterates stay bounded. Later, Zhang [33] extended these
ideas to the case of SDP.

Other implementations of the framework have also been analyzed. In particular,
a few authors have studied variations of the original predictor-corrector strategy of
Mehrotra [16]. First, Mehrotra himself suggests a proof of global convergence for his
method by appealing to certain “fall back” search directions, which are different from
his own predictor-corrector direction. Then Zhang and Zhang [35] prove polynomial
convergence of a variation of Mehrotra’s original method, which they suggest, but
to our knowledge the Zhang–Zhang variant has not actually been implemented in
practice. Finally, a third variant, which is used in most modern interior-point codes,
is analyzed by Salahi, Peng, and Terlaky [24]. They make the simplifying assumption
that all iterates are feasible and show by example that this variant can converge
quite slowly on certain problems. By studying a suitable modification, they prove
polynomial convergence. To our knowledge, no one has proved global or polynomial
convergence of the infeasible version of this third variant (i.e., the one implemented
in most codes).

A different line of research has analyzed the convergence of the framework when
using inexact Newton directions, which are directions that satisfy (4) only approx-
imately. Inexact directions arise, for example, when iterative methods are used to
solve the system (7) to moderate accuracy. Depending on their precise form, inex-
act directions can lead to infeasible iterates, even if the algorithm is supplied with
an initial feasible iterate. This is because the key relation (6) does not hold from
iteration to iteration. Nevertheless, global and polynomial convergence results can be
proved under suitable conditions on the degree of the inexactness of the direction (see
[19, 11, 7] for LP and, more recently, [37] for SDP).

In section 5, we propose Algorithm 2, a variant of Algorithm 1 that is based on
an inexact Newton direction arising from regularization. We also extend the analysis
in this section to prove a global convergence result for Algorithm 2. Although we
were unable to prove a polynomial convergence result for Algorithm 2, and although
the aforementioned work on inexact Newton directions can be applied to obtain a
provably polynomially convergent method with regularization, we deliberately choose
to advocate Algorithm 2 for the following reasons:
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• Our extension of the original result of Kojima, Megiddo, and Mizuno has
the advantages that: (i) it allows for infeasible iterates and a straightforward
analysis of our particular inexact direction; and (ii) the resulting regulariza-
tion strategy is quite simple to implement and has an intuitive appeal.

• Our experiments in the direction of following the insights provided by the
above research on inexact methods led us to the following conclusions: (i)
the resulting regularization strategies are significantly more difficult to im-
plement; and (ii) we implemented the approach of [7] and found by experi-
mentation that it did not work as well as our proposed approach.

It should also be noted that we chose not to analyze a predictor-corrector variant
because the theoretical basis for implemented predictor-corrector strategies is less well
understood, especially with regards to infeasible and inexact aspects. Nonetheless,
we did test our method successfully within such a strategy (more details are given in
section 6).

Ultimately, we believe that our analysis allows us to identify the essence of a good
regularization strategy. It should (i) be convergent, (ii) be easy to implement, and
(iii) work well in practice.

4. The regularization approach of Mészáros. Mészáros [17] proposes to
replace (4c) of the Newton system (4) with the following equation for a specified
δk > 0:

(15) ETΔyk − δk Δzk = rkd2
.

Just as (4) can be reduced to (7), the regularized system of Mészáros can be reduced
to

(16)

(
AXS−1AT E

ET −δ I

)(
Δy
Δz

)
=

(
AXS−1rd1

−AS−1rc + rp
rd2

)
,

where the k subscript is understood. In contrast to (7), however, (16) can further be
reduced to the positive definite system

(17)
(
AXS−1AT + δ−1EET

)
Δy = AXS−1rd1 −AS−1rc + rp + δ−1Erd2 .

Hence, the Cholesky factorization can be employed to calculate the direction. The
obvious downside is that the resulting direction is not the true Newton direction. It
is shown in [17] that the difference between these two directions is O(δ).

Yet, a more important question in practice is the choice of δk throughout the
course of the algorithm, since poor choices can certainly have a negative impact on
convergence. Under restrictive assumptions, an adaptive heuristic for updating δk is
proposed in [17], and iterative refinement is also suggested for improving the quality
of the search direction at each iteration. Furthermore, Maros and Mészáros [15] in-
vestigate the choice of a constant δk throughout the algorithm. From our perspective,
these suggestions are somewhat ad hoc and do not consider the effect of the regular-
ization on the global convergence of the algorithm. We feel that the question of how
to select a global strategy for updating δk was left open by Mészáros.

5. Global convergence with regularization. In contrast to Mészáros, we
take the perspective that the regularization of the Newton system leads to an inexact
interior-point method. In this section, we propose a specific methodology to update
δk at each iteration and show that the resulting interior-point method is globally
convergent.
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Recall that the direction determined by the regularization differs from the true
Newton direction in that (15) replaces (4c). Expressed differently, we allow the New-
ton direction to satisfy

ETΔyk = rkd2
+ δkΔzk,

even though we hope that ETΔyk could equal rkd2
. So the direction given by the

regularization is an inexact direction. But what effect does the inexact direction have
on convergence? If one tries to extend the convergence proof of Kojima, Megiddo,
and Mizuno, all concepts and proofs extend easily except that we no longer have rα
equal to (1 − α)r, which in turn causes a direct extension of Proposition 3.4 to fail
(see section 3.1).

However, it is not so difficult to repair the proof of Proposition 3.4. The key
insight is that the degree of inexactness of the direction needs to be controlled in a
certain manner. Specifically, if we have

(18) δk‖Δzk‖ ≤ βσμk/2

for all k, then global convergence is established by Theorem 5.1 below.
Our method for enforcing (18) is essentially to decrease δk if (18) does not hold.

The resulting algorithm is stated as Algorithm 2. Algorithm 2 incorporates all of the
features of Algorithm 1, while adding steps to handle δk that are fairly straightforward.
It is worth mentioning three items:

• In the while loop, each time δk is updated, it is decreased by a factor of at
least 2. As a result, the while loop will terminate after a finite (usually quite
small) number of loops.

Algorithm 2. Infeasible Path-Following Algorithm (with Regularization).

Let ε > 0, ω > 0, σ ∈ (0, 0.99), δ1 > 0, and (x1, z1, y1, s1) ∈ N be given.

for k = 1, 2, 3, . . . do
If μk ≤ ε or ‖(xk, sk)‖1 ≥ ω, then stop.
Set accept = 0.
while accept = 0 do

Set νk = σμk and solve (4) with (4c) replaced by (15) for (Δxk,Δzk,Δyk,Δsk).
if δk‖Δzk‖ ≤ βσμk/2 then

accept = 1
else
δk ← 1

2 · βσμk/(2‖Δzk‖)
end if

end while
Set (xk+1, zk+1, yk+1, sk+1) = (xαk

, zαk
, yαk

, sαk
), where αk ∈ (0, 1] is the largest

step size such that the relations

(xα, zα, yα, sα) ∈ N ,(19)

μα ≤ (1 − 0.01α)μk(20)

hold for every α ∈ [0, αk].
Set δk+1 ← βσμk+1/(2‖Δzk‖).

end for
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• In each loop of the while loop, the direction must be recalculated. This ne-
cessitates reforming and refactoring the matrix AXS−1AT + δ−1

k EET of (17)
because of the dependence on δk. This is a potential downside of Algorithm 2.
However, the computational results of section 6 (particularly Table 5) show
that, overall, this extra work does not constitute a disadvantage, most likely
because the while loop is repeated only a small number of times.

• The purpose of the while loop is to drive δk lower and lower until (18) holds.
Based on the (ultimately flawed) idea that δk should never increase during the
course of the algorithm, our initial implementation of Algorithm 2 maintained
a nonincreasing sequence {δk}. We found by experimentation, however, that
sometimes δk would go to 0 too quickly, causing numerical difficulties. By
this we mean, for example, that one iteration would require δk ≤ 10−4 to
enforce (18), while a later iteration would require only δk ≤ 10−2. For nu-
merical stability, it makes sense to take δk as large as possible, which was not
allowed by our initial implementation. Hence, our final implementation (i.e.,
Algorithm 2) allows δk to increase via the last line of the for loop, which sets
δk+1 to our best guess given current information.

Regarding convergence, the following result holds for this algorithm.
Theorem 5.1. Let γ ∈ (0, 1), β > 0, and an initial point (x1, z1, y1, s1) ∈

N (γ, β) be given. Suppose, moreover, that positive tolerances ε and ω, a dampening
factor σ ∈ (0, 0.99), and an initial regularization parameter δ1 > 0 are specified. Then
Algorithm 2 eventually generates an iterate (xk, zk, yk, sk) ∈ N (γ, β) such that μk ≤ ε
or ‖(xk, sk)‖1 ≥ ω. If the first case occurs, then ‖rk‖ ≤ β ε as well.

The proof of Theorem 5.1 follows the same steps as that of Theorem 3.1 with two
changes: rα and α∗ are now given by

(21) rα = (1 − α)r − αδΔz

and

α∗ := min

{
1,

(1 − γ)σε

η
,
σε

2η
,
(0.99 − σ)ε

η

}
,

respectively, and Proposition 3.4 is replaced by the following proposition.
Proposition 5.2. If δk‖Δzk‖ ≤ βσμk/2, then ‖rα‖ ≤ βμα for all α ≤ σε/2η.
Proof. We have

βμα − ‖rα‖
= β

[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− ‖(1 − α)r − αδΔz‖

≥ β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖ − αδ‖Δz‖

≥ β
[
(1 − (1 − σ)α)μ + α2ΔxTΔs/n

]
− (1 − α)‖r‖ − βασμ/2

= (1 − α)(βμ− ‖r‖) + βασμ/2 + βα2ΔxTΔs/n

≥ βασμ/2 − βα2η ≥ αβ [σε/2 − αη] ,

where the first equality follows from (14) and (21), the first inequality follows from
(x, z, y, s) ∈ N and (11b), and the second inequality follows from the assumption
(x, z, y, s) ∈ N ∗. This proves the result.
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6. Implementation and computational results. We compare our proposed
regularization (hereafter denoted Regularize) with

• explicitly solving the indefinite system (7) (Explicit),
• splitting the free variables into the difference of two nonnegative variables

(Split), and
• putting the free variables into a second-order cone (qCone).

The comparisons are carried out using SDPT3 (version 3.02), which supports Ex-

plicit by default and supports Split and qCone via modified data input. More-
over, SDPT3 requires only simple code modifications to implement Regularize. All
tests are run on a dual Opteron 2.8 GHz, using the HKM direction and the predictor-
corrector option.

We point out that, since our implementation is based on SDPT3, Regularize

differs from Algorithm 2 in the same ways that typical implementations of interior-
point methods differ from theory. For example, the iterates are not explicitly forced to
stay in a neighborhood, and Mehrotra’s predictor-corrector method is used. The lack
of explicit neighborhood does have an impact on how we enforce condition (18). In
each iteration, (18) is enforced with the definition β := μ/‖r‖. This can be interpreted
as assigning to β the smallest value such that the current iterate is actually a member
of N (if membership in N were maintained). In this sense, the choice of β is also
conservative in that it results in the strictest realization of (18). One additional
implementation detail: The parameter δk is initialized to δ0 = μ0.

As mentioned previously, SDPT3 has been chosen for several reasons, including
the fact that its fundamental algorithm closely matches the algorithmic framework
of our analysis. As a consequence, we caution that the conclusions supported by our
computational results do not necessarily say anything about the effect of regulariza-
tion within other codes (although we are optimistic that the regularization can have
benefits elsewhere; see section 7).

We also note that SDPT3 offers the option of handling dense columns of (A,E) in
such a way that computational effort is minimized. We have tested our regularization
with this option enabled (which is the default) or disabled, and the method works
just as well in both cases.

There do not appear to be many existing test instances of linear conic optimiza-
tion problems with free variables. For example, the commonly used DIMACS set
of benchmark problems [22] contains only 9 instances with free variables, while SD-
PLIB [3] contains none. We include the 9 DIMACS test problems in our experiments.
Kobayashi, Nakata, and Kojima [9] generated modified problems having free variables
from SDPLIB to test their approach; starting with the same SDPLIB problems, we
generated our own sparse versions of these problems having free variables via a ran-
dom matrix E ∈ �m×p, where p := m/2. In fact, we generated two sets of modified
SDPLIB problems: one set with rank(E) = p and a second set with rank(E) = p/2.
In contrast to the theoretical assumption in section 2 that E has full-column rank,
we test instances with E having small-column rank because in practice E may have
(nearly) dependent columns.

On the other hand, problems with free variables have become very relevant due
to recent applications of SDP to certain classes of problems. In particular, we report
test results on two additional sets of problems: one from quantum chemistry and
another obtained by generating moment relaxations of combinatorial optimization
problems [13] using YALMIP [14]. The set of moment relaxations consists of (small)
randomly generated maximum-cut, quadratic-knapsack, and stable-set instances. Half
of the underlying instances have 15 variables; the other half have 17. The moment
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Table 1

Overview of the test problem sets.

Class # of instances K
DIMACS challenge 9 LP+SOCP
Modified SDPLIB (rank(E) = p) 27 SDP
Modified SDPLIB (rank(E) = p/2) 27 SDP
Quantum chemistry 12 SDP
Moment relaxations 60 SDP

Table 2

Characteristics of the test problem sets.

p n m
Class min med max min med max min med max

DIMACS challenge 1 2 7201 2379 4191 261364 123 3680 130141
Modified SDPLIB 52 125 1514 351 7750 31375 104 250 3028

(rank(E) = p)
Modified SDPLIB 52 125 1514 351 7750 31375 104 250 3028

(rank(E) = p/2)
Quantum chemistry 35 69 95 38865 480459 1356933 465 2354 4743
Moment relaxations 136 2040 2907 9316 13031 17613 3875 4930 5984

Table 3

Accuracy of each method, averaged over instances in each set.

Class Reg Exp Split qCone
DIMACS challenge -10.3 -10.4 -5.6 -7.6
Modified SDPLIB (rank(E) = p) -7.8 -7.9 -4.2 -4.5
Modified SDPLIB (rank(E) = p/2) -7.9 1.3 -4.4 -4.7
Quantum chemistry -5.1 -2.1 -1.8 -2.0
Moment relaxations -6.0 -2.0 -2.5 -3.4

relaxations are of order 2. For the maximum-cut and stable-set instances, we wrote our
own simple random generation procedure, whereas the quadratic-knapsack problems
were generated as in the study by Caprara, Pisinger, and Toth [4]. The stable-set
formulation is due to Motzkin and Straus [20]. The large number of free variables in
these instances arises from the number of equality constraints in the original problems.
Characteristics of the test problems that we use are summarized in Tables 1 and 2.

The main criterion for comparing the various methods is the resulting accuracy;
i.e., we wish to determine which approach yields the most accurate solutions. Specifi-
cally, we report accuracies as log10 of the maximum of the standard DIMACS accuracy
errors [18]. Roughly speaking, an accuracy of −k in our results corresponds to k digits
of accuracy in the reported optimal value.

It is important to point out that SDPT3 tries to the improve the accuracy of the
solution from iteration to iteration, until the accuracy deteriorates for a few iterations,
at which point SDPT3 stops. For all of the approaches, we let SDPT3 run until this
happens and report the best accuracy obtained overall.

The results of our computational experiments are summarized in Tables 3, 4, and
5. Table 3 shows that, for the test sets DIMACS challenge and modified SDPLIB ,
the proposed regularization approach basically matches the best accuracy among the
other three approaches. More interestingly, the accuracy obtained for the three other
test sets is significantly higher. The results for the moment relaxations are particularly
interesting because these instances contain the largest proportions of free variables.
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Table 4

Number of iterations of each method, averaged over instances in each set.

Class Reg Exp Split qCone
DIMACS challenge 29.7 31.3 17.1 32.0
Modified SDPLIB (rank(E) = p) 15.6 15.4 13.0 13.3
Modified SDPLIB (rank(E) = p/2) 14.5 11.1 12.1 12.4
Quantum chemistry 22.7 10.0 11.8 14.0
Moment relaxations 21.9 10.8 13.2 16.0

Table 5

Average CPU time per iteration (as a percentage of Regularize time).

Class Reg Exp Split qCone
(all) 100% 138% 107% 114%

Looking at the results for the set of problems with E having linearly dependent
columns, we note that Explicit achieves very poor accuracy for these problems due
to numerical difficulties. The other three approaches, including Regularize, seem
unaffected by the dependencies in E.

Table 4 shows that the higher accuracy obtained by Regularize typically re-
quires a higher number of iterations (the other methods stop when accuracy deterio-
rates). Nonetheless, with respect to CPU time, Table 5 shows that Regularize re-
quires, on average, the same or less computational effort per iteration as that required
by the other approaches. In summary, the proposed regularization seems to lead to an
overall improvement in the performance of SDPT3 for instances with free variables.

7. Conclusion and future research. We have considered the regularization
approach for handling free variables within interior-point methods for conic linear
optimization. Using a global convergence analysis, we derive a simple computational
strategy for handling and updating the regularization. Straightforward modifications
to the modern code SDPT3 allow the regularization to be incorporated within an in-
exact infeasible primal-dual path-following interior-point framework. Computational
results with SDPT3 on a variety of test problems suggest that the regularization is able
to achieve the same or significantly better numerical accuracy than other strategies
for handling free variables, while requiring less CPU time per iteration on average.

It remains to be studied what impact regularization can have within other SDP
codes, including the well-known homogeneous self-dual embedding algorithm imple-
mented in SeDuMi, a package known to yield excellent accuracy in its computations.
As indicated in the introduction, our experience with SeDuMi confirms SeDuMi’s
reputation; SeDuMi achieves 10 to 11 digits of accuracy on the test problems of this
paper. It would be interesting to investigate how regularization can be applied to
SeDuMi and if it can improve SeDuMi further. Another intriguing possibility is the
study of an easily implementable update strategy for the regularization that would
permit a proof of polynomial-time convergence.

Finally, we hope that this paper will stimulate further research on techniques
to handle conic linear optimization problems with a significant proportion of free
variables, as such problems have become relevant in the context of recent applications
of SDP to several challenging problems.
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Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1324 MIGUEL F. ANJOS AND SAMUEL BURER

REFERENCES

[1] E. Andersen, Handling free variables in primal-dual interior-point methods using a quadratic
cone, in Proceedings of the SIAM Conference on Optimization, Toronto, 2002.

[2] M.F. Anjos, An improved semidefinite programming relaxation for the satisfiability problem,
Math. Program., 102 (2005), pp. 589–608.

[3] B. Borchers, SDPLIB 1.2, library of semidefinite programming test problems, Optim. Methods
Softw., 11/12 (1999), pp. 683–690.

[4] A. Caprara, D. Pisinger, and P. Toth, Exact solution of the quadratic knapsack problem,
INFORMS J. Comput., 11 (1999), pp. 125–137.

[5] E. de Klerk, Aspects of Semidefinite Programming, Appl. Optim. 65, Kluwer Academic, Dor-
drecht, 2002.
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