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Abstract We consider a recent branch-and-bound algorithm of the authors for non-
convex quadratic programming. The algorithm is characterized by its use of semi-
definite relaxations within a finite branching scheme. In this paper, we specialize the
algorithm to the box-constrained case and study its implementation, which is shown
to be a state-of-the-art method for globally solving box-constrained nonconvex quad-
ratic programs.

Keywords Nonconcave quadratic maximization · Nonconvex quadratic
programming · Branch-and-bound · Lift-and-project relaxations · Semidefinite
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1 Introduction

This paper studies the problem of maximizing a quadratic objective subject to box
constraints:

(QPB) max
1

2
xT Qx + cT x

s.t. 0 ≤ x ≤ e,

where x ∈ R
n, e is the vector of all ones, and (Q, c) ∈ R

n×n × R
n are the data. We

will refer to the feasible set of (QPB) as P . Without loss of generality, we assume
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Q is symmetric. If Q is negative semidefinite, then (QPB) is solvable in polynomial
time [12]. Here, however, we consider that Q is indefinite or positive semidefinite, in
which case (QPB) is an N P -hard problem [15]. Nevertheless, our goal is to obtain a
global maximizer.

The difficulty in optimizing (QPB) is that it harbors many local maxima. There
are numerous methods for solving (QPB) and more general nonconvex quadratic pro-
grams, including local methods [8] and global methods [14]. For a survey of methods
to globally solve (QPB), see [6]. Existing global optimization techniques for (QPB)
can be classified into two groups. Those in the first group work by recursively parti-
tioning P , but due to the convex nature of P , it may theoretically be necessary to sub-
divide P infinitely (i.e., to generate an infinite branch-and-bound tree). In contrast,
those in the second group use a finite branching scheme, based on ideas from [9],
which allows for logical branching on the first-order KKT conditions of (QPB). We
term this KKT-branching. Among finite methods, one of the most successful imple-
mentations has been the recent approach of [16, 17], which uses linear programming
(“LP”) relaxations along with cuts for the convex hull of first-order KKT points in a
highly efficient branch-and-cut implementation.

Based on an extension of KKT-branching, the authors [5] have recently introduced
the first finite branch-and-bound algorithm for globally solving general bounded non-
convex quadratic programming problems, of which (QPB) is a special case. In addi-
tion to KKT-branching, the method depends on the use of semidefinite relaxations of
the first-order KKT conditions at each node of the tree. In particular, the natural LP
relaxations are unbounded, and so a stronger tool (namely semidefinite programming,
or “SDP”) is employed.

The ideas explored in this paper are related to, but different from, other applica-
tions of SDP in branch-and-bound for NP-hard problems. For example, [10] studies
a branch-and-cut approach for 0-1 QPs, which solves SDP relaxations, and [2] solves
large instances of the quadratic assignment problem using convex QP relaxations,
which have been derived from SDP considerations. More generally, our approach
follows a long stream of papers which apply SDP to NP-hard problems. (We refer the
reader to [5] for numerous related references.) In particular, it is worth mentioning
that Braun and Mitchell [3] study SDP relaxations of complementarity constraints,
just as we do in this paper via the first-order KKT constraints.

In this paper, we specialize the finite SDP-based branch-and-bound algorithm
from [5] to the case of (QPB). In contrast to the general SDP relaxations suggested by
the authors, we develop an SDP relaxation that better exploits branching information,
while still maintaining a compact size. We then verify that the change in SDP relax-
ation does not affect the theoretical properties of the branch-and-bound algorithm and
finally conduct a thorough comparison of our algorithm with that of [16], where we
demonstrate our ability to solve significantly larger (QPB) problems in still modest
amounts of time.

1.1 Terminology and notation

In this section, we introduce some of the notation that will be used throughout
the paper. R

n refers to n-dimensional Euclidean space. The norm of a vector x ∈ R
n
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is denoted by ‖x‖ := √
xT x. We let ei ∈ R

n represent the i-th unit vector. R
n×n is

the set of real, n×n matrices; S n is the set of symmetric matrices in R
n×n; and S n+ is

the set of positive semidefinite symmetric matrices. The special notations R
1+n and

S 1+n are used to denote the spaces R
n and S n with an additional “0-th” entry pre-

fixed or an additional 0-th row and 0-th column prefixed, respectively. Given a matrix
X ∈ R

n×n, we denote by X·j and Xi· the j -th column and i-th row of X, respectively.
The inner product of two matrices A,B ∈ R

n×n is defined as A • B := trace(AT B),
where trace(·) denotes the sum of the diagonal entries of a matrix. Given two vectors
x, z ∈ R

n, we denote their Hadamard product by x ◦ z ∈ R
n, where [x ◦ z]j = xj zj .

Finally, diag(A) is defined as the vector with the diagonal of the matrix A as its
entries.

2 The branch-and-bound algorithm

2.1 Finite KKT-branching

By introducing nonnegative multipliers y and z for the constraints x ≤ e and x ≥ 0
of P , respectively, any locally optimal solution x of (QPB) has the property that the
sets

Gx := {(y, z) ≥ 0 : y − z = Qx + c},
Cx := {(y, z) ≥ 0 : (e − x) ◦ y = 0, x ◦ z = 0}

satisfy Gx ∩ Cx 	= ∅. In words, Gx is the set of multipliers where the gradient of the
Lagrangian vanishes, and Cx consists of those multipliers satisfying complementarity
at x. The condition Gx ∩ Cx 	= ∅ specifies that x is a first-order KKT point. Notice
also that y ◦ z = 0 for all (y, z) ∈ Cx .

One can easily show the following property of KKT points.

Proposition 2.1 ([7]) Suppose x ∈ P and (y, z) ∈ Gx . Then xT Qx + cT x ≤ eT y,
with equality if and only if (y, z) ∈ Cx .

This shows that (QPB) may be reformulated as the following linear program with
complementarity constraints:

(KKT) max
1

2
eT y + 1

2
cT x

s.t. x ∈ P (y, z) ∈ Gx ∩ Cx.

The reformulation (KKT) suggests a finite branch-and-bound approach, where com-
plementarity is recursively enforced using linear equations. A particular node of
the tree is specified by four index sets F 0,F 1,F y,F z ⊆ {1, . . . , n}, which satisfy
F 0 ∩ Fz = ∅ and F 1 ∩ Fy = ∅. These index sets correspond to complementarities
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that are enforced via linear equations in the following restriction of (KKT):

max
1

2
eT y + 1

2
cT x

s.t. x ∈ P (y, z) ∈ Gx ∩ Cx,

xj = 0, j ∈ F 0,

xj = 1, j ∈ F 1,

zj = 0, j ∈ Fz,

yj = 0, j ∈ Fy.

(1)

In fact, logical considerations imply that further conditions can be imposed:

F 0 ⊆ Fy,

F 1 ⊆ Fz.

(In addition, we could enforce F 0 ∩ F 1 = ∅ since otherwise (1) is infeasible, but
we do not explicitly do so since this type infeasibility is straightforward to check at
run-time.)

At a given node, the branch-and-bound algorithm will solve a convex relaxation of
(1). Due to the presence of the linear equations, one can relax the nonconvex quadratic
constraint (y, z) ∈ Cx and yet still maintain (partial) complementarity via the linear
equations: xj zj = 0 will hold for all j ∈ F 0 ∪ Fz, and (1 − xj )yj = 0 will hold for
all j ∈ F 1 ∪ Fy . Branching on a node amounts to choosing a complementarity to
enforce in subsequent nodes and in particular involves one of the following actions:

(i) Selecting some j ∈ {1, . . . , n} \ (F 0 ∪ Fz) and creating two children, one which
adds j to F 0 and to Fy and one which adds j to Fz;

(ii) Selecting some j ∈ {1, . . . , n} \ (F 1 ∪ Fy) and creating two children, one which
adds j to F 1 and to Fz and one which adds j to Fy .

A natural branching strategy, which we will employ in the computational results of
Sect. 4, is to select the complementarity constraint with the largest (normalized) vi-
olation. This is analogous to branching on the “most fractional” variable in integer
programming. (More details on this branching strategy, particularly the concept of
normalization, are given in Sect. 4.)

Finally, we remark that the root node in the tree has all four index sets empty, and
a leaf node is specified by sets satisfying F 0 ∪ Fz = F 1 ∪ Fy = {1, . . . , n}.
2.2 SDP relaxations

In [5], the authors have proposed the use of SDP relaxations to globally optimize
general QPs. In this section, we briefly recapitulate their results as they apply to (1).

We first introduce a basic SDP relaxation of (QPB). Our motivation comes from
the SDP relaxations of 0-1 integer programs introduced by [13]. Consider a matrix
variable Y , which is related to x ∈ P by the following quadratic equation:

Y =
(

1
x

)(
1
x

)T

=
(

1 xT

x xxT

)
. (2)
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From (2), we observe the following:

• Y is symmetric and positive semidefinite, i.e., Y ∈ S 1+n+ (or simply Y 
 0);
• If we multiply the constraint x ≤ e of P by some xi , we obtain the quadratic

inequality e xi − x xi ≥ 0, which is valid for P and can be written in terms of Y as
(
e
∣∣ − I

)
Yei ≥ 0 ∀i = 1, . . . , n;

• The objective function of (QPB) can be modeled in terms of Y as

1

2
xT Qx + cT x = 1

2

(
0 cT

c Q

)
•

(
1 xT

x xxT

)
= 1

2

(
0 cT

c Q

)
• Y.

For convenience, we define

K := {(x0, x) ∈ R
1+n : 0 ≤ x ≤ x0 e}

and

Q̃ := 1

2

(
0 cT

c Q

)
,

which allow us to express the second and third properties above more simply as
Yei ∈ K and xT Qx/2 + cT x = Q̃ • Y . In addition, we let M+ denote the set of
all Y satisfying the first and second properties:

M+ := {Y 
 0 : Yei ∈ K ∀ i = 1, . . . , n}.
Then we have the following equivalent formulation of (QPB):

max Q̃ • Y

s.t. Y =
(

1 xT

x xxT

)
∈ M+,

x ∈ P.

Finally, by dropping the last n columns of (2) (which is equivalent to relaxing the
condition that the rank of Y is 1 due to (2)), we arrive at the following linear SDP
relaxation of (QPB):

(SDP0) max Q̃ • Y

s.t. Y ∈ M+, Y e0 = (1;x),

x ∈ P.

We next combine this basic SDP relaxation with the linear constraints of (KKT)
introduced in Sect. 2.1 to obtain an SDP relaxation of (KKT). More specifically, we
consider the following optimization over the combined variables (Y, x, y, z) in which
the two objectives are equated using an additional constraint:

(SDP1) max Q̃ • Y

s.t. Y ∈ M+, Y e0 = (1;x),

x ∈ P, (y, z) ∈ Gx,

Q̃ • Y = (eT y + cT x)/2.

(3)
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This optimization problem is a valid relaxation of (KKT) if the constraint (3) is valid
for all points feasible for (KKT), which indeed holds as follows: let (x, y, z) be such a
point, and define Y according to (2); then (Y, x, y, z) satisfies the first four constraints
of (SDP1) by construction and the constraint (3) is satisfied due to Proposition 2.1
and (2).

2.3 The SDP relaxations within branch-and-bound

In Sect. 2.1, we have described the basic approach for constructing a branch-and-
bound algorithm for (QPB) by recursively enforcing complementarities through
branching. In conjunction with the SDP relaxations, the authors have established a
finite branch-and-bound algorithm.

Theorem 2.2 ([5]) The branch-and-bound approach for (QPB), which employs KKT-
branching and SDP relaxations of the type (SDP1), is both correct and finite.

Regarding the theorem, it is important to discuss two points. First, although the
SDP relaxation (SDP1) has been constructed as a relaxation of (KKT), it is easy to
extend the same ideas to yield SDP relaxations of the restricted KKT subproblem
(1) associated with each node. The only modification is the inclusion of the linear
equalities represented by F 0, F 1, Fy , and Fz into the definitions of P , K , and Gx in
the natural way to yield corresponding sets P(F 0,F 1), K(F 0,F 1), and Gx(F

y,F z).
Specifically, at any node, we define

P(F 0,F 1) :=
{
x ∈ P :

xj = 1 ∀j ∈ F 1

xj = 0 ∀j ∈ F 0

}
, (4)

K(F 0,F 1) :=
{
(x0, x) ∈ K:

xj = x0 ∀j ∈ F 1

xj = 0 ∀j ∈ F 0

}
, (5)

Gx(F
z,F y) :=

{
(y, z) ∈ Gx :

yj = 0 ∀j ∈ Fy

zj = 0 ∀j ∈ Fz

}
.

In advance of the proofs of Propositions 3.1 and 3.2, we remark that the constraint
Yei ∈ K(F 0,F 1) will be enforced in the SDP relaxation at each node of the tree
as part of the appropriate generalization of M+. In particular, this means [Yei]j =
[Yei]0 for all j ∈ F 1, which is equivalent to [Yei]j = xi , where x is a variable of
the SDP relaxation (not to be confused with the notation (x0, x) in the definition of
K(F 0,F 1) above).

Second, we have explained what the term finite means with respect to the branch-
and-bound algorithm of Theorem 2.2, but what does correct mean? Overall, the
branch-and-bound algorithm starts at the root node, and begins evaluating nodes,
adding or removing nodes from the tree at each stage. Evaluating a node involves
solving the SDP relaxation and then fathoming the node (if possible) or branching on
the node (if fathoming is not possible and if the node is not a leaf). The algorithm
finishes when all nodes generated by the algorithm have been fathomed. In order to
prove that our algorithm does indeed finish, it is necessary to establish that all leaf
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nodes will be fathomed. Otherwise, they cannot be eliminated from the tree since
they cannot be branched on. This we term the correctness of the algorithm.

We explain fathoming in a bit more detail. Fathoming a node (i.e., eliminating it
from further consideration) is only allowable if we can guarantee that its associated
subproblem (1) contains no optimal solutions of (QPB), other than possibly the solu-
tion (x̄, ȳ, z̄) obtained from the relaxation. Such a guarantee can be obtained in two
ways. First, if the relaxation is infeasible, then (1) is infeasible so that it contains no
optimal solutions. Second, we can fathom if the relaxed objective value at (x̄, ȳ, z̄) is
equal to or less than the (QPB) objective of some x ∈ P . In particular, we compare
the relaxed value with the (QPB) value of x̄ itself as well as that of other solutions
encountered at other nodes. Because the (QPB) value of x̄ cannot be greater than the
relaxed value, fathoming occurs due to x̄ only when the two values are equal, i.e.,
when the relaxation has no gap.

Accordingly, to have a correct branch-and-bound algorithm, it must be the case
that (when feasible) the SDP relaxation has no gap at a leaf node. A key ingredient
of proving Theorem 2.2 is establishing this fact.

A couple of remarks about fathoming are in order:

• A common viewpoint in branch-and-bound for integer programming is that fath-
oming can also occur by feasibility of the solution of the relaxed subproblem. In
other words, when a relaxed solution is integer, that node can be fathomed be-
cause its integer subproblem has been provably solved to optimality. Indeed, the
fact that the solution is integer is the certificate of optimality. In contrast, our sit-
uation is more subtle. If the relaxed solution (x̄, ȳ, z̄) happens to be a KKT point,
then, depending on the precise form of the relaxation, it need not hold a priori that
(x̄, ȳ, z̄) is an optimal solution of the complementarity subproblem (1). (More de-
tails are given in [5].) The difficulty arises from the fact that the relaxed objective
function is not identical to the original objective of (QPB) due to linearization as
in (SDP1). (In integer programming, the original and subproblem objectives are
identical because the objective is linear.) In cases where (x̄, ȳ, z̄) is in fact opti-
mal for (1), the only available certificate is that the relaxed objective equals the
(QPB) objective at x̄. These subtleties have motivated our discussion on fathoming
above and in particular are the reason we do not state “fathoming by feasibility” in
analogy with integer programming.

• In practical computations, the fathoming just described must be modified to allow
for floating point errors. For this, a fathoming tolerance is typically introduced.
Details for our implementation are described in Sect. 4.

3 Further specialization to the box-constrained case

We now specialize our algorithm even further to (QPB). In Sect. 2.2, we defined the
SDP relaxation (SDP1) that explicitly contains the dual multipliers (y, z). We intend
to show that we can actually handle (y, z) implicitly within an SDP relaxation similar
to (SDP0).

The key observation is that, for any x, one can easily obtain (y, z) ∈ Gx by simply
setting y := max(0,Qx+c) and z := −min(0,Qx+c), where max and min are taken
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component-wise. Furthermore, by defining y and z in this way, fixing components of
y and z to 0 (as is required during branch-and-bound) can be enforced by linear
constraints that involve only x. In particular, yj = 0 is equivalent to [Qx]j + cj ≤ 0,
and zj = 0 is equivalent to [Qx]j + cj ≥ 0.

Given F 0, F 1, Fy , and Fz, the corresponding restricted version of (QPB) that we
consider simply substitutes the following P̃ for P :

P̃ := P(F 0,F 1) ∩ S(F y,F z), (6)

where P(F 0,F 1) is given by (4) and

S(F y,F z) :=
{
x ∈ R

n:
[Qx]j + cj ≤ 0 ∀j ∈ Fy

[Qx]j + cj ≥ 0 ∀j ∈ Fz

}
.

Accordingly, the SDP relaxation that we consider is of the form (SDP0), except we
use P̃ instead of P and the following K̃ in place of K :

K̃ := K(F 0,F 1) ∩ T (F y,F z), (7)

where K(F 0,F 1) is given by (5) and

T (F y,F z) :=
{
(x0, x) ∈ R

1+n:
[Qx]j + x0cj ≤ 0 ∀j ∈ Fy

[Qx]j + x0cj ≥ 0 ∀j ∈ Fz

}
.

3.1 Correctness of branch-and-bound

If we are to use the relaxation (SDP0) tailored by (6) and (7) within branch-and-
bound, then Theorem 2.2 no longer applies because it is based on (SDP1). So, in this
new context, we still have to guarantee correctness, i.e., we must ensure that a leaf
node will always be fathomed. In other words, in the case of a feasible leaf node, we
must verify that the upper bound obtained from the relaxation is equal to the value
of the primal solution generated from solving this node. This is established by the
following proposition.

Proposition 3.1 Consider a feasible leaf node of the branch-and-bound tree, and
suppose (Y, x) is a feasible solution to the relaxation (SDP0) (appropriately tai-
lored by P̃ and K̃ to incorporate the forced equalities at the node). Then Q̃ • Y =
1
2 xT Qx + cT x.

Proof For convenience, we write

Y =
(

1 xT

x X

)

so that Q̃ • Y = Q • X/2 + cT x. Thus, it suffices to show

QT·jX·j = (QT·j x)xj ∀j ∈ {1, . . . , n}. (8)
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Let j be any index. Recall that a leaf node satisfies F 0 ∪ Fz = {1, . . . , n} with
F 0 ∩ Fz = ∅ and F 1 ∪ Fy = {1, . . . , n} with F 1 ∩ Fy = ∅. Moreover, since the leaf
node is feasible, we certainly have F 0 ∩F 1 = ∅. So we have three possibilities: either
j ∈ F 0, j ∈ F 1, or j ∈ Fz ∩ Fy :

• Suppose j ∈ F 0. Since x ∈ P̃ and Yei ∈ K̃ , we have that the j -th entry of each
column of Y is 0, i.e., Yj · = 0. By symmetry, Y·j = (xj ;X·j ) = 0. So (8) follows
easily.

• Suppose now j ∈ F 1. Since x ∈ P̃ , we have xj = 1. Furthermore, since Yei ∈ K̃ ,
we have Yji = xi for all i = 1, . . . , n. So Yj · = (1, xT ), and by symmetry, we have
X·j = x. Since xj = 1, we again see that (8) is satisfied.

• Lastly, suppose j∈Fy∩Fz. Then P̃ contains the implied constraint [Qx]j+cj=0.
In a similar fashion, Yej ∈ K̃ implies [QX·j ]j +xj cj = 0. By multiplying the first
equality by xj and then combining with the second, we obtain (8). �

In fact, the following proposition shows that a correct branch-and-bound algorithm
is obtained even if K̃ is relaxed to

K := K ∩ T (F y,F z). (9)

which differs from K̃ in that the equalities coming from F 0 and F 1 are not enforced.

Proposition 3.2 Suppose (Y, x) satisfies Y 
 0, Ye0 = (1;x), and x ∈ P̃ . If Yei ∈ K

for all i = 1, . . . , n, then Yei ∈ K̃ for all i = 1, . . . , n.

Proof Let i ∈ {1, . . . , n}. To show Yei ∈ K̃ , it suffices to show Xji = 0 for all j ∈ F 0

and Xji = xi for all j ∈ F 1, where we identify

Y =
(

1 xT

x X

)
.

This is proved as follows:

• If j ∈ F 0, then x ∈ P̃ and Yej ∈ K imply that 0 ≤ X·j ≤ xj e = 0. In particular,
Xij = 0, and hence, by symmetry, Xji = 0.

• Suppose j ∈ F 1 and consider the following 2 × 2 principal submatrix of Y :

(
1 xj

xj Xjj

)
=

(
1 1
1 Xjj

)

 0.

Since the determinant must be nonnegative, we have Xjj ≥ 1. We also have Xjj ≤
xj = 1, and so Xjj = 1. This gives rise to the following 3 × 3 principal submatrix
of Y (after permuting rows and columns if i < j ):

⎛
⎝ 1 xj xi

xj Xjj Xji

xi Xij Xii

⎞
⎠ =

⎛
⎝ 1 1 xi

1 1 Xji

xi Xji Xii

⎞
⎠ 
 0. (10)
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Note that if Xii = 0, then xi = Xji = Xii = 0, as desired. If Xii > 0, then we can
rescale the last row and column of the last matrix in (10) by

√
Xii to get

⎛
⎝ 1 1 x̄i

1 1 X̄ji

x̄i X̄ji 1

⎞
⎠ .

The determinant of this matrix is −(x̄i − X̄ji)
2, which, by (10), must be nonnega-

tive. This implies that x̄i = X̄ji ⇒ xi = Xji . �

In practice, it is likely that K̃ will be a better choice than K because it allows for
the easy elimination of variables (and hence smaller relaxations), while ultimately
having the same number of constraints as K̃ (i.e., those represented by T (F y,F z)).
So in our computational results, we prefer K̃ over K . (More details are given in
the next section. In particular, we will take advantages of CPLEX’s preprocessing
techniques to automate the elimination of variables.)

4 The branch-and-bound implementation

In this section, we describe our computational experience with the branch-and-bound
algorithm for (QPB) using relaxations as discussed in the previous section.

4.1 Implementation details

One of the most fundamental decisions for any branch-and-bound algorithm is the
method employed for solving the relaxations at the nodes of the tree. As the authors
have done previously, we have chosen to use the method proposed by [4] for solving
the SDP relaxations because of its applicability and scalability for SDPs of the type
(SDP0). For the sake of brevity, we only describe the features of the method that are
relevant to our discussion, since a number of the method’s features directly affect key
implementation decisions.

The algorithm uses a Lagrangian constraint-relaxation approach, governed by an
augmented Lagrangian scheme to ensure convergence, that focuses on obtaining sub-
problems that only require the solution of convex quadratic programs over the con-
straint set K or K̃ , which are solved using CPLEX [11]. In particular, many con-
straints (but not all) are relaxed with explicit dual variables. By the nature of the
method, a valid upper bound on the optimal value of the relaxation is available at all
times, which makes the method a reasonable choice within branch-and-bound even if
the relaxations are not solved to high accuracy. For convenience, we will refer to this
method as the AL method.

To further expedite the branch-and-bound process, we also attempted to tighten
(SDP0) by adding constraints of the form Y(e0 − ei) ∈ K , which arise by multiplying
the original inequalities 0 ≤ x ≤ e by 1 − xj , which is nonnegative. Although these
additional constraints do increase the computational cost of the AL method, the im-
pact is small due to the decomposed nature of the AL method. Moreover, the benefit
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to the overall branch-and-bound performance is dramatic due to strengthened bounds
coming from the relaxations.

Some final details of the branch-and-bound implementation are:

• After solving a relaxation at a node to obtain x̄, if branching is necessary, we
compute ȳ := max(0,Qx̄ + c) and z̄ := −min(0,Qx̄ + c) as discussed above, and
a branching index is selected by the choosing the complementarity constraint with
the largest normalized violation.

Normalization uses the following a priori upper bounds for (y, z) ∈ Gx ∩ Cx .
First note that all (y, z) ∈ Cx satisfy y ◦ z = 0. So if yi > 0, then zi = 0. From Gx ,
we have that yi − zi = [Qx]i + ci and hence if yi > 0 then

yi = [Qx]i + ci =
n∑

j=1

Qijxj + ci ≤
n∑

j=1

max(Qij ,0) + ci .

Similarly, if zi > 0, then

zi = −[Qx]i − ci = −
n∑

j=1

Qijxj − ci ≤ −
n∑

j=1

min(Qij ,0) − ci .

We then have, for example, that x̄j z̄j /ẑj measures the normalized violation at
index j , where ẑj = −ci − ∑

j min(Qij ,0).
• It is not difficult to see that if Qjj ≥ 0 for some j , then there exists an optimal

solution of (QPB) with xj ∈ {0,1} (see [9, 17]). Hence, when branching on such
an index, we bypass the standard rule for child creation and instead create two
children, one with xj = 0 and yj = 0, and one with xj = 1 and zj = 0.

• After solving a relaxation, we use x̄ as a starting point for a QP solver based on
nonlinear programming techniques to obtain a locally optimal solution to (QPB).
In this way, we obtain good lower bounds that can be used to fathom nodes in the
tree.

• We use a best bound strategy for selecting the next node to solve in the branch-
and-bound tree.

• Upon solution of each relaxation of the branch-and-bound tree, a set of dual vari-
ables is available for those constraints of the SDP relaxation that were relaxed in
the AL method. These dual variables are then used as the initial dual variables for
the solution of the next subproblem, in effect performing a crude warm-start, which
proved extremely helpful in practice.

• We use a relative optimality tolerance for fathoming. In other words, for a given
tolerance ε, a node with upper bound zub is fathomed if (zub − zlb)/zlb < ε, where
zlb is the value of the best primal solution found thus far. In our computations,
we experiment with ε = 10−6 and ε = 10−2, which we refer to as default and 1%
optimality tolerances, respectively.

4.2 Computational results

We compare our algorithm with the branch-and-cut algorithm of Vandenbussche and
Nemhauser [16, 17]. For their algorithm, we use the parameter settings suggested in
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Fig. 1 CPU times (log-log
scale) required for SDP-based
branch-and-bound and LP-based
branch-and-cut with default
optimality tolerance on
box-constrained QP instances.
A maximum time limit of
45,000 seconds was enforced for
all runs

their work and run their algorithm using the two branching selection schemes they
employed: maximum normalized violation (identical to ours described above) and
strong branching. For each instance we tested, we used the faster of these two to
compare with our SDP approach. The creation of child nodes was also performed as
described above.

The test problems include the 54 proposed by [17], and we have also generated
larger instances to demonstrate the enhanced capabilities available using the SDP-
based branch-and-bound. The additional instances vary in both size and density of
the matrix Q. The different sizes are n = 70, 80, 90, and 100 and the different den-
sities are 25%, 50%, and 75%. Nonzeros were uniformly generated integers over the
interval [−50,50]. For each size and density combination, we generated three differ-
ent instances for a total of 36 new problems. Overall, we tested 90 instances.

For the first set of computational results we present, the default optimality toler-
ance was used to fathom the nodes. Figure 1 shows a log-log plot of the CPU times for
our branch-and-bound algorithm against those of branch-and-cut. A maximum time
limit of 45,000 seconds was enforced for all runs. From the figure, one can see that
many instances are solved more quickly by branch-and-cut, while a large subset are
solved faster by the SDP approach. In fact, branch-and-cut was unable to complete
25 of the 90 instances within the allotted time. Although the figure does not show
size information for the instances, branch-and-cut is faster on the smaller instances,
while our approach is faster on the larger instances. We conclude that the SDP-based
approach scales better than branch-and-cut.

To illustrate how far some of the branch-and-cut instances were from finishing,
we plot their optimality gaps at termination in Fig. 2. The instances are ordered first
with respect to size and then with respect to density of the matrix Q, and the labels
on the plot specify the instances of various dimensions. We show only the gaps for
instances with n ≥ 70, since all smaller instances terminated within the time limit.
The figure shows that branch-and-cut was unable to solve most of the instances with
n ≥ 80, and the gaps clearly indicate that branch-and-cut still had much work to do
on these instances. In contrast, the SDP approach completed all instances within the
time limit.
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Fig. 2 Optimality gaps (%)
upon termination for LP-based
branch-and-cut when run with
default optimality tolerance.
Instances are ordered first with
respect to size and then with
respect to density of the
matrix Q, and labels specify the
instances of various dimensions

Fig. 3 CPU times (log-log
scale) required for SDP-based
branch-and-bound and LP-based
branch-and-cut with 1%
optimality tolerance on
box-constrained QP instances.
A maximum time limit of
20,000 seconds was enforced for
all runs

The maximum number of nodes required for any SDP run was 305, while the same
measure for branch-and-cut was 181,958. These numbers illustrate the tightness of
the bounds provided by the SDP relaxation, but also point out the trade-off between
the strength of a relaxation and the difficulty of solving it—since the solution of the
LP relaxations was extremely quick compared to solving the SDP relaxations.

To further highlight the power of the SDP approach, we also solved the same
instances using a 1% relative optimality tolerance. The results are presented in Figs. 3
and 4. We gave both algorithms a time limit of 20,000 CPU seconds. The SDP-based
approach finished all instances, whereas branch-and-cut did not finish 26 problems.
Note also that almost all instances that required more than 100 seconds with branch-
and-cut could be solved more quickly with the SDP branch-and-bound.

4.3 Comparison with other methods

To provide some perspective on how our method compares with standard global op-
timization techniques for (QPB), we briefly discuss our method in relation to the
algorithm of [1], which recursively subdivides the feasible region P into ever smaller
(rectangular) boxes and bounds the objective on each box by approximating that box
by an ellipsoid. Although the comparison is at a high level, we feel it highlights the
typical differences between our method and standard global optimization methods.
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Fig. 4 Optimality gaps (%)
upon termination for LP-based
branch-and-cut when run with
1% optimality tolerance.
Instances are ordered first with
respect to size and then with
respect to density of the
matrix Q, and labels specify the
instances of various dimensions

(Note also that we are unaware of any publicly available global optimization codes
for (QPB).)

The first important difference is that An and Tao’s method theoretically requires
an infinite branch-and-bound tree, whereas our method is based on finite branching.
Secondly, the bounding mechanism used by An and Tao appears to allow less overall
tolerance than the semidefinite bounds we employ. For example, 1% is the tightest
optimality tolerance An and Tao consider, whereas we have also solved to a tolerance
of 0.0001%. Finally, An and Tao solve instances with n as high as 550, which exceeds
the dimension solved in this paper. This attests to the speed and scalability of their
bounding scheme.
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