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Abstract We present semidefinite relaxations of nonconvex, box-constrained quad-
ratic programming, which incorporate the first- and second-order necessary optimal-
ity conditions, and establish theoretical relationships between the new relaxations and
a basic semidefinite relaxation due to Shor. We compare these relaxations in the con-
text of branch-and-bound to determine a global optimal solution, where it is shown
empirically that the new relaxations are significantly stronger than Shor’s. An effec-
tive branching strategy is also developed.

1 Introduction

In this paper, we study semidefinite programming (SDP) relaxations for the funda-
mental problem of minimizing a nonconvex quadratic function over a box:

min

{
1

2
xT Qx + cT x : 0 ≤ x ≤ e

}
, (1)

where x ∈ �n, Q ∈ �n×n, c ∈ �n, and e ∈ �n is the all-ones vector. Without loss
of generality, we assume Q is symmetric. If Q is not positive semidefinite (as we
assume in this paper), then (1) is NP-hard [9].

There are numerous methods for solving (1) and more general nonconvex
quadratic programs, including local methods [4] and global methods [8]. For a survey
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of methods to solve (1) globally, see De Angelis et al. [3] as well as Vandenbussche
and Nemhauser [13, 14] and Burer and Vandenbussche [2].

Critical to any global optimization method for (1) is the ability to relax it into
a convex problem, one which hopefully provides a tight lower bound on the opti-
mal value with low computational cost. One standard approach is to linearize the
quadratic term xixj via a single variable Xij and then to enforce implied linear con-
straints, which link Xij with xi and xj , e.g., 0 ≤ Xij ≤ min{xi, xj } [10]. The resulting
relaxation is a linear program. A second approach also linearizes the terms xixj —by
introducing a symmetric matrix variable X to replace the aggregate xxT —but then
includes the valid semidefinite inequality X � xxT to obtain an SDP relaxation.

In this paper, we focus on SDP relaxations of (1) rather than linear ones. In prin-
ciple, it is always possible to combine linear and semidefinite approaches (yielding
better bounds with added computational costs; see [1]), but the goal of this paper is
to improve SDP relaxations.

Our approach is to consider semidefinite relaxations of (1), which incorporate the
standard first- and second-order necessary optimality conditions for (1). Vandenbuss-
che and Nemhauser [13, 14] and Burer and Vandenbussche [2] have previously con-
sidered linear and semidefinite relaxations, respectively, involving only the first-order
conditions. The contributions of the current paper are to demonstrate how also to in-
corporate the second-order conditions and to illustrate the positive effects of doing
so.

We point out that Nesterov [7] has considered incorporating the second-order
conditions into SDP relaxations of quadratic optimization over p-norm boxes for
2 ≤ p < ∞, i.e., {x : ‖x‖p

p ≤ 1}. However, Nesterov strongly uses the fact that the
function ‖x‖p

p is smooth for p ∈ [2,∞). Our case (p equal to ∞) is wholly different
because of the lack of smoothness.

The paper is organized as follows. In Sect. 2, we review the first- and second-order
optimality conditions of (1). In particular, we show how to express the second-order
conditions without explicit knowledge of the inactive constraints. This will prove to
be a critical ingredient in constructing semidefinite relaxations involving the second-
order conditions. In Sect. 3, we review the basic semidefinite relaxation of (1) due to
Shor [11] and then introduce a semidefinite relaxation, which incorporates the first-
and second-order optimality conditions. We also construct a relaxation based only on
the second-order conditions.

We will call the three relaxations just mentioned (SDP0), (SDP12), and (SDP2),
respectively. The subscript indicates the type of “order” information incorporated
in the relaxation. By construction, it will hold that (SDP12) is at least as strong as
(SDP2), which is at least as strong as (SDP0). On the other hand, (SDP12) requires
the largest solution time, while (SDP0) requires the smallest one.

Continuing in Sects. 4 and 5, we study the relationship of these three relaxations.
In Sect. 4, we prove the surprising, somewhat negative result that all three achieve
the same optimal value. (On the positive side, the proof establishes several interest-
ing analytical properties of (SDP0), which are of independent interest.) Despite this
equivalence, Sect. 5 demonstrates positively that, in the context of branch-and-bound
to globally solve (1), (SDP12) and (SDP2) are significantly stronger than (SDP0),
when each is appropriately tailored for use at any node of the tree. Our computational
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experiments are described in detail in Sect. 5, including a new, effective branching
strategy.

1.1 Notation and terminology

In this section, we introduce some of the notation that will be used throughout the
paper. �n refers to n-dimensional Euclidean space; �n×n is the set of real, n × n

matrices. We let ei ∈ �n represent the i-th unit vector. For a set I in a particular
ground set, I c is its complement in that ground set. The norm of a vector v ∈ �n

is denoted by ‖v‖ := √
vT v. For a vector v and an index set I , vI is defined as the

vector composed of entries of v that are indexed by I . Also, given a matrix A ∈ �n×n,
AI I is defined as the matrix composed of entries of A whose rows and columns
are indexed by I . We denote by Aj and Ai the j -th column and i-th row of A,
respectively. The notation diag(A) is defined as the vector, which is the diagonal of
A, while Diag(v) denotes the diagonal matrix with diagonal v. The inner product of
two matrices A,B ∈ �n×n is defined as A • B := trace(AT B). Given two vectors
x, v ∈ �n, we denote their Hadamard product by x ◦ v ∈ �n, where [x ◦ v]j = xjvj ;
an analogous definition applies to the Hadamard product of matrices. Finally, A � 0
means matrix A is positive semidefinite, and A 
 0 means A is positive definite.

2 Optimality conditions

In this section, we first state the standard first- and second-order necessary optimality
conditions for (1) involving the set of inactive constraints. Then we derive an expres-
sion for the second-order conditions that does not explicitly require knowledge of the
inactive constraint set.

For any x satisfying 0 ≤ x ≤ e, define the following sets of inactive constraints:

I0(x) := {i : xi > 0}
I1(x) := {i : xi < 1}

I(x) := {i : 0 < xi < 1} = I0(x) ∩ I1(x).

Note that I(x)c = I0(x)c ∪ I1(x)c indexes the active constraints at x. Let y, z ∈ �n

denote the Lagrange multipliers for the constraints e − x ≥ 0 and x ≥ 0, respectively.
For fixed y, z, the Lagrangian of (1) is defined as

L(x;y, z) := 1

2
xT Qx + cT x − zT x − yT (e − x).

With these definitions, the necessary optimality conditions for (1) are

0 ≤ x ≤ e (2a)

�xL(x;y, z) = Qx + c − z + y = 0 (2b)

y ≥ 0, z ≥ 0 (2c)
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zi = 0, yj = 0 ∀ i ∈ I0(x),∀j ∈ I1(x) (2d)

vT �2
xxL(x;y, z)v = vT Qv ≥ 0 ∀v ∈ V (x) (2e)

where

V (x) := {v : eT
i v = 0 ∀i ∈ I0(x)c, −eT

j v = 0 ∀j ∈ I1(x)c}
= {v : vi = 0 ∀i ∈ I(x)c}

is the null space of the Jacobian of the active constraints. By eliminating z and em-
ploying other straightforward simplifications, we can rewrite and label (2) as

0 ≤ x ≤ e (primal feasibility) (3a)

Qx + c + y ≥ 0, y ≥ 0 (dual feasibility) (3b)

x ◦ (Qx + c + y) = 0, y ◦ (e − x) = 0 (complementary slackness) (3c)

QI(x)I(x) � 0 (local convexity). (3d)

Now we give an equivalent form of the local convexity condition (3d), which does
not explicitly involve knowledge of I(x).

Proposition 2.1 Given x, define

w := x ◦ (e − x). (4)

Then the local convexity condition (3d) at x is equivalent to

Q ◦ wwT � 0. (5)

Proof For notational convenience, we write I for I(x) and D for Diag(x). We first
show the equivalence of (3d) and the inequality

(I − D)DQD(I − D) � 0.

Assume (3d) holds. By definition, D(I − D) is a diagonal matrix such that, for all
i ∈ I c , the i-th diagonal entry is 0. For any v, define ṽ := D(I − D)v. Then ṽi = 0
for all i ∈ I c and

vT (I − D)DQD(I − D)v = ṽT Qṽ = ṽT
I QI I ṽI ≥ 0.

So (I − D)DQD(I − D) is positive semidefinite. Conversely, assume (I − D) ×
DQD(I − D) � 0. Since DI I > 0 and [I − D]I I > 0, for any partial vector ṽI ,
there exists some v such that the full vector ṽ := D(I − D)v extends ṽI and also
satisfies ṽI c = 0. So

ṽT
I QI I ṽI = ṽT Qṽ = vT (I − D)DQD(I − D)v ≥ 0,

which establishes (3d).
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Now, the equivalence of (3d) and Q ◦ wwT � 0 follows from

(I − D)DQD(I − D) = Diag(w)QDiag(w) = Q ◦ wwT . �

It follows from Proposition 2.1 that (1) can be reformulated as the following
quadratic semidefinite program, which does not depend explicitly on knowledge of
the inactive constraints:

min

{
1

2
xT Qx + cT x : (3a)–(3c) (4) (5)

}
. (6)

3 Semidefinite relaxations

In this section, we first present the basic semidefinite relaxation of (1) due to Shor
[11]. Then we introduce semidefinite relaxations of the new formulation (6).

3.1 Shor’s bounded relaxation (SDP0)

As is standard in the SDP literature (see for example [11]), we can use the non-convex
equality X = xxT to represent (1) in the equivalent form

min

{
1

2
Q • X + cT x : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0,X = xxT

}
.

By dropping the constraint X = xxT , we obtain the relaxation due to Shor:

min

{
1

2
Q • X + cT x : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0

}
. (7)

However, the following well known fact about (7) is easy to prove:

Proposition 3.1 If Q �� 0, then the optimal value of (7) is −∞.

The reason why (7) is unbounded when Q �� 0 is that there is too much free-
dom for X. We can fix the problem of unboundedness by including some valid lin-
ear constraints implied by X = xxT and 0 ≤ x ≤ e, e.g., diag(X) ≤ x [10]. Adding
diag(X) ≤ x to (7), we get a bounded relaxation for (1):

min

{
1

2
Q • X + cT x : 0 ≤ x ≤ e,

(
1 xT

x X

)
� 0,diag(X) ≤ x

}
. (SDP0)

In particular, the optimal solution set of (SDP0) is nonempty. We consider (SDP0) to
be the smallest, simplest semidefinite relaxation of (1).

We remark that Ye [15] has derived an approximation algorithm for quadratic
programming over the box {x : −e ≤ x ≤ e}, which is simply a shifted and scaled
version of (1). The main tool used by Ye is the equivalent version of (SDP0) for the
case {x : −e ≤ x ≤ e}.
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3.2 Relaxations (SDP12) and (SDP2) of the optimality conditions

To relax (6), we consider the matrix

⎛
⎜⎜⎝

1
x

y

w

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
x

y

w

⎞
⎟⎟⎠

T

=

⎛
⎜⎜⎝

1 xT yT wT

x xxT xyT xwT

y yxT yyT ywT

w wxT wyT wwT

⎞
⎟⎟⎠ � 0

and its linearized version

M =

⎛
⎜⎜⎝

1 xT yT wT

x X MT
xy MT

xw

y Mxy Y MT
yw

w Mxw Myw W

⎞
⎟⎟⎠ � 0.

We can relax the quadratic constraints (3c), (4) and (5) via M . For example, con-
sider the j -th entry of x ◦ (Qx + c + y) = 0 from (3c), which is

xj (Qjx + cj + yj ) = 0.

Relaxing it via M , we have

QjX
j + cjxj + [Mxy]jj = 0.

So, x ◦ (Qx + c + y) = 0 is relaxed in total as

diag(QX) + c ◦ x + diag(Mxy) = 0.

Constraints (4) and (5) can be relaxed in a similar way. Hence, we obtain the follow-
ing SDP relaxation of (6), which we call (SDP12):

min
1

2
Q • X + cT x (8a)

s.t. 0 ≤ x ≤ e, diag(X) ≤ x (8b)

Qx + c + y ≥ 0, y ≥ 0 (8c)

diag(QX) + c ◦ x + diag(Myx) = 0, y − diag(Myx) = 0 (8d)

w = x − diag(X) (8e)

Q ◦ W � 0 (8f)

M � 0. (8g)

We point out that diag(X) ≤ x in (8b) is not a relaxation of a particular constraint in
(6). Rather, it is added to prevent (SDP12) from being unbounded as with (SDP0).

We also study a relaxed version of (SDP12), which we call (SDP2):

min
1

2
Q • X + cT x (9a)
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Table 1 Comparison of the sizes of (SDP0), (SDP2), and (SDP12)

SDP0 SDP2 SDP12

# variables (n2 + 3n)/2 n2 + 3n 9(n2 + n)/2

# linear constraints 3n 4n 8n

# semidefinite constraints 1 3 2

Sizes of semidefinite constraints n + 1 n, n + 1, n + 1 n, 3n + 1

s.t. 0 ≤ x ≤ e, diag(X) ≤ x (9b)

w = x − diag(X) (9c)

Q ◦ W � 0 (9d)(
1 xT

x X

)
� 0 (9e)

(
1 wT

w W

)
� 0. (9f)

In essence, (SDP2) maintains the minimal set of constraints from (SDP12), which still
explicitly relax the second-order optimality conditions. We are particularly interested
in (SDP2) because it captures the second-order optimality information (a main focus
of this paper) and because its dimension is significantly lower than that of (SDP12).
Table 1 compares the sizes of the three SDPs.

4 Equivalence of the SDP relaxations

4.1 Equivalence of (SDP0) and (SDP2)

In this section, we establish the equivalence of (SDP0) and (SDP2). We will use the
following generic result:

Lemma 4.1 Consider two related optimization problems:

(A) min{f (x) : x ∈ P }
(B) min{f (x) : x ∈ P,y ∈ R(x)},

where P represents the feasible set for (A) and R(x) defines the set of constraints
(related to x) that y must satisfy. Let x∗ be an optimal solution of (A) and suppose
R(x∗) �= ∅. Then any (x∗, y) with y ∈ R(x∗) is optimal for (B). Therefore, the optimal
value of (B) equals that of (A).

Since the feasible set of (B) is more restrictive than that of (A), the optimal value
of (B) is greater than or equal to that of (A). The inclusion y ∈ R(x∗) and the fact that
the objective value does not depend on y together imply that (A) and (B) achieve the
same optimal value.
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Our first step is to prove the following property of (SDP0) at optimality.

Lemma 4.2 Let (x∗,X∗) be an optimal solution of (SDP0), and define J := {i :
X∗

ii < x∗
i }. Then QJ J � 0.

Proof The argument is based on examining an optimal solution for the dual of
(SDP0). It can be easily verified that the dual is

max λ − eT y

s.t. S = 1

2

( −λ (c + y − z − v)T

c + y − z − v Q + 2 Diag(v)

)
� 0

y, z, v ≥ 0,

where y, z, v, S, and λ are, respectively, the multipliers for e − x ≥ 0, x ≥ 0, x −
diag(X) ≥ 0, (1, xT ;x,X) � 0, and the constraint associated with fixing the top-left
entry of (1, xT ;x,X) to 1.

Note that both (SDP0) and its dual have nonempty interior. Specifically, the point

(x,X) =
(

1

2
e,

1

4
eeT + εI

)

is interior feasible for (SDP0) for all ε ∈ (0,1/4). In addition, taking v sufficiently
positive, λ sufficiently negative, and y, z positive such that y − z − v has sufficiently
small norm yields an interior solution of the dual with S 
 0. Because both problems
have interiors, strong duality holds. For the remainder of the proof, we let (x,X) and
(λ, y, z, v, S) denote specific optimal solutions of the primal and dual.

Due to complementary slackness, (x −diag(X))◦v = 0. So vJ = 0, and it follows
from S � 0 that [

Q + 2 Diag(v)
]

J J = QJ J � 0. �

Theorem 4.3 Let (x∗,X∗) be an optimal solution of (SDP0), and define w∗ :=
x∗ − diag(X∗) and W ∗ := w∗(w∗)T . Then (x∗,X∗,w∗,W ∗) is an optimal solution
of (SDP2) with the same optimal value.

Proof For notational convenience, we drop the ∗ superscripts. By Lemma 4.1, we
need only prove that (x,X,w,W) is feasible for (SDP2), and to do so requires the
verification of (9d) since all the other constraints of (SDP2) are satisfied by construc-
tion.

Let J be defined as in Lemma 4.2. Then wJ > 0, wJ c = 0, and QJ J � 0. Note
that [Q ◦ W ]ij = 0 if i ∈ J c or j ∈ J c. So Q ◦ W = Q ◦ wwT � 0 is equivalent to
QJ J ◦ (wJ wT

J ) = Diag(wJ )QJ J Diag(wJ ) � 0, which is true because QJ J � 0
and wJ > 0. This proves (9d) and hence the theorem. �

4.2 Equivalence of (SDP0) and (SDP12)

In the last subsection, we have proved that (SDP2) is equivalent to (SDP0). In this
subsection, we show that even (SDP12) is equivalent to (SDP0). We start by proving



Relaxing the optimality conditions of box QP 661

some properties of (SDP0), which will facilitate the proof of equivalence later in
Sect. 4.2.2 but are also of independent interest.

4.2.1 Additional properties of (SDP0)

We will show that every optimal solution (x∗,X∗) of (SDP0) satisfies the following
two inequalities:

diag(QX) + c ◦ x ≤ 0 (10a)

Qx + c − (diag(QX) + c ◦ x) ≥ 0. (10b)

In other words, (10a) and (10b) are redundant for (SDP0) in the sense that enforcing
these inequalities does not change the optimal solution set. This knowledge will help
us establish the equivalence between (SDP12) and (SDP0) in the next subsection.

To prove (10), we start by examining paths of solutions in the feasible set of
(SDP0). Given any feasible (x,X), consider two paths of emanating from (x,X) and
depending on a specified index i. Each path is parameterized by α ≥ 0. We define
(x1(α),X1(α)) and (x2(α),X2(α)) by

x1(α) := x − αxiei

X1(α) := X − αei(X
i)T − αXieT

i + α2Xiieie
T
i

x2(α) := x + αei

X2(α) := X + αeix
T + αxeT

i + α2eie
T
i .

Furthermore, for any β ∈ [0,1], we consider a third path (x(α),X(α)), which is a
convex combination of (x1(α),X1(α)) and (x2(α),X2(α)):

x(α) := βx1(α) + (1 − β)x2(α)

X(α) := βX1(α) + (1 − β)X2(α).

Our intent is to examine conditions on α and β such that (x(α),X(α)) is feasible for
(SDP0). We will also be interested in the objective value at (x(α),X(α)):

f (α) := 1

2
Q • X(α) + cT x(α).

Proposition 4.4 Let an index i be specified. Given (x,X) feasible for (SDP0) and
β ∈ [0,1], (x(α),X(α)) satisfies the following properties:

(i) x(α) differs from x only in the i-th entry, and x(α)i = xi + α(1 − β − βxi);
(ii) diag(X(α)) − x(α) differs from diag(X) − x only in the i-th entry, and

[diag(X(α)) − x(α)]i = (1 − αβ)(Xii − xi) + α
[
α(βXii + 1 − β)

+ 2(1 − β)xi − (βXii + 1 − β)
] ;
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(iii)
( 1 x(α)T

x(α) X(α)

)
is positive semidefinite.

Moreover,

f ′(0) = β(−(Qi)T Xi − cixi) + (1 − β)((Qi)T x + ci).

Proof It is straightforward to verify the formulas for x(α)i , [diag(X(α)) − x(α)]i ,
and f ′(0). Now we show that (iii) holds. From the definition of (x1(α),X1(α)), we
see

(
1 x1(α)T

x1(α) X1(α)

)
=

(
1 0T

0 I − αeie
T
i

)(
1 xT

x X

)(
1 0T

0 I − αeie
T
i

)
� 0.

Furthermore, by using the Schur complement theorem twice, we have

(
1 x2(α)T

x2(α) X2(α)

)
� 0 ⇐⇒

(
1 (x + αei)

T

x + αei X + αeix
T + αxeT

i + α2eie
T
i

)
� 0

⇐⇒ (X + αeix
T + αxeT

i + α2eie
T
i )

− (x + αei)(x + αei)
T � 0

⇐⇒ X − xxT � 0

⇐⇒
(

1 xT

x X

)
� 0,

which is true due to the feasibility of (x,X). Therefore, (iii) follows because
(1, x(α)T ;x(α),X) is a convex combination of positive semidefinite matrices. �

The following corollaries are easy to establish.

Corollary 4.5 Let (x,X) be feasible for (SDP0), and let β = 1. For a specified index
i, (x(α),X(α)) is feasible for all α ∈ [0,1], and f ′(0) = −(Qi)T Xi − cixi .

Corollary 4.6 Let (x,X) be feasible for (SDP0) with xi < 1, which guarantees 1 +
Xii − 2xi > 0. Also let β = 1/2. For a specified index i, (x(α),X(α)) is feasible for
all α ∈ [0,

1+Xii−2xi

1+Xii
], and f ′(0) = 1

2 [Qx + c − (diag(QX) + c ◦ x)]i .

We are now ready to prove that every optimal solution (x∗,X∗) of (SDP0) satisfies
(10). We need just one additional lemma, whose proof is a straightforward adaptation
of the proof of Proposition 3.2 in [2]:

Lemma 4.7 Let (x,X) be feasible for (SDP0). Then xi = 1 implies Xi = x.

Theorem 4.8 Let (x∗,X∗) be optimal for (SDP0). Then (x∗,X∗) satisfies the in-
equalities (10).
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Proof We prove the following equivalent statement: suppose feasible (x,X) does
not satisfy (10); then (x,X) is not optimal. We break the condition of not satisfying
(10) into three subcases: (i) [diag(QX) + c ◦ x]i > 0 for some i; (ii) [Qx + c −
(diag(QX) + c ◦ x)]i < 0 for some i and xi < 1; and (iii) [Qx + c − (diag(QX) +
c ◦ x)]i < 0 for some i and xi = 1.

In case (i), Corollary 4.5 implies the existence of a feasible path emanating from
(x,X) with decreasing objective. Hence, (x,X) is not optimal. Case (ii) follows sim-
ilarly from Corollary 4.6.

Finally, we show that case (iii) actually cannot occur. Suppose xi = 1. Then by
Lemma 4.7,

[
Qx + c − diag(QX) − c ◦ x

]
i
= (Qi)T (x − Xi) + ci(1 − xi) = 0,

which is incompatible with (iii). �

4.2.2 Proof of equivalence

Note that (SDP12) is more constrained than (SDP0). By Lemma 4.1, it suffices to con-
struct a feasible solution to (SDP12) based on (x∗,X∗) to establish the equivalence
of (SDP0) and (SDP12).

We construct the solution for (SDP12) by defining

y := −(diag(QX∗) + c ◦ x∗) (11a)

Y := yyT + εI, (11b)

w := x∗ − diag(X∗), W := wwT (11c)

Mxw := wx∗T
, Myw := wyT (11d)

M :=

⎛
⎜⎜⎝

1 x∗T yT wT

x∗ X∗ Mxy
T Mxw

T

y Mxy Y Myw
T

w Mxw Myw W

⎞
⎟⎟⎠ , (11e)

where ε > 0 is a sufficiently large constant (more details below). Note that we have
not specified Mxy yet; we will do so below.

We must check that the solution specified is indeed feasible for (SDP12), which
requires checking (8b)–(8g). Obviously, (8b) is satisfied by (x∗,X∗). It follows from
(10a) and (10b) that (8c) is satisfied by (x∗,X∗, y). The constraint (8e) is satisfied by
definition, and Theorem 4.3 illustrates that (8f) is satisfied. It remains to show that
(8d) and (8g) hold. These will depend on the choice of ε and Mxy .

To prove (8d) and (8g), we exhibit an Mxy such that diag(Mxy) = y and M � 0.
We first require the following lemma and proposition:

Lemma 4.9 For an optimal solution (x∗,X∗) of (SDP0), if Xi∗ = x∗
i x∗, then yi(1 −

x∗
i ) = 0, where y is defined as in (11a).
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Proof We drop the superscripts ∗ to simplify notation. If xi = 1, then yi(1 − xi) = 0,
and if xi = 0, then yi = −((Qi)T Xi + cixi) = −xi((Q

i)T x + ci) = 0. If 0 < xi < 1,
we show yi = 0. Let gi := (Qi)T x + ci . We know yi = −xigi ≥ 0, and so gi ≤ 0.
On the other hand, by (10b), gi + yi = (1 − xi)gi ≥ 0, and so gi ≥ 0. Hence, gi = 0,
which ensures yi = 0. �

Proposition 4.10 Let (x∗,X∗) be an optimal solution of (SDP0), and define y as in
(11a). Then there exists A ∈ �n×n such that

diag(A(X∗ − x∗x∗T
)) = y ◦ (e − x∗).

Proof We drop the superscripts ∗ to simplify notation. We show equivalently that
there exists a solution A to the system of equations

Ai(X − xxT )i = yi(1 − xi) ∀i = 1, . . . , n.

Note that the n equations just listed are separable; so we consider each i separately.
If (X − xxT )i �= 0, it is obvious that there exists a solution Ai ; just take Ai equal to

yi(1 − xi)

‖(X − xxT )i‖2

[
(X − xxT )i

]T
.

On the other hand, if (X − xxT )i = 0, i.e., Xi = xix, then we know by Lemma 4.9
that yi(1 − xi) = 0 and thus Ai can be any vector. �

We define

Mxy := yx∗T + A
(
X∗ − x∗(x∗)T

)
,

where A is any matrix as in Proposition 4.10. Then diag(Mxy) = y ◦ x∗ + y ◦ (e −
x∗) = y, which ensures that (8d) is satisfied. Finally, it remains to show that (8g)
holds, i.e., M � 0, for this choice of Mxy .

In the following, we drop the superscripts ∗ to simplify notation. Note that

M =

⎛
⎜⎜⎝

1
x

y

w

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1
x

y

w

⎞
⎟⎟⎠

T

+

⎛
⎜⎜⎝

0 0 0 0
0 X − xxT (Mxy − yxT )T 0
0 Mxy − yxT εI 0
0 0 0 0

⎞
⎟⎟⎠ ,

and so it suffices to show
(

X − xxT (Mxy − yxT )T

Mxy − yxT εI

)
=

(
X − xxT (A(X − xxT ))T

A(X − xxT ) εI

)
� 0.

By the Schur complement theorem, this holds if and only if

(X − xxT ) − ε−1(X − xxT )AT A(X − xxT ) � 0. (12)

Consider the following straightforward lemma:
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Lemma 4.11 Suppose R,S � 0. Then there exists δ > 0 small enough such that
R − δS � 0 if and only if Null(R) ⊆ Null(S).

Because the null space of X − xxT is contained in the null space of (X −
xxT )AT A(X − xxT ), the lemma implies the existence of ε > 0 large enough so
that (12) holds. Taking such ε, we conclude that (8g) is satisfied.

Overall, we have shown that definition (11)—along with the definitions of Mxy

and ε—is feasible for (SDP12), which means (SDP0) and (SDP12) are equivalent by
Lemma 4.1.

5 Comparison of SDP relaxations within branch-and-bound

In Sect. 4, we have shown that the three SDP relaxations (SDP0), (SDP2) and (SDP12)
are equivalent. In this section, we empirically compare these relaxations in the con-
text of branch-and-bound for solving (1) globally, where the relaxations can have
different effects on subdivided boxes. Our experiments on randomly generated prob-
lems illustrate the strength of the bounds produced by (SDP2) and (SDP12) over those
produced by (SDP0) in this context. Our approach will be to focus on the comparison
of (SDP0) and (SDP2), while briefly commenting on (SDP12) towards the end.

We would like to point out that our intention here is not to develop a branch-and-
bound method for (1), which outperforms all other techniques. Rather, our primary
goal is comparing (SDP0), (SDP12), and (SDP2) in order to gauge the effect of incor-
porating optimality conditions (particularly the second-order conditions) into SDP
relaxations for (1).

5.1 Branch-and-bound for box QP

The branch-and-bound algorithm we consider recursively subdivides the entire box
{x ∈ �n : 0 ≤ x ≤ e} into smaller and smaller boxes and solves an appropriately
tailored SDP relaxation—either (SDP0) or (SDP2)—on these smaller boxes. Lower
bounds obtained from these relaxations are compared with a global upper bound to
fathom as many small boxes as possible from consideration. When fathoming is not
possible for a specific small box, that box is further subdivided. Moreover, the global
upper bound is improved (whenever possible) throughout the course of the algorithm.

We measure the performance of the branch-and-bound algorithm in two ways: the
total number of nodes in the branch-and-bound tree and the total time to complete the
entire branch-and-bound process. The number of nodes is affected by the quality of
the lower bounds. Our main comparison will be the lower bound calculations based
on either (SDP0) or (SDP2). Since the branching strategy also affects the number of
nodes, we will investigate two different branching strategies as well.

Before discussing our algorithm design choices below, we first present the SDP re-
laxations on the small boxes, which are modified appropriately from the correspond-
ing versions on the entire box. Suppose the current node of the branch-and-bound
tree corresponds to the box

{x ∈ �n : l ≤ x ≤ u}.
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Then the SDP relaxation that corresponds to (SDP0) is

min
1

2
Q • X + cT x (13a)

s.t. l ≤ x ≤ u (13b)

diag(X) − (l + u) ◦ x + l ◦ u ≤ 0 (13c)(
1 xT

x X

)
� 0. (13d)

The constraint diag(X) − (l + u) ◦ x + l ◦ u ≤ 0 is obtained by relaxing the valid
inequality

x ◦ x − (l + u) ◦ x + l ◦ u = (x − l) ◦ (x − u) ≤ 0.

Note that, when l = 0 and u = e, this constraint is just diag(X) ≤ x. So this inequality
plays the role of bounding the diagonal of X on the smaller boxes.

To derive the relaxation corresponding to (SDP2) on the smaller box, we first
introduce the following notation depending on the bounds (l, u):

B1 := {i : �i = 0 and ui = 1}
B2 := {i : �i = 0 and ui < 1}
B3 := {i : �i > 0 and ui = 1}
B4 := {i : �i > 0 and ui < 1} .

Note that B1 ∪B2 ∪B3 ∪B4 = {1, . . . , n}. Now consider the following specialization
of Proposition 2.1:

Proposition 5.1 Given x satisfying 0 ≤ l ≤ x ≤ u ≤ e, define w ∈ �n by

wB1 := xB1 ◦ (eB1 − xB1) (14)

wB2 := xB2

wB3 := eB3 − xB3

wB4 := eB4 .

Then the local convexity condition (3d) at x is equivalent to

Q ◦ wwT � 0.

Proof Recall that the proof of Proposition 2.1 established that the second-order con-
dition for (1) at any 0 ≤ x ≤ e is equivalent to

(I − D)DQD(I − D) � 0, (15)

where I is the identity matrix and D = Diag(x). For fixed i, if li > 0, then we know
the i-th diagonal of D is strictly positive, and so we can replace Dii = xi with Dii = 1
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in the inner two D’s of (15) without affecting semidefiniteness. Similarly, if ui < 1,
then we know that the i-th diagonal entry of I − D is positive and hence can be
replaced by 1 without affecting semidefiniteness in (15). If li > 0 and ui < 1, then
both replacements can be made. Using arguments similar to the proof of Proposition
2.1, the resulting matrix (I − D)DQD(I − D) after replacements is equal to Q ◦
wwT , where w is given by (14). �

With Proposition 5.1 in hand, the relaxation corresponding to (SDP2) on the smaller
box is

min
1

2
Q • X + cT x (16a)

s.t. l ≤ x ≤ u (16b)

diag(X) − (l + u) ◦ x + l ◦ u ≤ 0 (16c)

wB1 = xB1 − diag(XB1B1) (16d)

wB2 = xB2 (16e)

wB3 = eB3 − xB3 (16f)

wB4 = eB4 (16g)

WB2B2 = XB2B2 (16h)

WB2B3 = xB2e
T
B3

− XB2B3 (16i)

WB3B3 = eB3e
T
B3

− xB3e
T
B3

− eB3x
T
B3

+ XB3B3 (16j)

WB4 = weT
B4

(16k)

Q ◦ W � 0,

(
1 xT

x X

)
� 0,

(
1 wT

w W

)
� 0. (16l)

Note that the constraints (16d)–(16g) give rise to new constraints (16h)–(16k) be-
tween W and x,w, and X.

We now address the major design choices for the branch-and-bound algorithm:

• Bounding. We will compare strategies involving two types of lower bounds: those
given by (13) and those given by (16). A single run of the branch-and-bound al-
gorithm on a single instance will employ one or the other—or a combination of
both, i.e., first (13) and then a switch to (16) (more details are given in the next
subsection).

For the global upper bound, we experimented with two ways to improve it at
each node of the tree: (a) locally solve the small box QP at each node via MAT-
LAB’s quadprog function; (b) simply take the objective value 1

2 (x∗)T Qx∗ +
cT x∗ corresponding to the optimal x∗ obtained from the lower bound calculation.
Option (b) was a bit quicker, but at each node, the time for either (a) or (b) was
dominated by the lower bound calculation. On the other hand, compared to (b), (a)
generally resulted in fewer nodes in the tree and thus saved time overall. So we use
(a) throughout the computations.
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• Branching. We consider two branching strategies.
The first branching strategy—which we will call simple—is the standard “bi-

section via longest edge” (see, for example, [5]). Consider the small box {x ∈ �n :
l ≤ x ≤ u}, which has been selected for branching. We select the longest edge of
this box to branch on. More specifically, we choose the index i such that ui − li is
the largest among all dimensions. If there is a tie, the smallest such index is chosen.
By applying this strategy, we subdivide the box into two smaller boxes:

{
x ∈ �n : l ≤ x ≤ u − 1

2
(ui − li )ei

}

{
x ∈ �n : l + 1

2
(ui − li )ei ≤ x ≤ u

}
.

The second branching strategy—which we will call advanced—is more sophis-
ticated and involves two ingredients:
– It is well known that SDP relaxations such as (13) and (16) enforce a fairly weak

approximation of X = xxT in the interior of [l, u] and a fairly strong one near
the boundary. Hence, if x̄ is an optimal solution returned by (13) or (16) and
if x̄i ∈ (li , ui) for some index i, then branching on i via the intervals [li , x̄i]
and [x̄i , ui] results in two relaxations with x̄ on the boundary, thus strengthen-
ing the approximation of X = xxT precisely where needed and increasing the
chances that x̄ will be cut off in the relaxations. A similar logic guides the “most
fractional” branching rule of integer programming.

– For theoretical validity of the branch-and-bound algorithm, the branching strat-
egy must subdivide all boxes in such a way that the longest edge of all unfath-
omed boxes tends to 0 in the limit. This is indeed the most basic property of
“bisection via longest edge.”
So we design the second branching strategy as a combination of “most frac-

tional” and “bisection via longest edge.” For a given feasible solution l ≤ x̄ ≤ u,
our strategy calculates, for each i = 1, . . . , n, the values

αi = ui − x̄i

ui − li
· x̄i − li

ui − li
∈ [0,1/4]

βi = ui − li ∈ [0,1]
and then selects for branching the i such that αiβi is maximum. A large αi favors
“most fractional,” while a large βi favors “longest edge.” In particular, if all ui −
li are equal, then the strategy reduces to selecting the most fractional variable,
whereas if one edge is significantly longer than the others, it will necessarily be
selected for branching.

By applying this strategy, the resulting two small boxes are as follows:
{
x ∈ �n : l ≤ x ≤ u − (ui − x̄i )ei

}
{
x ∈ �n : l + (x̄i − li )ei ≤ x ≤ u

}
.

• Node selection. We use a best-bound (breadth-first) strategy for selecting the next
node to solve in the branch-and-bound tree.
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Fig. 1 Number of nodes
required under test scenarios (i)
and (ii). This demonstrates that
the advanced branching strategy
reduces the number of nodes
significantly compared to the
simple branching strategy

• Fathoming tolerance. A relative optimality tolerance is used for fathoming.
For a given tolerance tol, a node with lower bound L is fathomed if (U −
L)/max{1, 1

2 (|U | + |L|)} < tol, where U is the current global upper bound. In
our experiments, we set tol = 10−3.

5.2 Implementation and results

For n = 20, we generated 100 instances of random data (Q, c) (entries uniform in
[−1,1], which ensured Q �� 0 in all cases) and solved these instances using the
branch-and-bound scheme outlined above. In particular, all instances were solved
three times, each time with a different choice of lower bound calculation and branch-
ing strategy. The three choices were:

(i) lower bounds by (SDP0) and simple branching strategy;
(ii) lower bounds by (SDP0) and advanced branching strategy;

(iii) lower bounds by (SDP2) and advanced branching strategy.

We will refer to these three choices as test scenarios. The goals of analyzing these
three particular test scenarios are:

• to compare the two branching strategies via scenarios (i) and (ii) (see Fig. 1);
• to compare (SDP0) and (SDP2) via scenarios (ii) and (iii) (see Fig. 2).

The algorithm was coded in MATLAB (version 7.3, release 2006b) and all SDP
relaxations were setup and solved using YALMIP [6] and SeDuMi (version 1.1)
[12]. All computations were performed on an Intel Pentium D Processor running
at 3.2 GHz with 2048 KB cache and 4 GB RAM under the Linux operating system.

Figure 1 contains a log–log plot depicting the number of nodes required by all
instances in test scenarios (i) and (ii). For each of the 100 problem instances, a single
point is plotted with its x-coordinate equal to the number of nodes under scenario (i)
and its y-coordinate equal to the number of nodes under scenario (ii). Also depicted is
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Fig. 2 Number of nodes and CPU times (seconds) required under test scenarios (ii) and (iii). This demon-
strates that (SDP2) results in fewer nodes compared to (SDP0). However, the overall CPU time incurred
by (SDP2) is greater

the “y = x” dotted line, which divides the plot into two regions. In particular, a point
plotted in the lower-right region indicates an instance that required fewer nodes under
the advanced branching strategy of scenario (ii). Similar to Fig. 1, Fig. 2 compares
the number of nodes required under test scenarios (ii) and (iii). Also depicted in a
separate plot are the CPU times (in seconds). Both plots contain the y = x dotted line
for reference.

Our key interpretations of the figures are as follows:

• Figure 1: Since nearly all points are plotted in the lower-right region, the advanced
branching strategy is clearly better than the simple branching strategy in terms of
number of nodes. In particular, the number of nodes was reduced by more than 44%
on average by using the advanced branching strategy. Furthermore, since (SDP0)
was used as the relaxation for lower bounds in both scenarios, the time per node
for each instance was essentially the same, so that the reduction in nodes resulted
in a real time reduction of about 44% as well.

• Figure 2: In all runs, the number of nodes required by (SDP2) is no more than the
number required by (SDP0), which indicates that (SDP2) provides stronger lower
bounds than (SDP0). In particular, on average the number of nodes required by
(SDP2) is 21% less than that of (SDP0). However, the overall CPU times required
for the entire branch-and-bound process are higher using (SDP2). So (SDP0) is the
overall winner.

In light of Fig. 2, we wondered if some intelligent combination of (SDP0) and
(SDP2) during the branch-and-bound procedure might perform better in terms of
overall CPU time than using (SDP0) only. Hopefully, we could reduce the number of
nodes significantly—a benefit of (SDP2)—while keeping the time small—a benefit of
(SDP0). We devised a strategy, which employs (SDP0) early in the branch-and-bound
tree, and then switches to (SDP2) later in the tree when its stronger bounds may be
useful for fathoming. Specifically, our strategy is the following:
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Fig. 3 Number of nodes and CPU times (seconds) required under test scenarios (ii) and (iv). Compared
to scenario (iii) in Fig. 2, less time is required by scenario (iv), but still scenario (iv) requires more time
than scenario (ii)

At the beginning of branch-and-bound, all lower bounds are calculated with
(SDP0) by default. At each node after the solution of (SDP0), the optimal solu-
tion (x∗,X∗) is extracted and used to construct W ∗

B2B2
and W ∗

B3B3
according to

(16h) and (16j), respectively. If either QB2B2 ◦W ∗
B2B2

or QB3B3 ◦W ∗
B3B3

are not
positive semidefinite, then it follows that (x∗,X∗) cannot be part of a feasible
solution for (SDP2) at that node. In other words, solving (SDP2) will cut off
(x∗,X∗). In these cases, we flag all future descendants of the current node and
calculate the lower bound via (SDP2) for those descendants.

This combination of (SDP0) was implemented as a new test scenario:

(iv) lower bounds by the above combination of (SDP0) and (SDP2) and advanced
branching strategy (see Fig. 3).

For scenario (iv), on average, (SDP0) is solved for 64% of the nodes, while (SDP2)
is solved for the remaining 36%. Compared to test scenario (ii), test scenario (iv)
required 15% fewer nodes on average, which is again a testament to the strength of
(SDP2). In addition, the points in the time plot of Fig. 3 are shifted closer to the
“y = x” line compared to the time plot of Fig. 2, which is an indication of less time
used than in scenario (iii). (Keep in mind that both Figs. 2 and 3 share test scenario
(ii) as the basis of comparison.) So our strategy of combining (SDP0) and (SDP2)
was successful in reducing the number of nodes compared to (ii) and reducing the
times compared to (iii). In fact, in the time plot, there were actually 6 instances below
the “y = x” line, indicating that (iv) used less time than (ii) in these cases. However,
on average the CPU times for scenario (iv) were still more than (ii), indicating that
our strategy was not fully successful as hoped.
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5.3 An additional test

For completeness, we compared (SDP12) with (SDP0) and (SDP2) in the context
of branch-and-bound. (SDP12) on a smaller box {x ∈ �n : l ≤ x ≤ u} has all the
constraints of (16) as well as the first order constraints (8c) and (8d). In addition, for a
particular index i, if xi < 1, then we fix yi = 1; if xi > 0, then we fix [Qx + c+y]i =
0. Both of these rules are based on the complementary slackness condition (3c). We
conducted the tests for the same 100 problems of size n = 20 above with the advanced
branching strategy. The results were as follows: (SDP12) required the fewest nodes
among all three relaxations but required the longest times. In fact, by using (SDP12)
on average the number of nodes is reduced by 65% compared with (SDP0) and 56%
compared with (SDP2).

6 Conclusion

In this paper, we have introduced new semidefinite relaxations of box-constrained
quadratic programming: (SDP12) and (SDP2). (SDP12) is based on relaxing both the
first- and second-order necessary optimality conditions; (SDP2) is similar except that
it only incorporates second-order information. (SDP2) has been our main focus since
the first-order conditions have been studied in previous papers. We have compared
these two relaxations with a basic semidefinite relaxation (SDP0) and established the
theoretical result that all three relaxations achieve the same optimal value.

Relaxing the standard second-order necessary optimality conditions is one of the
main theoretical ideas of this paper. This task is non-trivial since it implicitly involves
knowledge of the active/inactive constraint set at a general point. In the future, it may
be possible to extend this technique to other problems, e.g., quadratic programming
over the simplex, leading to stronger SDP relaxations in other contexts.

We have also empirically compared (SDP0) and (SDP2) in the context of branch-
and-bound and demonstrated that (SDP2) on subdivided boxes is significantly
stronger, which indicates that the incorporation of second-order information in SDP
relaxations can help globally solve Box QP. In particular, fewer branch-and-bound
nodes are required when (SDP2) is employed instead of (SDP0), but overall, branch-
and-bound with (SDP2) requires a larger execution time. Future advances in SDP
software may allow (SDP2) to be solved faster, so that the benefits of its node reduc-
tion may also be reflected in overall CPU times.

Acknowledgements The authors would like to thank two anonymous referees for many helpful sugges-
tions that have improved this paper immensely.
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