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Abstract. Nonconvex quadratic programming with box constraints is a fundamental NP-hard
global optimization problem. Recently, some authors have studied a certain family of convex sets
associated with this problem. We prove several fundamental results concerned with these convex sets:
we determine their dimension, characterize their extreme points and vertices, show their invariance
under certain affine transformations, and show that various linear inequalities induce facets. We also
show that the sets are closely related to the Boolean quadric polytope, a fundamental polytope in
the field of polyhedral combinatorics. Finally, we give a classification of valid inequalities and show
that this yields a finite recursive procedure to check the validity of any proposed inequality.
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1. Introduction. Nonconvex quadratic programming with box constraints
(QPB) is the problem of minimizing a nonconvex quadratic function of a set of vari-
ables subject to lower and upper bounds on the variables. A QPB instance with n
variables takes the following form:

min
{
cTx+ xTQx : l ≤ x ≤ u, x ∈ R

n}
,

where x is the vector of decision variables, c ∈ R
n is the vector of linear costs,

Q ∈ R
n×n is the matrix of quadratic costs, and l ∈ R

n and u ∈ R
n are the vectors of

lower and upper bounds, respectively.
As usual in the literature, we assume throughout this paper that the box con-

straints take the simple form x ∈ [0, 1]n. Any instance not satisfying this property
can be easily transformed into one that does.

QPB, which is NP-hard, is regarded as a fundamental problem in global opti-
mization (see Horst, Pardalos, and Thoai [13]). A survey of research on QPB up to
1997 was given by De Angelis, Pardalos, and Toraldo [7]. More recent relevant papers
include Yajima and Fujie [29], Vandenbussche and Nemhauser [27, 28], Burer and
Vandenbussche [6], Anstreicher [1], and Anstreicher and Burer [3].

It is common practice to linearize the objective function by introducing, for
1 ≤ i ≤ j ≤ n, a new variable yij , representing the product xixj . The noncon-
vex constraints yij = xixj can then be approximated by either linear constraints (as
in [23, 27, 28, 29]) or conic constraints (as in [1, 3, 6]).
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Fig. 1. The convex set QPB1.

In order to derive stronger relaxations in the (x, y)-space, it is natural to study
the convex hull of feasible solutions to the problem, i.e., the set

QPBn = conv
{
(x, y) ∈ [0, 1]n+(n+1

2 ) : yij = xixj (∀1 ≤ i ≤ j ≤ n)
}
.

Note that QPBn, though convex, is not polyhedral even for n = 1; see Figure 1.
Although a few authors have studied QPBn explicitly [1, 3, 29], many fundamental
questions about its structure remain unanswered. (For example, a complete linear
description of QPB3 is not known [3].) The goal of this paper is to understand
QPBn better.

The structure of the paper is as follows. In section 2, we review the relevant liter-
ature. In section 3, we explore some fundamental properties of QPBn: its dimension,
extreme points, vertices, and affine symmetries. In section 4, we consider the so-called
reformulation-linearization technique (RLT) and positive semidefinite (psd) inequali-
ties and determine the dimension of the corresponding faces of QPBn. In section 5,
we establish a connection between QPBn and the so-called Boolean quadric polytope,
a fundamental polytope in the field of polyhedral combinatorics. This yields a huge
class of facet-inducing inequalities for QPBn. In section 6, we give a “classification”
of valid inequalities and show that it yields a finite procedure to check the validity of
any proposed inequality. We also use it to explore the structure of QPB3. Finally,
concluding remarks are given in section 7.

We assume throughout that the reader is familiar with the basics of polyhedral
theory (see Nemhauser and Wolsey [17] or Schrijver [22]) and convex analysis (see
Hiriart-Urruty and Lemaréchal [12]).

2. Key concepts from the literature. Some key concepts from the literature
are now explained.

2.1. The RLT inequalities. It is well-known that the constraint yij = xixj ,
together with the bounds 0 ≤ xi ≤ 1 and 0 ≤ xj ≤ 1, imply the following four linear
inequalities:

yij ≥ 0, yij ≤ xi, yij ≤ xj , yij ≥ xi + xj − 1.

These inequalities remain valid when i = j, in which case the second and third of
them coincide. They have come to be known as RLT inequalities, because they can
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Fig. 2. Region defined by RLT inequalities when n = 1.
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Fig. 3. Region defined by RLT inequalities with i �= j when n = 2.

be derived using the so-called reformulation-linearization technique of Sherali and
Adams [23].

Replacing the constraints yij = xixj with the RLT inequalities, we obtain a linear
programming relaxation of QPB. See Figure 2 for an illustration, again for the trivial
case n = 1.

In Figure 3, we display the polytope defined by the RLT inequalities with i �= j
for the case n = 2. Here, the variables y11 and y22 have been omitted. McCormick
[16] pointed out that this polytope is equal to the following convex hull:

conv
{
(x1, x2, y12) ∈ [0, 1]3 : y12 = x1x2

}
.

We will see in subsection 2.4 that this polytope is nothing but the Boolean quadric
polytope for n = 2.

2.2. Using positive semidefiniteness. The idea of applying semidefinite pro-
gramming to nonconvex quadratic programs is due to Shor [26] (see also Lovász and
Schrijver [15]). The idea is as follows. We begin by defining the n × n symmetric
matrix Y = xxT . Note that, for any 1 ≤ i ≤ j ≤ n, Yij = yij . We also define the
augmented matrix

Ŷ :=
(

1
x

)(
1
x

)T

=
(

1 xT

x Y

)
.
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Since Ŷ is defined as the product of a vector and its transpose, we should have Ŷ � 0
in a feasible solution (i.e., Ŷ should be positive semidefinite).

It is well-known that imposing Ŷ � 0 is equivalent to imposing Y − xxT � 0,
which in turn amounts to imposing the convex quadratic constraints bTY b ≥ (bTx)2

for all b ∈ R
n. Moreover, as first noted by Ramana [20], Ŷ � 0 if and only if

vTY v + (2s)vTx+ s2 ≥ 0

for all vectors v ∈ R
n and scalars s ∈ R. This is equivalent to imposing the following

linear inequalities:

(1) (2s)vTx+
n∑

i=1

v2
i yii + 2

∑
1≤i<j≤n

vivjyij + s2 ≥ 0 (∀v ∈ R
n
, s ∈ R).

We will call the inequalities (1). Note that the RLT inequalities yii ≥ 0 and yii ≥
2xi − 1 are psd inequalities.

Imposing Ŷ � 0 strengthens the RLT relaxation of QPB considerably [1, 6, 24,
29]. When n = 1, the relaxation is exact: Figure 1 shows that QPB1 is completely
described by the RLT inequality y11 ≤ x1 and the convex quadratic constraint y11 ≥
x2

1. Anstreicher and Burer [3] showed that the relaxation is exact if and only if n ≤ 2.
For n = 3, they found the following four inequalities, which are valid for QPB3 but
cut off points satisfying the RLT and psd constraints:

y11 + y22 + y33 ≤ y12 + y13 + y23 + 1,(2)
y11 + y22 + y33 + y12 + y13 ≤ 2x1 + x2 + x3 + y23,(3)
y11 + y22 + y33 + y12 + y23 ≤ x1 + 2x2 + x3 + y13,(4)
y11 + y22 + y33 + y13 + y23 ≤ x1 + x2 + 2x3 + y12.(5)

2.3. QPB as a generalization of UBQP. A folklore result, possibly due to
Rosenberg [21], is that QPB includes unconstrained Boolean quadratic programming
(UBQP) as a special case. An instance of UBQP takes the form

min
{
cTx+ xTQx : x ∈ {0, 1}n

}
,

where c ∈ R
n and Q ∈ R

n×n as before. To reduce a UBQP instance to a QPB
instance, it suffices to add the penalty termM

∑n
i=1(xi−x2

i ) to the objective function,
where M is a large positive integer. Note that the resulting QPB instance has a
concave objective.

Another folklore result (e.g., Barahona, Jünger, and Reinelt [4], De Simone [8],
and Padberg [18]) is that UBQP is equivalent to the well-known max-cut problem.
Since the max-cut problem is NP-hard in the strong sense (Garey, Johnson, and
Stockmeyer [11]), so is UBQP, and therefore so is QPB, even in the concave case.

2.4. The Boolean quadric polytope. Padberg [18] associated a family of zero-
one polytopes with UBQP, which he called Boolean quadric polytopes. The Boolean
quadric polytopes are defined as

BQPn = conv
{

(x, y) ∈ {0, 1}n+(n
2) : yij = xixj (∀1 ≤ i < j ≤ n)

}
.

Note that, unlike in the case of QPB, there are no variables yii. (There is no need
for them, since x2

i = xi when xi is binary.) We remark that BQP2 is nothing but the
polytope presented in Figure 3.
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In addition to the RLT inequalities, Padberg defined various facet-inducing in-
equalities for BQPn, called triangle, clique, cut, and generalized cut inequalities. The
triangle inequalities consist of the following inequalities for all triples (i, j, k):

xi + xj + xk ≤ yij + yik + yjk + 1,(6)
yij + yik ≤ xi + yjk.(7)

We remark that the inequalities (2)–(5) are dominated by triangle inequalities.
Further valid inequalities for BQPn have been introduced, for example, by Boros

and Hammer [5] and Sherali, Lee, and Adams [25]. Still more inequalities can be
derived from the fact that BQPn is an affine image of the well-known cut polytope
(see De Simone [8] and Deza and Laurent [10]).

Yajima and Fujie [29] proved that all of the inequalities of Padberg, along with
some more general inequalities called cut-type inequalities, are valid for QPBn as well
as for BQPn. We extend this result significantly in section 5.

3. Fundamental properties of QPBn. In this section, we establish some
fundamental properties of QPBn. Throughout the section, we denote by S the set of
all feasible solutions to QPB in the extended (x, y)-space. That is,

S =
{
(x, y) ∈ [0, 1]n+(n+1

2 ) : yij = xixj (∀1 ≤ i ≤ j ≤ n)
}
.

Note that S contains an uncountable number of members.

3.1. Dimension. We begin by determining the dimension of QPBn.
Lemma 1. QPBn is full-dimensional (i.e., of dimension n+

(
n+1

2

)
).

Proof. Consider the following members of the set S:
• the origin (i.e., all variables set to zero);
• for i = 1, . . . , n, the point having xi = yii = 1 and all other variables zero;
• for i = 1, . . . , n, the point having xi = 1

2 , yii = 1
4 , and all other variables zero;

• for 1 ≤ i < j ≤ n, the point having xi = xj = 1, yii = yjj = yij = 1, and all
other variables zero.

These n+
(
n+1

2

)
+ 1 points are easily shown to be affinely independent.

Being full-dimensional is a desirable property to have, because it means that each
face of maximal dimension is defined by a unique linear inequality (up to scaling by
a constant).

3.2. Extreme points and vertices. Next, we recall some other terms from
convex analysis. Let K ∈ R

d be a full-dimensional convex set. An extreme point of
K is a point in K that cannot be expressed as a convex combination of other points
in K. A vector v ∈ R

d is said to be normal at an extreme point p if vT p′ ≤ vT p for
all p′ ∈ K. If there exist d linearly independent normal vectors at p, then p is called
a vertex of K.

Laurent and Poljak [14] characterized the extreme points and vertices of the set
of correlation matrices. Here, we do the same for QPBn.

Lemma 2. The extreme points of QPBn are the members of S.
Proof. By definition, every extreme point of QPBn is a member of S. We show

that every member of S is an extreme point. Let (x̄, ȳ) be an arbitrary point in
S. Consider the QPB instance that arises when the objective function is equal to∑n

i=1(x
2
i −2x̄ixi). Minimizing this function is equivalent to minimizing

∑n
i=1(xi−x̄i)2.

Therefore, x̄ is the unique optimal solution to the given instance. Equivalently, (x̄, ȳ)
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is the unique point in QPBn that minimizes the linear function
∑n

i=1(yii − 2x̄ixi).
Thus, (x̄, ȳ) is an extreme point of QPBn.

Figure 1 enables one to visualize this result for the case n = 1: the members of
S form a segment of a parabola, and it is clear that every point on that parabola
segment is an extreme point of QPB1.

Theorem 1. An extreme point (x̄, ȳ) of QPBn is a vertex if and only if it is
binary, i.e., if and only if x̄ ∈ {0, 1}n.

Proof. First we prove sufficiency. Let (x̄, ȳ) be a member of S that is binary.
Assume without loss of generality that x̄i = 0 for i = 1, . . . , q and x̄i = 1 for i =
q + 1, . . . , n. Then (x̄, ȳ) satisfies the following valid inequalities at equality:

• xi ≥ 0 for i = 1, . . . , q;
• xi ≤ 1 for i = q + 1, . . . , n;
• yij ≥ 0 for 1 ≤ i ≤ q and i ≤ j ≤ n;
• yij ≤ 1 for q + 1 ≤ i ≤ j ≤ n.

These inequalities are linearly independent, and there are n+
(
n+1

2

)
of them. Thus,

there exist n+
(
n+1

2

)
independent normal vectors at (x̄, ȳ). So (x̄, ȳ) is a vertex.

Now we prove necessity. Let (x̄, ȳ) be an extreme point, and suppose that x̄k ∈
(0, 1) for some k. Let ε be a small positive quantity. If we increase xk by ε, we obtain
a second extreme point, say, (x+, y+), that is identical to (x̄, ȳ) except that

• x+
k is increased by ε,

• y+
ik is increased by εx̄i for all i �= k,

• y+
kk is increased by 2εx̄k + ε2.

Similarly, we can create a third extreme point, say, (x−, y−), by decreasing xk by ε.
Now let (v, w) be a normal vector at (x̄, ȳ). By definition, we must have vTx+ +

wT y+ ≤ vT x̄+wT ȳ and vTx−+wT y− ≤ vT x̄+wT ȳ, where wT y+ :=
∑

1≤i≤j≤n wijy
+
ij ,

and wT y− and wT ȳ are defined similarly. But this implies that the following two
inequalities must hold:

vk +
∑
i�=k

x̄iwik + (2x̄k + ε)wkk ≤ 0,

− vk −
∑
i�=k

x̄iwik − (2x̄k − ε)wkk≤ 0.

Since ε can approach zero arbitrarily closely, this implies that all normal vectors satisfy
the equation

vk +
∑
i�=k

x̄iwik + 2x̄kwkk = 0.

Thus, there cannot exist n+
(
n+1

2

)
linearly independent normal vectors.

Indeed, in Figure 1 one sees that there are only two vertices, namely, the points
at which x1 ∈ {0, 1}.

3.3. Invariance under permutation and switching. It is known (see, e.g.,
Deza and Laurent [10]) that BQPn is invariant under two transformations, called
permutation and switching. Here, we adapt these concepts in a straightforward way
to QPBn.

Definition 1 (permutation). Let π : {1, . . . , n} �→ {1, . . . , n} be an arbitrary

permutation. Consider the linear transformation φπ : R
n+(n+1

2 ) �→ R
n+(n+1

2 ) that
• replaces xi with xπ(i) for all i ∈ {1, . . . , n},
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• replaces yij with yπ(i),π(j) for all 1 ≤ i ≤ j ≤ n.
By abuse of terminology, we call this transformation itself a permutation.

Definition 2 (switching). For an arbitrary set S ⊂ {1, . . . , n}, let ψS :

R
n+(n+1

2 ) �→ R
n+(n+1

2 ) be the affine transformation that
• replaces xi with 1 − xi for all i ∈ S,
• replaces yii with 1 − 2xi + yii for all i ∈ S,
• replaces yij with xi − yij for all i ∈ {1, . . . , n} \ S and all j ∈ S,
• replaces yij with 1 − xi − xj + yij for all {i, j} ⊂ S,
• leaves all other xi and yij variables unchanged.

Applying the transformation ψS is called switching (on S).
It is obvious that QPBn is invariant under permutation. (That is, for any n and

any permutation π of {1, . . . , n}, we have φπ(QPBn) = QPBn.) We now show that
the same holds for switching.

Proposition 1. QPBn is invariant under switching. That is, for any n and any
S ⊂ {1, . . . , n}, ψS(QPBn) = QPBn.

Proof. Let (x̄, ȳ) be an extreme point of QPBn. From Lemma 2, we have ȳij =
x̄ix̄j for all 1 ≤ i ≤ j ≤ n. Now let (x̃, ỹ) = ψS(x̄, ȳ). From the definition of
switching, one can easily show that 0 ≤ x̃i ≤ 1 for 1 ≤ i ≤ n, and that ỹij = x̃ix̃j

for 1 ≤ i ≤ j ≤ n. Thus, from Lemma 2, (x̃, ỹ) is an extreme point of QPBn. This
shows that every extreme point of ψS(QPBn) is an extreme point of QPBn. A similar
argument shows that every extreme point of QPBn is an extreme point of ψS(QPBn).
Since ψS(QPBn) and QPBn are convex and have the same extreme points, they are
equal.

Just as in the case of BQPn, the permutation and switching transformations
enable one to convert valid linear inequalities into other valid linear inequalities that
induce faces of the same dimension. For example, if we take the RLT inequality
yij ≥ 0 and switch on {i} or {j}, we obtain the RLT inequalities yij ≤ xj and yij ≤ xi,
respectively. If we switch on {i, j}, we obtain the RLT inequality yij ≥ xi + xj − 1.

Note that the permutation transformation, unlike switching, is an isometry (that
is, it preserves distances and angles). It is known that the permutations are the only
isometries of BQPn (see [10], p. 410). It is not hard to show that the same holds for
QPBn.

4. On the RLT and psd inequalities. In this section, we examine the RLT
and psd inequalities. In subsection 4.1 we show that most of the RLT inequalities
induce facets of QPBn. In subsection 4.2 we show that the psd inequalities induce
not facets but faces of high dimension. As a by-product of our analysis, we obtain an
“extension” result, which is presented in subsection 4.3.

4.1. The RLT inequalities. We now show that most of the RLT inequalities
induce facets of QPBn.

Proposition 2. The RLT inequalities of the form yii ≤ xi induce facets of
QPBn, and so do all of the RLT inequalities with i �= j (when n ≥ 2).

Proof. An RLT inequality of the form yii ≤ xi is satisfied at equality by all but
one of the n +

(
n+1

2

)
+ 1 vectors listed in the proof of Lemma 1. (Indeed, the only

vector that does not satisfy it at equality is the one that has xi = 1/2 and yii = 1/4.)
The same is true for an RLT inequality of the form yij ≥ 0 with j �= i. (Indeed, the
only vector that does not satisfy it at equality is the one that has xi = xj = yij = 1.)
The remaining RLT inequalities with j �= i are switchings of this latter inequality,
and therefore they too induce facets.
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The only remaining RLT inequalities are those of the form yii ≥ 0 and yii ≥
2xi − 1. Since these RLT inequalities are also psd inequalities, we deal with them in
the next subsection.

4.2. The psd inequalities. Next, we will determine the dimension of the faces
of QPBn induced by the psd inequalities (1). We will find the following (trivial)
lemma useful.

Lemma 3. An extreme point (x, y) of QPBn satisfies a psd inequality (1) at
equality if and only if it satisfies the equation vTx+ s = 0.

We will also find it helpful to let F (v, s) denote the face of QPBn induced by the
psd inequality and K(v, s) denote the set of associated x vectors. That is,

F (v, s) =
{
(x, y) ∈ QPBn : vTx+ s = 0

}
,

K(v, s) =
{
x ∈ [0, 1]n : vTx+ s = 0

}
.

It turns out that the dimension of K(v, s) plays a key role.
Lemma 4. If the dimension of K(v, s) is less than n− 1, then the psd inequality

(1) is dominated by the RLT inequalities.
Proof. If the dimension of K(v, s) is −1 (i.e., K(v, s) = ∅), the psd inequality

does not even induce a nonempty face, and the result is trivial. So suppose that the
dimension is between 0 and n−2. In this case, since the equation vTx+ s = 0 defines
an affine subspace of dimension n− 1, K(v, s) must be contained in the boundary of
[0, 1]n and hence induces a face of the hypercube that is not a facet. By switching, we
can assume that the face contains the origin. This implies that s = 0 and v ∈ R

n
+∪R

n
−.

(Indeed, if v contained a mixture of positive and negative entries, then K(s, v) would
have dimension n− 1, a contradiction.) The psd inequality is then easily shown to be
a nonnegative linear combination of the RLT inequalities of the form yij ≥ 0.

When the dimension of K(v, s) is n − 1, on the other hand, the psd inequality
induces a face of high dimension.

Theorem 2. IfK(v, s) has dimension n−1, then F (v, s) has dimension
(
n+1

2

)−1.
Proof. First we show that the dimension of F (v, s) is at most

(
n+1

2

) − 1. From
Lemma 3, all extreme points of F (v, s) satisfy the equation vTx+ s = 0. Multiplying
this equation by each variable in turn and then using the identities yij = xixj , we
obtain n additional equations of the form

n∑
j=1

vjyij + sxi = 0 (i = 1, . . . , n).

These n+ 1 equations are easily shown to be linearly independent. The upper bound
on the dimension then follows from Lemma 1.

Now we show that the dimension of F (v, s) is at least
(
n+1

2

) − 1. Let x∗ be an
arbitrary point lying in the relative interior of K(v, s). Let v1, . . . , vn−1 ∈ R

n be a
set of vectors that are orthogonal to each other and to v. Finally, let ε be a small
positive quantity. Consider the following

(
n+1

2

) − 1 vectors in [0, 1]n:
• x∗,
• x∗ + εvr for r = 1, . . . , n− 1,
• x∗ + 2εvr for r = 1, . . . , n− 1,
• x∗ + ε(vr + vs) for 1 ≤ r < s ≤ n− 1.

All of these vectors lie in K(v, s). The corresponding
(
n+1

2

) − 1 extreme points of
QPBn therefore lie in F (v, s). They can be shown to be affinely independent.
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Now note that when the dimension of K(v, s) is n− 1, we have two possibilities:
either K(v, s) contains an interior point of the unit hypercube (i.e., there exists some
x∗ ∈ (0, 1)n such that vTx∗ + s = 0), or K(v, s) is a facet of the unit hypercube.
In the latter case, the psd inequality is nothing but an RLT inequality of the form
yii ≥ 0 or yii ≥ 2xi − 1. Thus, those particular RLT inequalities do not induce facets
of QPBn.

Using known results on the positive semidefinite cone (see, e.g., Pataki [19]), one
can also show the following. We omit the proofs for brevity.

Proposition 3. If K(v, s) contains an interior point of the hypercube, then
F (v, s) is a maximal face of QPBn (i.e., it is not contained in any other face). More-
over, the psd inequality is nondominated (i.e., it is not a convex combination of other
valid inequalities).

Proposition 4. If K(v, s) is a facet of the hypercube (i.e., if the psd inequality is
an RLT inequality), then F (v, s) is contained in the facet induced by an RLT inequality
of the form yii ≤ xi. Yet, the psd inequality is still nondominated.

This last result may seem counterintuitive but is also apparent in Figure 1 for n =
1. Specifically, taking (v, s) = (1, 0), we have K(v, s) = {0} and F (v, s) = {(0, 0)},
and the associated psd inequality is the RLT constraint y11 ≥ 0. The facet induced
by y11 ≤ x1 is {(x, y) ∈ [0, 1]2 : x = y}, which contains F (v, s). However, y11 ≥ 0 is
still nondominated because it cannot be written as the convex combination of other
valid (linear) inequalities.

4.3. Canonical extension. Our analysis of the psd inequalities led us to derive
an additional result that we describe in this subsection. Our starting point is the fact
that if the linear inequality

n∑
i=1

αixi +
∑

1≤i≤j≤n

βijyij ≤ γ

is valid for QPBn, then it is also valid for QPBn′ for any n′ > n. That is to say, given
any valid inequality for QPBn, we can construct a valid inequality for QPBn′ simply
by introducing zero coefficients for the additional variables. Padberg [18] called the
resulting inequality the “canonical extension” of the original inequality.

To explain our result, we will find it helpful to use the term codimension: a face of
QPBn has codimension k if it has dimension n+

(
n+1

2

)
+1−k. (Thus, the codimension

of a facet is 1, and the codimension of a psd inequality is at least n+ 1.) Our result
essentially states that the codimension of the canonical extension of an inequality is
identical to the codimension of the original inequality.

We will need the following lemma.
Lemma 5. Suppose that F is a face of QPBn whose codimension is no more than

n. Then F contains n+ 1 extreme points, say, (xk, yk) for k = 1, . . . , n+ 1 such that
the vectors x1, . . . , xn+1 are affinely independent in R

n.
Proof. If this were not so, then the face would satisfy an equation of the form

vTx = s. The face would then be contained in the face induced by a psd inequality,
and therefore have codimension at least n+ 1.

With this lemma, we can prove the following theorem.
Theorem 3. Suppose that the linear inequality

n∑
i=1

αixi +
∑

1≤i≤j≤n

βijyij ≤ γ
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induces a face of QPBn of codimension k, where 1 ≤ k ≤ n. Then it also induces a
face of QPBn′ of codimension k for all n′ > n.

Proof. By induction, it suffices to prove that the inequality induces a face of
QPBn+1 of codimension k. Let F be the original face of QPBn, and let F ′ be the
face of QPBn+1 induced by the inequality. Since F has codimension k, it contains
n +

(
n+1

2

)
+ 1 − k affinely independent extreme points of QPBn. Each of these can

be converted into an extreme point of QPBn+1 by setting xn+1 = 0 and yi,n+1 = 0
for i = 1, . . . , n+ 1. In this way, one obtains n+

(
n+1

2

)
+ 1 − k affinely independent

extreme points of QPBn+1 that lie in F ′. To complete the proof, we need another
n+ 2 such points.

Let x1, . . . , xn+1 ∈ R
n be the vectors mentioned in Lemma 5. We construct n+1

modified vectors in R
n+1, say, x̃1, . . . , x̃n+1, by setting

• x̃k
i = xk

i for k = 1, . . . , n+ 1 and i = 1, . . . , n,
• x̃k

n+1 = 1 for k = 1, . . . , n+ 1.
Now note that, for k = 1, . . . , n + 1, we can construct an extreme point (x̃k, ỹk) of
QPBn+1 that lies in F ′. These n + 1 extreme points, together with the original
n+

(
n+1

2

)
+ 1 − k ones, are easily shown to be affinely independent.

Finally, we construct one more extreme point of QPBn+1 as follows. Let x̄ be
identical to x̃1, apart from the fact that x̄n+1 = 1/2. The corresponding extreme
point of QPBn+1, say, (x̄, ȳ), also lies in F ′. It is affinely independent of the other
points mentioned, since it is the only one that does not satisfy yn+1,n+1 = xn+1.

5. Facets from the Boolean quadric polytope. As mentioned in subsection
2.4, Yajima and Fujie [29] proved that certain valid inequalities for BQPn are valid
also for QPBn. In this section, we extend this result in several ways.

5.1. BQPn as a projection of QPBn. Recall that QPBn and BQPn “live”
in R

n+(n+1
2 ) and R

n+(n
2), respectively. The following proposition states that the pro-

jection of QPBn onto R
n+(n

2) is nothing but BQPn.
Proposition 5. The projection of QPBn onto R

n+(n
2), i.e., the set

conv
{

(x, y) ∈ [0, 1]n+(n
2) : yij = xixj (1 ≤ i < j ≤ n)

}
,

is equal to BQPn.
Proof. Let (x̄, ȳ) ∈ [0, 1]n+(n

2) lie in the projection, and suppose that x̄ is frac-
tional, i.e., that x̄k ∈ (0, 1) for some 1 ≤ k ≤ n. Let x0 and x1 be the vectors
obtained from x̄ by changing xk to 0 or 1, respectively, and let (x0, y0) and (x1, y1)
be the corresponding points in the projection. (That is, let y0

ij = x0
i x

0
j and y1

ij = x1
ix

1
j

for 1 ≤ i < j ≤ n.) Finally, let λ = x̄k. One can check that

x̄i = λx1
i + (1 − λ)x0

i (i = 1, . . . , n),
ȳij = λy1

ij + (1 − λ)y0
ij(1 ≤ i < j ≤ n).

Thus, (x̄, ȳ) is a convex combination of other points in the projection and therefore
cannot be an extreme point of the projection. Therefore, all extreme points of the
projection are binary, and the projection is nothing but BQPn.

Proposition 5 implies that if one faces an instance of QPB in which the main
diagonal of the quadratic cost matrix Q is zero, then one can assume that the variables
are binary (and therefore solve an instance of UBQP). For our purposes, the following
consequence is more important.
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Corollary 1. If the linear inequality

n∑
i=1

αixi +
∑

1≤i<j≤n

βyij ≤ γ

is valid for BQPn, then it is valid for QPBn as well.
This implies the above-mentioned result of Yajima and Fujie [29].

From now on, we let proj(x, y) denote the linear operator that projects points in

R
n+(n+1

2 ) onto R
n+(n

2) by simply dropping the components yii for all 1 ≤ i ≤ n. The
following proposition shows that there is another link between QPBn and BQPn.

Proposition 6. Let F be the face of QPBn defined by the equations yii = xi for
all i. Then proj(F ) = BQPn.

Proof. The only members of S that satisfy yii = xi for all i are the binary ones.
Thus, the extreme points of F are the binary members of S. Since proj(F ) is the
convex hull of the projections of these binary members, it is equal to BQPn.

Thus, BQPn is simultaneously a projection of QPBn and a projection of a face
of QPBn. This fact too can be seen clearly in Figure 1: whether we project the
whole of QPB1 or just the face F onto R, we still obtain the line segment defined by
0 ≤ x1 ≤ 1.

5.2. Which BQP facets yield QPB facets? Corollary 1 has established
that an inequality, which is valid for BQPn, may be extended to a valid inequal-
ity for QPBn by simply introducing zero coefficients for the additional variables.
Even though these two inequalities act in different spaces, we think of them—and for
convenience refer to them—as the same inequality. We ask the reader to keep this
terminology in mind for the proper interpretation of Lemma 6 and Theorem 4 below.

The RLT inequalities with j �= i are examples of inequalities that induce facets
of both BQPn and QPBn. In this subsection, we give a necessary and sufficient
condition for an inequality to have this property. We will need the following lemma.

Lemma 6. Suppose we are given an inequality that induces a face of BQPn.
Moreover, let (x̄, ȳ) be a member of S, and suppose that x̄k ∈ (0, 1) for some 1 ≤ k ≤
n. Let (x0, y0) and (x1, y1) be defined as in Proposition 5. Then (x̄, ȳ) satisfies the
inequality at equality if and only if (x0, y0) and (x1, y1) do.

Proof. As in the proof of Proposition 5, proj(x̄, ȳ) is a convex combination of
proj(x0, y0) and proj(x1, y1). Thus, the slack of the inequality at (x̄, ȳ) is a convex
combination of the slacks of the inequality at (x0, y0) and (x1, y1).

We then have the following result.
Theorem 4. Suppose an inequality induces a facet of BQPn. A necessary and

sufficient condition for it to also induce a facet of QPBn is the existence of n extreme
points of QPBn, say, (x1, y1), . . . , (xn, yn), such that

• each satisfies the inequality at equality;
• xi

i ∈ (0, 1) for i = 1, . . . , n;
• xi

j ∈ {0, 1} for i = 1, . . . , n and j �= i.
Proof. First we prove necessity. For any i ∈ {1, . . . , n}, there must exist an

extreme point of QPBn that lies on the face and such that xi is fractional. (If this
were not so, then all extreme points of QPBn lying on the face would satisfy the RLT
inequality yii ≤ xi with equality.) Now, by a repeated application of Lemma 6 with
k �= i, we can convert the ith such point into the desired point (xi, yi).

Next, we prove sufficiency. Since the inequality induces a facet of BQPn, there
exist n+

(
n
2

)
affinely independent binary extreme points of QPBn lying on the face.
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For the inequality to induce a facet of QPBn, one needs an additional n affinely
independent extreme points. To see that (x1, y1), . . . , (xn, yn) are the desired points,
note that, for any i, the point (xi, yi) is the only point in the collection that does not
satisfy the equation yii = xi.

It is possible to express the condition in Theorem 4 entirely in terms of BQPn.
Corollary 2. Suppose an inequality induces a facet of BQPn. A necessary

and sufficient condition for it to also induce a facet of QPBn is that there exist
2n vertices of BQPn, say, (x̄1, ȳ1), . . . , (x̄n, ȳn) and (x̂1, ŷ1), . . . , (x̂n, ŷn), with the
following properties:

• each satisfies the inequality at equality;
• x̂i

j = x̄i
j for i = 1, . . . , n and j �= i;

• x̄i
i = 0 and x̂i

i = 1 for i = 1, . . . , n.
Proof. To create the desired vertices of BQPn, it suffices to take the n extreme

points of QPBn described in Theorem 4, decompose each of them into two binary
extreme points of QPBn as in Lemma 6, and then project the resulting 2n extreme
points onto R

n+(n
2).

5.3. A huge class of facets. To illustrate the ideas given in the previous sub-
section, we now consider a well-known class of valid inequalities for BQPn, due to
Boros and Hammer [5], and derive a surprisingly simple necessary and sufficient con-
dition for them to induce facets of QPBn. The class of inequalities concerned is given
in the following proposition.

Proposition 7 (Boros and Hammer [5]). For any v ∈ Z
n and s ∈ Z, all extreme

points of BQPn satisfy (vTx+ s)(vTx+ s− 1) ≥ 0. Thus, the inequality

(8)
n∑

i=1

vi(vi + 2s− 1)xi + 2
∑

1≤i<j≤n

vivjyij ≥ s(1 − s)

is valid for BQPn.
The inequalities (8) do not always induce facets of BQPn, but they do under

certain conditions (see De Simone [9] and Deza and Laurent [10]). Moreover, they
include a variety of facet-inducing inequalities forBQPn as special cases. This includes
the triangle, clique, cut, and generalized cut inequalities of Padberg [18] and the
inequalities introduced in Sherali, Lee, and Adams [25], which were called cut-type
inequalities by Yajima and Fujie [29]. The cut-type inequalities are the special case
obtained when v ∈ {0,±1}n and induce facets under mild conditions.

As mentioned in subsection 2.4, Yajima and Fujie [29] proved that the cut-type
inequalities are valid for QPBn. We now give a much stronger result.

Theorem 5. Suppose that an inequality of the form (8) induces a facet of BQPn.
It induces a facet of QPBn as well if and only if v ∈ {0,±1}n, i.e., if and only if it
is a cut-type inequality.

Proof. It follows from the derivation of the inequality (8) that a vertex of BQPn

satisfies it at equality if and only if it satisfies vTx + s ∈ {0, 1}. Suppose that the
inequality induces a facet of both BQPn and QPBn. Then there exist 2n extreme
points of BQPn, say, (x̄1, ȳ1), . . . , (x̄n, ȳn) and (x̂1, ŷ1), . . . , (x̂n, ŷn), with the proper-
ties described in Corollary 2. For any given 1 ≤ i ≤ n, we have three possible cases:

• vT x̄i = vT x̂i ∈ {0, 1}, in which case vi = 0;
• vT x̄i = 0 and vT x̂i = 1, in which case vi = 1;
• vT x̄i = 1 and vT x̂i = 0, in which case vi = −1.

Thus, v ∈ {0,±1}n, and the inequality is a cut-type inequality.
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Similarly, when v ∈ {0,±1}n, it is easy to construct the 2n vertices of BQPn

required by Corollary 2. Thus, if a cut-type inequality induces a facet of BQPn, it
also induces a facet of QPBn.

We know of other inequalities that induce facets of both BQPn and QPBn, along
with other inequalities that induce facets of BQPn but not of QPBn. We do not go
into details for the sake of brevity.

6. A classification of valid inequalities for QPBn. Let Qα,β(x, y) ≤ γ be

any valid linear inequality for QPBn, where α ∈ R
n, β ∈ R

n+(n+1
2 ), γ ∈ R, and

Qα,β(x, y) :=
n∑

i=1

αixi +
∑

1≤i≤j≤n

βijyij .

Also, define the corresponding quadratic form

qα,β(x) :=
n∑

i=1

αixi +
∑

1≤i≤j≤n

βijxixj .

Let us call a valid linear inequality Q(α, β) ≤ γ “concave,” “convex,” or “indefinite”
according to whether the quadratic form qα,β(x) is concave, convex, or indefinite,
respectively. In the following three subsections, we characterize the inequalities of
these three different types. Then, in subsection 6.4, we use these characterizations to
shed light on the structure of QPB3.

In a couple of places, we will use the following (easy) lemma.
Lemma 7. The maximum value of Qα,β(x, y) over QPBn equals the maximum

value of qα,β(x) over [0, 1]n.

6.1. The concave case. First we deal with the concave case. The following
proposition shows that the only nonredundant concave inequalities are, essentially,
the psd inequalities.

Proposition 8. Suppose that Qα,β(x, y) ≤ γ is valid for QPBn and that qα,β(x)
is concave. Then Qα,β(x, y) ≤ γ is valid for the following convex set:{

(x, y) ∈ [0, 1]n × R
(n+1

2 ) : Ŷ � 0
}
,

where Ŷ is defined as in subsection 2.2.
Proof. Let (x, y) with associated Ŷ be arbitrary in the above convex set. Because

qα,β(x) is concave, it can be expressed as

qα,β(x) = αTx+ xTBx,

with symmetric, negative semidefinite matrix B (defined easily in terms of β). Like-
wise,

Qα,β(x, y) = αTx+B • Y,
where B • Y :=

∑n
i,j=1 BijYij . Note that xTBx = B • xxT also. Thus,

Qα,β(x, y) = αTx+B • Y
= αTx+B • (Y − xxT ) + xTBx

≤ αTx+ xTBx

= qα,β(x),
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where the inequality follows from B  0 and Y − xxT � 0. Now, by Lemma 7, the
validity of Qα,β(x, y) ≤ γ for QPBn ensures that qα,β(x) ≤ γ for any x ∈ [0, 1]n. This
proves the result.

6.2. The convex case. Now we move on to the convex case. The following
proposition shows that the only nonredundant convex inequalities are the inequalities
that come from BQPn, together with certain RLT constraints. (This result was
conjectured to us by Anstreicher [2].)

Proposition 9. Suppose that the inequality Qα,β(x, y) ≤ γ is valid for QPBn

and that qα,β(x) is convex. Then Qα,β(x, y) ≤ γ is valid for the following polytope:

{(x, y) : proj(x, y) ∈ BQPn, yii ≤ xi (1 ≤ i ≤ n)} .

Proof. Because qα,β(x) is convex, it attains its maximum over [0, 1]n at {0, 1}n,
i.e., at one of the 2n extreme points. This maximum is less than or equal to γ because
Qα,β(x, y) ≤ γ is valid for QPBn by assumption. So

γ ≥ max
x∈{0,1}n

⎛
⎝ n∑

i=1

αixi +
∑
i≤j

βijxixj

⎞
⎠

= max
x∈{0,1}n

⎛
⎝ n∑

i=1

(αi + βii)xi +
∑
i<j

βijxixj

⎞
⎠ ,

which shows that the inequality

(9)
n∑

i=1

(αi + βii)xi +
∑
i<j

βijyij ≤ γ

is valid for BQPn.
Now let (x, y) be such that proj(x, y) ∈ BQPn with yii ≤ xi for all i, and note

that βii ≥ 0 for all i because qα,β(x) is convex. We wish to show that Qα,β(x, y) ≤ γ:

Qα,β(x, y) =
n∑

i=1

αixi +
∑
i≤j

βijyij

=
n∑

i=1

αixi +
∑
i<j

βijyij +
n∑

i=1

βii(xi − xi + yii)

≤
n∑

i=1

αixi +
∑
i<j

βijyij +
n∑

i=1

βiixi

=
n∑

i=1

(αi + βii)xi +
∑
i<j

βijyij

≤ γ,

where the final inequality follows by the validity of (9) for BQPn.

6.3. The indefinite case. Finally, we consider the indefinite case. We will need
the following standard result.
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Lemma 8. Suppose qα,β(x) is indefinite. Then its maximum over [0, 1]n is nec-
essarily obtained on the boundary.

Thus, checking whether Qα,β(x, y) ≤ γ is valid for QPBn amounts to checking
that qα,β(x) does not exceed γ on each of the 2n facets of [0, 1]n.

To formalize ideas, for all i = 1, . . . , n and each δ ∈ {0, 1}, define the quadratic
function

qi,δ
α,β(x̄) := qα,β(x̄1, . . . , x̄i−1, δ, x̄i, . . . , x̄n−1),

where x̄ ∈ R
n−1. One can think of qi,δ

α,β(x̄) as qα,β(x) with the value δ substituted
for xi, and so one can work out an explicit representation in terms of linear (x̄i),
quadratic (x̄ix̄j), and constant terms (although we do not provide the full representa-
tion here). Note that the constant term is αiδ+βiiδ

2. We also define Qi,δ
α,β(x̄, ȳ) to be

the linear function arising from the above explicit representation—without constant
term—when x̄ix̄j is linearized by ȳij . The following result now follows directly from
these constructions.

Proposition 10. The inequality Qα,β(x, y) ≤ γ, with qα,β(x) indefinite, is valid
for QPBn if and only if the inequality

(10) Qi,δ
α,β(x̄, ȳ) ≤ γ − αiδ − βiiδ

2

is valid for QPBn−1 for all i = 1, . . . , n and δ ∈ {0, 1}.
Proof. By Lemma 7, Qα,β(x, y) ≤ γ is valid for QPBn if and only if qα,β(x) ≤ γ

for all x ∈ [0, 1]n. By Lemma 8, this occurs if and only if qi,δ
α,β(x̄) ≤ γ − αiδ − βiiδ

2

for all x̄ ∈ [0, 1]n−1 and for each i and δ, which in turn occurs only under the stated
condition.

In addition, Proposition 10 provides a finite recursive procedure to check the
validity for QPBn of any given indefinite inequality Qα,β(x, y) ≤ γ: one simply
checks that each of the 2n inequalities of the form (10) is valid for QPBn−1. The
recursion is well defined because the validity of any inequality for QPB1 can be easily
checked.

Propositions 8–10 also give rise to a semi-infinite description of QPBn.
Corollary 3. For n ≥ 2, let V be the collection of all (α, β, γ) such that qα,β(x)

is indefinite and Qi,δ
α,β(x̄, ȳ) ≤ γ−αiδ− βiiδ

2 is valid for QPBn−1 for all i = 1, . . . , n
and δ ∈ {0, 1}. Then QPBn equals

⎧⎨
⎩(x, y) ∈ [0, 1]n+(n+1

2 ) :
yii ≤ xi (1 ≤ i ≤ n),

Ŷ � 0, proj(x, y) ∈ BQPn,
Qα,β(x, y) ≤ γ ∀ (α, β, γ) ∈ V

⎫⎬
⎭ .

The semi-infinite nature of this description certainly makes it difficult to work with
directly, but it is interesting that the description reduces to a finite one when n = 2
(Anstreicher and Burer [3]). In particular, for n = 2, proj(x, y) ∈ BQPn and yii ≤ xi

constitute precisely the RLT constraints, while the constraints for (α, β, γ) ∈ V are
redundant. Perhaps it is possible to simplify the description for larger n.

6.4. More on QPB3. Consider the following convex set:

(11) Qn :=

⎧⎨
⎩(x, y) ∈ [0, 1]n+(n+1

2 ) :
yii ≤ xi (1 ≤ i ≤ n)

Ŷ � 0
proj(x, y) ∈ BQPn

⎫⎬
⎭ .
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From the results given so far, Qn contains QPBn. Moreover, one would expect Qn

to be a “tight” approximation to QPBn. Indeed, then the following hold:
• Qn satisfies all valid inequalities for QPBn that involve at most two indices,

i.e., all inequalities of the form

αixi + αjxj + βiiyii + βijyij + βjjyjj ≤ γ.

(This follows from the result of Anstreicher and Burer [3] mentioned in sub-
section 2.2.) In particular, it satisfies all RLT inequalities.

• Qn satisfies all valid inequalities for QPBn that have zero coefficients for the
variables yii. (This follows from Proposition 5.)

• Qn satisfies all nonredundant “concave” and “convex” valid inequalities for
QPBn (as shown in subsections 6.1 and 6.2).

Moreover, Q3 gives an even tighter approximation to QPB3 than the one studied in
Anstreicher and Burer [3]. (This is so since the inequalities (2)–(5) are dominated by
the triangle inequalities of Padberg [18].)

A natural question to ask at this point is whether QPB3 = Q3. In fact, it
turns out that QPB3 is strictly contained in Q3. To show this, we use the recursive
procedure for checking validity discussed before Corollary 3.

Define

α = (α1, α2, α3) = (3, 1, 0),
β = (β11, β12, β22, β13, β23, β33) = (−2.25,−6, 0,−6,−1, 1),
γ = 1.

Using the recursive procedure, one can show that Qα,β(x, y) ≤ γ is valid for QPB3.
We next consider the maximization

max {Qα,β(x, y) : (x, y) ∈ Q3} .
Using the fact that BQP3 is completely described by RLT and triangle inequalities,
one can easily verify that the fractional point

x = (x1, x2, x3) = 1
3 (1, 1, 1),

y = (y11, y12, y22, y13, y23, y33) = 1
9 (2, 0, 3, 0, 1, 3)

is feasible with objective value 19/18 > 1. (Note that the optimal objective value
is approximately 1.0929.) It follows that Qα,β(x, y) ≤ γ is not valid for Q3, which
proves that QPB3 is strictly contained in Q3.

7. Concluding remarks. Given the fact that QPB is a fundamental and much-
studied problem in global optimization, it is surprising that many of its basic prop-
erties were not established before now. We have addressed this gap in the literature,
using the tools of polyhedral theory and convex analysis.

There are some interesting topics for future research. For example, can one find
an explicit description of QPB3 in terms of linear inequalities? In addition, if an
inequality induces a facet of BQPn but not of QPBn, can it be strengthened in some
way so that it induces a facet of QPBn? Finally, the algorithmic implications of our
results should be investigated.
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referees.
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[12] J. B. Hiriart-Urruty and C. Lemaréchal, Fundamentals of Convex Analysis, Springer,

Berlin, 2004.
[13] R. Horst, P. M. Pardalos, and N. V. Thoai, Introduction to Global Optimization, 2nd ed.,

Kluwer, Dordrecht, 2000.
[14] M. Laurent and S. Poljak, On a positive semidefinite relaxation of the cut polytope, Linear

Algebra Appl., 223/224 (1995), pp. 439–461.
[15] L. Lovász and A. J. Schrijver, Cones of matrices and set-functions and 0-1 optimization,

SIAM J. Optim., 1 (1991), pp. 166–190.
[16] G. P. McCormick, Computability of global solutions to factorable nonconvex programs, I.

Convex underestimating problems, Math. Program., 10 (1976), pp. 147–175.
[17] G. L. Nemhauser and L. A. Wolsey, Integer and Combinatorial Optimization, Wiley, New

York, 1988.
[18] M. W. Padberg, The Boolean quadric polytope: some characteristics, facets and relatives,

Math. Program., 45 (1989), pp. 139–172.
[19] G. Pataki, The geometry of semidefinite programming, in Handbook of Semidefinite Program-

ming, H. Wolkowicz, R. Saigal, and L. Vandenberghe, eds., Kluwer, Dordrecht, 2000.
[20] M. Ramana, An Algorithmic Analysis of Multiquadratic and Semidefinite Programming Prob-

lems, Ph.D. thesis, Johns Hopkins University, Baltimore, MD, 1993.
[21] I. G. Rosenberg, 0-1 optimization and nonlinear programming, RAIRO Oper. Res., 2 (1972),

pp. 95–97.
[22] A. J. Schrijver, Theory of Linear and Integer Programming, Wiley, New York, 1998.
[23] H. D. Sherali and W. P. Adams, A Reformulation-Linearization Technique for Solving Dis-

crete and Continuous Nonconvex Problems, Kluwer, Dordrecht, 1998.
[24] H. D. Sherali and B. M. P. Fraticelli, Enhancing RLT relaxations via a new class of

semidefinite cuts, J. Global Optim., 22 (2002), pp. 233–261.
[25] H. D. Sherali, Y. Lee, and W. P. Adams, A simultaneous lifting strategy for identifying new

classes of facets for the Boolean quadric polytope, Oper. Res. Lett., 17 (1995), pp. 19–26.
[26] N. Z. Shor, Quadratic optimization problems, Tekhnicheskaya Kibernetika, 1 (1987),

pp. 128–139.
[27] D. Vandenbussche and G. L. Nemhauser, A polyhedral study of nonconvex quadratic pro-

grams with box constraints, Math. Program., 102 (2005), pp. 531–557.
[28] D. Vandenbussche and G. L. Nemhauser, A branch-and-cut algorithm for nonconvex

quadratic programs with box constraints, Math. Program., 102 (2005), pp. 559–575.
[29] Y. Yajima and T. Fujie, A polyhedral approach for nonconvex quadratic programming

problems with box constraints, J. Global Optim., 13 (1998), pp. 151–170.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


