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The hypergraph minimum bisection (HMB) problem is the problem of
partitioning the vertices of a hypergraph into two sets of equal size so that
the total weight of hyperedges crossing the sets is minimized. HMB is an
NP-hard problem that arises in numerous applications – for example, in
digital circuit design. Although many heuristics have been proposed for
HMB, there has been no known mathematical program that is equivalent
to HMB. As a means of shedding light on HMB, we study the equivalent,
complement problem of HMB (called CHMB), which attempts to
maximize the total weight of non-crossing hyperedges. We formulate
CHMB as a quadratically constrained quadratic program, considering its
semidefinite programming relaxation and providing computational results
on digital circuit partitioning benchmark problems. We also provide results
towards an approximation guarantee for CHMB.

Keywords: hypergraph minimum bisection; semidefinite programming;
digital circuit design

1. Introduction

Let H¼ (V,E,w) be an edge-weighted hypergraph, where V¼ {1, . . . , n} is the set of
vertices; E¼ {E1, . . . ,Em} is a collection of m subsets of V denoting the hyperedges
(each of which contains at least 2 vertices); and w¼ (w1, . . . ,wm)

T is a vector of non-
negative weights, one for each hyperedge. We assume that n is an even number. The
vertex j is said to be adjacent to Ei if j 2 Ei, and two vertices j1 and j2 are adjacent if
they are mutually adjacent to some Ei. We define �i :¼ jEij and � :¼maxi �i.

For any S�V, let Sc :¼V nS be the complement of S. We say that a hyperedge Ei

is cut with respect to (S, Sc) if Ei\S 6¼ ; and Ei\S
c
6¼ ;; otherwise, Ei is said to be

uncut. The objective of the hypergraph minimum bisection (HMB) problem is to
find (S,Sc) with jSj ¼ n/2, which minimizes the total weight of cut hyperedges.
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The objective can alternatively be expressed as maximizing the total weight of uncut

hyperedges, which we specify by the function

wðS,ScÞ :¼
X

fi:Ei uncutg

wi:

Formally, we refer to the problem of maximizing w(S,Sc) as the complement of

HMB, or CHMB. Note that these two problems are equivalent in that they share the

same optimal solution set.
HMB is well known to be an NP-hard problem, even on ordinary graphs (i.e.

with �¼ 2) [11]. Applications of HMB include task-scheduling, machine vision (or

pattern recognition), design of digital circuits and database design [17,18].
The majority of studies on HMB have concerned the design of heuristic methods.

A survey paper by Alpert and Kahng [2] contains an extensive list of such methods,

including approaches based on simulated annealing, tabu-search and spectral

partitioning, as well as move-based methods such as multilevel partitioning and

clustering methods.
Much work has also been done on approximation results for minimum bisection

on ordinary graphs, i.e. HMB with �i¼ �¼ 2 for all i. Feige and Krauthgamer [8]

prove an O(log2 n) approximation ratio (see also [3]). Regarding the complement

problem on ordinary graphs, Ye and Zhang [20] establish an approximation

guarantee of 0.602 using a Goemans–Williamson-style algorithm [13] based on the

semidefinite programming (SDP) relaxation.
For general instances of HMB, however, we are aware of only one study

concerning the approximability of HMB. Berman and Karpinski [4] show that HMB

on �-uniform hypergraphs (i.e. �i¼ � for all i) is as hard to approximate, up to a

factor �3, as minimum bisection on ordinary graphs.
Please note that people work on approximation algorithms on the complement of

minimum bisection on ordinary graphs because only the complement problem has an

approximation guarantee. For the same reason, it makes sense to work with CHMB

to achieve an approximation guarantee. Although HMB and CHMB are equivalent

problems, they have different properties from the viewpoint of establishing an

approximation guarantee.
We mention another common technique for working with HMB and CHMB.

An instance of HMB can be translated into a minimum bisection instance on an

ordinary graph by replacing each hyperedge with a clique. Care is taken when

assigning weights to each edge of the clique so as to approximate the weight of a cut

hyperedge by its corresponding cut clique, though a perfect translation is not

possible [14]. For example, Choi and Ye [7] employed this technique as a part of

heuristic for HMB, which was based on a Goemans–Williamson-style randomization

algorithm applied to the SDP relaxation of a quadratically constrained quadratic

programming (QCQP) formulation of minimum bisection on ordinary graphs.
In this article, we develop and investigate a new approach for HMB, one which

follows in the footsteps of the above studies. We first present in Section 2, a

mathematical programming model for CHMB, which to our knowledge is the first

such model for CHMB (and HMB by equivalence). The formulation is a QCQP and

hence admits an SDP relaxation, which we explain. Then in Section 3 we investigate
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the power of the SDP relaxation from two points of view: (i) the tightness of bounds
on the optimal value of CHMB and (ii) the quality of heuristic solutions for CHMB
and HMB gotten by a Goemans–Williamson-style algorithm with post-processing by
simple local search. Computational results are presented on real-world benchmark
problems. In Section 4, we present results towards an approximation guarantee for
CHMB based on analysing its SDP relaxation. Our analysis is based on some
interesting geometric properties of SDP feasible solutions. Finally, some conclusions
and ideas for future research directions are briefly discussed in Section 5.

1.1. Notation and terminology

We mention some notation and terminology that we will use throughout this article.
For two vectors a and b of the same size, ha, bi :¼ aTb denotes their inner product.
Also, kak :¼

ffiffiffiffiffiffiffiffiffiffiffi
ha, ai
p

is the 2-norm of a. The symbol . indicates the matrix inner
product, i.e. for conformal matrices A and B, we define A . B :¼ trace(ATB). For a
symmetric matrix A, the notation A� 0 means that A is positive semidefinite (i.e. all
eigenvalues are non-negative). Diag(a) is a diagonal matrix made from the vector a.
The notation j�j is used to denote absolute value when applied to a scalar and
cardinality when applied to a set. I is the identity matrix, ek is a column vector with
one in the k-th position and zeros elsewhere and the all-ones vector is denoted e. The
dimensions of I, ek and e should be clear from context. For a random variable X and
a random event x, P[X¼x] and E [X ] denote the probability and expected value,
respectively. Moreover, we will often use the same notation to denote a random
variable and a random sample from it; the particular usage will be made clear from
its context.

2. A QCQP formulation of CHMB and its SDP relaxation

We are unaware of any exact mathematical models for CHMB (except for the case
�¼ 2). In this section, we show how to formulate CHMB as a QCQP problem and
relax it as an SDP. We consider the technique of SDP relaxation because it has
provided high-quality bounds and solutions for similar graph partitioning problems
[10,13,19,20]. (We will investigate bounds and solutions for CHMB based on its SDP
relaxation in Section 3.)

We define the following variables: xj2 {�1, 1} for each vertex j and yi2 {�1, 0, 1}
for each hyperedge Ei. The sets (S, Sc) corresponding to a bisection are defined by
S :¼ { j : xj¼ 1}. So vertices j1 and j2 are on the same side of the bisection if and only
if xj1¼ xj2. By convention, Ei will be uncut if and only if y2i ¼ 1. Consider the
following QCQP:

w� :¼ max
Pm

i¼1 wiy
2
i ,

s:t: x2j ¼ 1 8j ¼ 1, . . . , n,

y2i � yixj ¼ 0 8j2Ei 8i ¼ 1, . . . ,m,Pn
j¼1 xj ¼ 0:

ðQ-CHMBÞ

Optimization 415

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
u
r
e
r
,
 
S
a
m
u
e
l
]
 
A
t
:
 
1
9
:
0
6
 
3
 
M
a
r
c
h
 
2
0
1
1



The first two constraints guarantee xj2 {�1, 1} and yi2 {�1, 0, 1}, and the third

constraint guarantees jSj ¼ n/2. The second constraint and the objective function

capture whether a hyperedge is cut or not by the following observations: (i) if Ei is

cut, that is, there exist j1, j22Ei satisfying xj1 6¼ xj2, then yi¼ 0; and (ii) if Ei is uncut,

that is, if xj1¼ xj2 for all j1, j22Ei, then yi¼xj1 in order to maximize the objective. Let

us give a simple example. Suppose E1¼ {1, 2, 3}. If all of x1, x2, x3 do not have the

same sign, then it must hold that y1¼ 0 in order to satisfy y1(y1� xj)¼ 0 where

j2 {1, 2, 3}. On the other hand, if x1¼x2¼ x3¼ 1, y1 can either be 0 or 1. In this case,

y1¼ 1 is chosen because we are maximizing w1y
2
1 with w1� 0. Also note that y1¼�1

when x1¼ x2¼ x3¼�1. We will show in the following proposition.

PROPOSITION 2.1 (Q-CHMB) is equivalent to CHMB.

By formulating CHMB as a QCQP, we have made it possible to approximate

CHMB by relaxing it as an SDP, which we now illustrate. The technique of SDP

relaxation is considered because it is known to work well with similar graph

partitioning problems [10,13,19,20].
First, we rewrite the original problem in matrix form using the rank-1 positive

semidefinite matrix

X ZT

Z Y

� �
:¼

xxT xyT

yxT yyT

� �
¼

x

y

� �
x

y

� �T

,

where x¼ (x1, . . . , xn)
T and y¼ ( y1, . . . , ym)

T. For notational convenience, we also

write

M :¼
X ZT

Z Y

� �
: ð1Þ

This allows (Q-CHMB) to be expressed as

max DiagðwÞ � Y,

s:t: eje
T
j � X ¼ 1 8j ¼ 1, . . . , n,

eie
T
i � Y� eie

T
j � Z ¼ 0 8j2Ei 8i ¼ 1, . . . ,m,

eeT � X ¼ 0,

RankðM Þ ¼ 1:

ðM-CHMBÞ

Now we relax this last problem into an SDP by removing any appearance of x and y

and enforcing positive semidefiniteness on M, keeping in mind that M and X, Y, Z

are related according to (1)

w�þ :¼ maxDiagðwÞ � Y,

s:t: eje
T
j � X ¼ 1 8j ¼ 1, . . . , n,

eie
T
i � Y� eie

T
j � Z ¼ 0 8j2Ei 8i ¼ 1, . . . ,m,

eeT � X ¼ 0,

M � 0:

ðS-CHMBÞ

By construction, we have that the optimal value of (S-CHMB) is not smaller than the

optimal value of CHMB, i.e. w�þ � w�.
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3. Computational results for a digital circuit design problem

In this section, we investigate the use of the SDP relaxation (S-CHMB) for providing
good bounds on the optimal w* of (Q-CHMB) and also for generating quality
solutions to CHMB (and HMB by equivalence). Our test cases arise from an
application in digital circuit design.

3.1. Digital circuit design and benchmark problems

One of the most important applications of HMB (or CHMB) is in digital circuit
design. A digital circuit is a cluster of electronic components with wires connecting
multiple components simultaneously. A digital circuit can be identified with a
hypergraph. Figure 1 is a simple example of a digital circuit. The circuit has six
components (vertices) and four wires (hyperedges). For example, wire E1 in Figure 1
connects components 1, 2 and 3 simultaneously.

Sometimes the size of a digital circuit is too big to fit in one 2-dimensional layer.
In this case, partitioning it into multiple layers is considered while minimizing the
wire connections between layers. This is the type of problem modelled by HMB (or
CHMB) (although circuit design problems can be much more general). Minimizing
the number of connections is important because:

(a) signal delays are reduced and
(b) the design is simpler.

In digital circuit design, this problem has been studied for more than two decades [9].
Since HMB is a special case of the digital circuit design problem just described,

circuit design is an NP-hard combinatorial optimization problem. Hence, the
majority of approaches for this problem have been heuristic methods [2]. In
particular, METIS [15,16] is considered one of the best heuristics for solving HMB.

In the following subsections, we present computational results for the solution
of some digital circuit benchmark problems [1] via CHMB and its SDP relaxation.
Furthermore, we use METIS as a point of comparison. Table 1 shows the details of
the benchmark problems, including name, number of vertices and number of
hyperedges. For all experiments, the SDP solver used is SDPLR 1.02 [5,6] with

1

2

3

4 5 6

E1

E4
E2

E3

Figure 1. A simple digital circuit.
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default settings except for the infeasibility tolerance, which is set to 10�3 (instead of
the default 10�5). Note that we use older benchmark problems because newer
benchmark problems are too large to be handled by SDPLR.

3.2. Bound quality

Since (S-CHMB) is a relaxation of (Q-CHMB), its optimal value w�þ provides an
upper bound on the optimal value w* of (Q-CHMB). Table 2 investigates the

Table 1. Details of the digital circuit
benchmark problems.

Name n m

balu 801 735
p1 833 902
bm1 882 903
t4 1515 1658
t3 1607 1618
t2 1663 1720
t6 1752 1541
struct 1952 1920
t5 2595 2750
19ks 2844 3282
p2 3014 3029
s9234 5866 5844
biomed 6514 5742
s13207 8772 8651
s15850 10,470 10,383

Table 2. Relative gap of the (S-CHMB) optimal value on benchmark
problems.

Name SDP bound Value Gap (%)

balu 711.6581 705 0.94
p1 870.2040 849 2.50
bm1 872.4735 852 2.40
t4 1625.3291 1607 1.14
t3 1582.3842 1558 1.57
t2 1672.0276 1631 2.52
t6 1596.0932 1478 7.99
struct 1898.3215 1886 0.65
t5 2705.0885 2678 1.01
19ks 3228.2448 3175 1.68
p2 2945.0347 2883 2.15
s9234 5830.8660 5801 0.51
biomed 5688.0000 5659 0.51
s13207 8636.2416 8595 0.48
s15850 10,371.6418 10325 0.45

418 C. Choi and S. Burer

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
B
u
r
e
r
,
 
S
a
m
u
e
l
]
 
A
t
:
 
1
9
:
0
6
 
3
 
M
a
r
c
h
 
2
0
1
1



closeness of w�þ and w*. The bound w�þ is calculated using SDPLR. In lieu of a global
optimization algorithm to compute w*, however, we calculate a heuristic solution of
(CHMB) using METIS. For the benchmark problems, Table 2 shows the problem
name, the SDP bound w�þ, the heuristic value (denoted val ), as well as the relative
gap between these two numbers, which is got by the formula 100%	 ðw�þ � valÞ=val.

A couple of comments regarding the use ofMETIS for the heuristic values in Table
2 are in order. First, the METIS software unfortunately does not allow one to attain a
true 50–50% partition of the nodes of the hypergraph. Instead, the closest one can
guarantee is 49–51%; that is, METIS forces the user to permit a slight variation in the
partition sizes. In this sense, the heuristic values in Table 2 may not be true lower
bounds on w*, but given the software limitations of METIS, we use them as under-
approximations of w*. Second, the reported heuristic value is actually the best
obtained over 100 runs of METIS on each benchmark problem.

The tests show that (S-CHMB) provides very tight bounds on the benchmark
problems since the relative gap is lower than a few percent on most of the problems.
The average of the relative gaps is 1.97%. One outlier is t6, which has a relative gap
of 7.99%.

3.3. Heuristic solution quality

In order to generate good solutions to CHMB and HMB, we combine two
techniques to ‘round’ any SDP optimal solution of (S-CHMB) to feasible solutions
for CHMB.

First, we use a modified version of the maximum cut approach of Goemans and
Williamson [12]. Let (X,Y,Z) be an optimal solution of (S-CHMB). Since X� 0,
there exist polynomial-time computable vectors ~x1, . . . , ~xn such that Xjk ¼ ~xTj ~xk for
all pairs ( j, k). This is the so-called Gram representation of X. Next, let v be a

Table 3. Comparison of SDP, METIS and best-known solutions for the
digital circuit benchmark problems with 45–55% balance tolerance.

Name SDP METIS Best-known SDP time

balu 27 27 27 159
p1 47 47 47 114
bm1 50 48 47 151
t4 48 54 48 1248
t3 56 58 57 1141
t2 91 90 87 956
t6 60 63 60 60
struct 33 33 33 775
t5 75 72 71 75
19ks 106 107 104 3705
p2 144 145 139 2289
s9234 45 40 40 9149
biomed 93 83 83 20,558
s13207 59 53 53 25,455
s15850 44 42 42 44,654
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random sample from a multivariate-normal distribution N (0, I ), where I is the
identity matrix, and compute vT ~xj for all j. Set �xj ¼ �1 if vT ~xj is one of the n/2
smallest among fvT ~x1, . . . , vT ~xng and �xj ¼ 1 otherwise. Finally, we assign vertices
with the same �xj value to the same partition. This procedure guarantees a balanced
partition because

Pm
j¼1 �xj ¼ 0 and is similar to the technique that was proposed in

[12], which assigns �xj according to the sign of vT ~xj. It is common, in practice, to
repeat this process many times to get the best �x based on different random v (but the
same ~xj), we repeat it nþm times.

Then we apply one of the most basic greedy-search algorithms called the FM
method [9] to refine the solutions that are generated by the above rounding technique.

In Table 3, we compare the rounded solutions of (S-CHMB) with METIS. Note
that this table compares the values of HMB for a relaxed balance tolerance of
45–55%, which means S or Sc can have at most 55% of the vertices. We use 45–55%
balance tolerance because it is commonly used in digital circuit partitioning to
compare different methods [15,16].

The second column (SDP) of Table 3 is the number of cut hyperedges that was
generated by solving (S-CHMB) and using the two-stage rounding technique
described above. The third column (METIS) is the best results of running METIS
100 times with the default setting. The fourth column is the best-known solutions on
these problems with 45–55% balance tolerance. The last column shows the time in
seconds for SDPLR 1.02 to solve this problem.

Our approach found very good solutions for the benchmark problems and in
some cases outperformed METIS with the default setting. Of course, the time for
solving (S-CHMB) is a lot more than for METIS. For example, solving s15850 took
SDPLR around 12 h but took less than 6 s for METIS.

4. Towards an approximation guarantee

As discussed in Section 1, the Goemans–Williamson procedure has been used to
derive an approximation algorithm for CHMB when �¼ 2. Our motivation for this
section is the following question: can the �¼ 2 approximation result be extended for
general �? Although we have not been able to resolve this question, in this section we
report on what we feel is positive progress. The analysis relies on some interesting
geometrical properties of the SDP (S-CHMB) established in Section 4.1.

4.1. Some properties of the SDP relaxation

Let M be a feasible solution of (S-CHMB). Because M� 0 is a Gram matrix, there
exist vectors ~x1, . . . , ~xn and ~y1, . . . , ~ym in Rnþm such that

h~xj1 , ~xj2i ¼ Xj1j2 j1 ¼ 1, . . . , n, j2 ¼ 1, . . . , n,

h~xj, ~yii ¼ Zij j ¼ 1, . . . , n, i ¼ 1, . . . ,m,

h~yi1 , ~yi2i ¼ Yi1i2 i1 ¼ 1, . . . ,m, i2 ¼ 1, . . . ,m:

ð2Þ

Throughout this section, we consider M, ~xj and ~yi to be related by the above
equations.
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The following proposition proves some basic geometric properties of f~xjg
and f~yig.

PROPOSITION 4.1 Let M be a feasible solution of (S-CHMB), and let ~xj ( j¼ 1, . . . , n)

and ~yi (i¼ 1, . . . ,m) be related to M according to (2). Then:

(a) k~xj k ¼ 1 for all j,
(b) k~yik 
 1 for all i and
(c) if k~yik4 0 for some i, then, for all j2Ei, the angle between ~xj and ~yi is

arccosðk~yikÞ.

Proof Part (a) follows from the constraint eje
T
j � X ¼ Xjj ¼ 1 and

h~xj, ~xji ¼ k~xjk
2 ¼ Xjj ¼ 1. Now we show (b) and (c). For j2Ei, let �ij denote the

angle between ~xj and ~yi. Then we have

0 ¼ eie
T
i � Y� eiej � Z ¼ k~yik

2
� h~yi, ~xji ¼ k~yik

2 � k~yikk~xjk cos �ij,

which, if k~yik4 0, implies k~yik ¼ cos �ij. g

Proposition 4.1 is critical because, for non-zero ~yi, it shows that all ~xj with j2Ei

make the same acute angle with ~yi. This also provides an interesting geometric

insight. For example, say that E1¼ {1, 2, 3, 4} and k~y1k4 0. Then Figure 2 represents

how the ~xj ( j¼ 1, . . . , 4) are positioned relative to ~y1. One can see that ~xj appears on
the boundary of a disc, which contains ~y1 as its centre.

x2

x4x1

x3

y1

Figure 2. Geometric structure of a feasible solution of (S-CHMB) with respect to a single
hyperedge with four vertices.
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We formalize the above idea as follows. Given u2Rnþm such that 05 kuk
 1,

define

DðuÞ :¼ p2<mþn : k pk 
 1, ð p� uÞTu ¼ 0
� �

: ð3Þ

D(u) can be written equivalently as

p2<mþn : k p� uk 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� kuk2

q
, ð p� uÞTu ¼ 0

� �
,

which emphasizes the role that u plays as the centre of the disc. Now we can give a

geometric interpretation of the SDP relaxation of CHMB. Since the radius of Dð ~yiÞ
gets smaller as k~yik increases, maximizing wik~yik

2 tends to gather ~xj’s close to each

other for j2Ei. The following corollary of Proposition 4.1 is straightforward.

COROLLARY 4.2 Let i2 {1, . . . ,m} and suppose k~yik4 0. Then ~xj 2Dð~yiÞ for all j2Ei.

The next lemma provides necessary and sufficient conditions for a given

hyperplane H(h) :¼ {x : xTh¼ 0} to intersect a disc D( y). This lemma will be used

later in Section 4.2.1.

LEMMA 4.3 Let u, h2Rnþm with 05 kyk
 1 and khk¼ 1 be given, and consider the

disc D( y) defined by (3). Then hTp� 0 for all p2D( y) if and only if

cos � �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k yk2

p
, where � is the angle between y and h.

Proof By a rigid motion of Rnþm, we may reduce to the case y¼ (�, 0, . . . , 0)T,

where 05 �
 1. Then

Dð yÞ ¼ p2<nþm : p1 ¼ �, p22 þ � � � þ p2nþm 
 1� �2
� �

,

and the statement of the lemma becomes: hTp� 0 for all p2D(y) if and only if

h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

:
We consider the optimization problem min{hTp : p2D( y)}. Because this is linear

optimization over a convex set, the optimal solution will occur on the boundary of

D( y), and so it suffices to consider

minfhTp : p1 ¼ �, p22 þ � � � þ p2nþm ¼ 1� �2 g: ð4Þ

A stationary point �p of (4) is characterized by the existence of scalars a and b such

that the gradient of the Lagrangian function

La,bð pÞ ¼ hTpþ að�� p1Þ þ bð1� �2 � p22 � � � � � p2nþmÞ

vanishes at �p, i.e.

rLa,bð �pÞ ¼ h� ae1 � 2bð0, �p2, . . . , �pnþmÞ
T
¼ 0() h ¼ ða, 2b �p2, . . . , 2b �pnÞ:

From this equality, we have a¼ h1, and since khk¼ 1 and �p22 þ � � � þ �p2nþm ¼ 1� �2,
b is determined as follows:

h21 þ
Xnþm
j¼2

ð2b �pj Þ
2
¼ 1() b2 ¼

1� h21
4ð1� �2Þ

() b ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

q
2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p :
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Moreover, the objective value equals

hT �p ¼ h1�þ
Xnþm
j¼2

hj �pj ¼ h1�þ
Xnþm
j¼2

ð2b �pj Þ �pj ¼ h1�þ 2b
Xnþm
j¼2

�p2j ¼ h1�þ 2bð1� �2Þ:

Hence, at any stationary point �p, there are only two possible values for hT �p based

on the two possibilities for b. Because 1� �2� 0, the overall minimum value of (4)

is thus

h1�� 2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

q

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

0
@

1
Að1� �2Þ ¼ h1��

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

:

What conditions guarantee that this minimum value is non-negative? Because

�4 0, a necessary condition is h1� 0. Another necessary condition is as follows:

h1��
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� h21

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

� 0¼) h21 � 1� �2:

These two necessary conditions can be combined as h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

. It is now not

difficult to see that the condition h1 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �2
p

is also sufficient. g

4.2. A Goemans–Williamson procedure and analysis

In Section 3, we used a variant of Goemans and Williamson’s rounding technique

for its simplicity. In this section, we apply the original version of Goemans and

Williamson’s rounding technique [13] for a more careful discussion and analysis.
Let (M, X, Y, Z) be an optimal solution of (S-CHMB) with Gram representation

(2), and let h be a random vector generated uniformly over the surface of the unit

sphere in Rnþm. Then define a random cut x̂ in the hypergraph according to

x̂j :¼ signh~xj, hi 8j ¼ 1, . . . , n,

where ‘sign’ returns either �1 or þ1 based on the sign of its argument. Note that,

based on the random variable h, x̂ is itself a random variable. This is the basic

hyperplane rounding technique of Goemans and Williamson, but it may not produce

a balanced cut in the hypergraph. To ensure this, one can, for example, greedily shift

vertices from one side to the other.
This procedure is precisely the one used by Ye and Zhang [20] for their

approximation analysis of CHMB when �¼ 2. Although their analysis contained

several ingredients, one key component was estimating the probability that the i-th

edge Ei is uncut by x̂ (even before the greedy balancing procedure).
Although we do not provide the details here in the interest of space, we have been

able to show that, when � is arbitrary, if one can bound away from zero the

probability that Ei is uncut, then Ye and Zhang’s analysis goes through with little

change, thus allowing an approximation algorithm for the general CHMB.
Unfortunately, we have not been able to prove this last ingredient, i.e. bounding

the uncut probability away from 0. Nevertheless, we can provide a non-trivial lower

bound on the probability as we describe next. (Note that this lower bound tends to 0

as nþm!1, see Section 4.3).
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4.2.1. Lower bound

A helpful geometrical interpretation of generating x̂ and its associated cut (before
greedy balancing) can be seen by defining the following two random half-spaces (the
first closed, the second open):

HþðhÞ :¼ fv2<nþm : vTh � 0g and H�ðhÞ :¼ fv2<nþm : vTh5 0g:

Then we have x̂j ¼ 1 for all j2Hþ(h) and x̂j ¼ �1 for all j2H�(h). Moreover,
x̂j1 ¼ � � � ¼ x̂j‘ (i.e. Ei is uncut) if and only if all ~xj1 , . . . , ~xj‘ lie completely in one of the
two half-spaces where Ei¼ {j1, j2, . . . , jl}.

Related to this geometrical interpretation, we introduce the following terminol-
ogy: for any set Q�Rnþm, Q is said to be uncut by the hyperplane

HðhÞ :¼ fv2<nþm : vTh ¼ 0g

if Q�Hþ(h) or Q�H�(h); otherwise, Q is said to be cut by H(h). So Ei is uncut by
the randomized procedure if and only if f~xj1 , . . . , ~xj‘g is uncut byH(h). We say that Ei

is cut or uncut by H(h) when referring to the cut or uncut status of f~xj1 , . . . , ~xj‘g.
We are now ready to prove the lower bound, whose proof is based on the

geometry of the SDP relaxation – in particular, the discs Dð~yiÞ discussed in
Section 4.1. Although this lower bound is not as strong as we would wish (in fact, it
goes to 0 as nþm!1 as shown in Section 4.3), we remain hopeful that this
perspective of integrating the geometry of the SDP into the probability analysis may
yet prove fruitful.

PROPOSITION 4.4 Consider the Goemans–Williamson randomized procedure for
generating a cut with SDP solution (M,X,Y,Z), Gram matrix representation (2)
and random vector h. Then, for all i¼ 1, . . . ,m,

P½Ei is uncut� � 2P cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Yii

ph i
,

where �i is the angle between ~yi and h.

Proof If Yii¼ 0, then the inequality follows easily. So we may assume that Yii4 0.
Let ~yi 2<

nþm be related to Y according to (2); in particular, k~yik ¼ Y1=2
ii 4 0.

Corollary 4.2 thus implies f~xj1 , . . . , ~xj‘g 
 Dð ~yiÞ. Hence, the event that f~xj1 , . . . , ~xj‘g is
uncut contains the event that Dð~yiÞ is uncut. So

P½Ei is uncut� ¼ P½x̂j1 ¼ � � � ¼ x̂j‘ � ¼ P f~xj1 , . . . , ~xj‘g is uncut by HðhÞ
	 


� P Dð ~yiÞ is uncut by HðhÞ
	 


¼ P Dð ~yiÞ 
 H
þðhÞ or Dð~yiÞ 
 H

�ðhÞ
	 


¼ 2P Dð ~yiÞ 
 H
þðhÞ

	 

,

where the last equality follows by symmetry. Lemma 4.3 then yields the desired
result. g

4.3. Limit of the lower bound

We now show that the lower bound established in Proposition 4.4 necessarily tends
to 0 with order O((nþm)�2).
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The following standard proposition gives a concrete way to generate h in the

Goemans–Williamson procedure of Section 4.2.

LEMMA 4.5 Suppose g2Rnþm follows the multivariate normal distribution N (0, I ).

Then h :¼ g/kgk is uniformly distributed on the surface of the unit sphere in Rnþm.

This lemma allows us to estimate the quantity P cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Yii

p	 

in

Proposition 4.4 as nþm gets larger and larger.

PROPOSITION 4.6 Consider the context of Proposition 4.4 for various, increasing

values of nþm. It holds that

lim
nþm!1

P cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Yii

ph i
¼ 0

irrespective of Yii and ~yi.

Proof If Yii¼ 0, then the proposition is clear. Assuming that Yii4 0, we first use

Lemma 4.5 to derive a more concrete expression for P cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Yii

p	 

.

By a rigid motion of Rnþm, we may assume without loss of generality that ~yi
points in the direction e1. Then, since Yii ¼ k~yik

2 by (2), we have, in fact, ~yi ¼
ffiffiffiffiffiffi
Yii

p
e1.

Then cos �i ¼ hT ~yi=khkk~yik ¼ h1 ¼ g1=k gk by Lemma 4.5. Thus,

P cos �i �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� Yii

ph i
¼ P

g21
k gk2

� 1� Yii

� �

¼ P g21 � g21 þ g22 þ � � � þ g2mþn

 �

ð1� YiiÞ
	 


¼ P Yiig
2
1 � g22 þ � � � þ g2mþn


 �
ð1� YiiÞ

	 


¼ P
g21

g22 þ � � � þ g2mþn
�

1� Yii

Yii

� �

¼ P ðnþm� 1Þ �
g21

g22 þ � � � þ g2mþn
� ðnþm� 1Þ �

1� Yii

Yii

� �

¼ P V � ðnþm� 1Þ �
1� Yii

Yii

� �
,

where

V :¼ ðnþm� 1Þ �
g21

g22 þ � � � þ g2mþn

follows the F distribution having degrees of freedom (1, nþm�1), expected value

E [V ]¼ (nþm�1)/(nþm�3) and variance Var(V )¼ (2(nþm�1)2(nþm�2))/

((nþm�3)2(nþm�5)).
We now use the one-tailed Chebyshev inequality to prove that

P[V� (nþm� 1)�] goes to zero for any �� 0 (in our case, �¼ (1�Yii)/Yii). We

have the following upper bound:

P½V � ðnþm� 1Þ�� ¼ P½V� EðV Þ � ðnþm� 1Þ�� EðV Þ�



VarðV Þ

VarðV Þ þ ððnþm� 1Þ�� EðV ÞÞ2
:
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As nþm goes to infinity, E(V ) and Var(V ) converge to 1 and 2, respectively, and so
the above probability goes to 0 with order O((nþm)�2). g

Although Proposition 4.6 makes sense from a theoretical point of view, it is
inconsistent with our computational results in which our method seems to work well
on large-scale circuit partitioning problems.

5. Conclusion and remarks

One of the major contributions of this article is the presentation of a mathematical
model for CHMB. While heuristic methods for HMB flourish, there has been little
advance in mathematical approaches and theoretical results for HMB. This is mainly
due to the fact that it was not clear how to pose HMB as an equivalent mathematical
problem. We believe that having a mathematical model is a good starting point for
studying the hypergraph minimum-bisection problem. For most of the heuristics, it
might be difficult to come up with modifications that can make them perform better
on general problems. On the other hand, it is quite possible that some improvements
in our method may lead to an overall performance improvement. Tightening SDP
relaxations for QCQPs is one of the most intensively studied topics in optimization
and we are hoping to achieve a tighter relaxation of our model in the near future. The
gap between METIS and our method is slim. We hope to improve our method and
close the gap or even overcome it in the near future.

Although we succeeded in constructing a mathematical model for CHMB and
achieving competitive computational results, our research on the theoretical aspects
of our method is incomplete. Based on our computational results, we were hoping
to achieve an approximation guarantee on the hypergraph minimum-bisection
problem. However, a modified application of well-known techniques for similar
problems does not seem to achieve this goal. This theoretical result is somewhat
disappointing since we observe that our method works well computationally on
relatively large problems. It is one of our future challenges.

Finally, another possible future improvement can be made in the software
SDPLR. While SDPLR has the advantage of being able to solve very large-scale
SDP problems, we realized that it can be improved even further in terms of running
time, which is critical in solving the large-scale problems such as the digital circuit
minimum-bisection problem.
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