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Abstract 

In this paper, we examine a variant of the symmetric traveling 
salesman problem in which travel time uncertainty is modeled by 
interval ranges. We introduce a new model that incorporates some 
ideas from existing robust optimization models - most importantly, the 
ability to control the model’s level of conservatism - but does so 
without increasing computation time. We discuss theoretical properties 
of this model and demonstrate its performance compared to other 
robust optimization approaches in a series of computational 
experiments.  

1. Introduction 

The classic traveling salesman problem (TSP) finds a tour visiting all 
customers exactly once and returning to the point of departure such that the 
overall travel time is minimized. The TSP is NP-hard and computationally 
quite challenging for realistic problem sizes. Beyond these difficulties, the 
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classic TSP also ignores complexities that occur in real-world routing 
problems. One of the most notable is uncertain travel times between 
customers, and such uncertainties can significantly impact the actual travel 
time associated with a tour. This can be critical because if the actual travel 
time is quite a bit longer than planned, for example, customers may be left 
unserved or driver overtime may be required. 

In this paper, we explore methods for incorporating travel-time 
uncertainty in the symmetric version of the TSP. We model travel-time 
uncertainty through intervals in accordance with the robust optimization 
literature (see Section 2). Specifically, for each edge e in the network, the 
uncertain travel time is modeled as the interval [ ],, ee ul  and we call this 

variant of the symmetric traveling salesman problem the iTSP. Our goal is to 
identify techniques that can handle the uncertainty well but also be 
computationally tractable. 

Two well-known techniques in the robust optimization literature can be 
adapted to iTSP. The first, described fully in Subsection 3.1, is due to 
(Soyster [37]) and is a worst-case model. For iTSP, this translates into 
finding the tour that minimizes the sum of the eu  values of the edges in the 

tour. Computationally, Soyster’s model is equivalent to solving a single 
deterministic TSP. However many researchers characterize the corresponding 
solution as too conservative or pessimistic (Ben-Tal and Nemirovski [5, 7]). 
In other words, Soyster’s model prevents a tour from taking too long in the 
worst case (e.g. it may never require driver overtime), but by only 
considering the eu  values, the tour will likely be poor in most cases. 

The second technique, which can be adapted to iTSP, is due to Bertsimas 
and Sim [10, 11]. Their research grew out of efforts (Ben-Tal and 
Nemirovski [5, 7]) to improve upon Soyster’s model by allowing the user to 
control the level of conservatism. As far as we are aware, Bertsimas and 
Sim’s approach is the only one in the robust optimization literature which 
controls conservatism and applies to combinatorial problems with 
uncertainty present solely in the objective, as is the case with iTSP. In 
contrast to Soyster, Bertsimas and Sim note that it is highly unlikely that the 
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travel time on all edges will realize their worst-cases eu  simultaneously. 

Accordingly, the Bertsimas-Sim model requires a single parameter Γ  and 
finds a minimum travel-time tour under the following definition: given a 
tour, its travel time is the maximum total travel time among all time 
realizations that have Γ edges at their worst-case eu  and the remaining edges 

at their best case .el  Said differently, the travel time of a given tour is based 

on the el  values plus a penalty that equals the worst possible delay caused by 

some set of Γ edges, and the Bertsimas-Sim model chooses the minimum-
travel-time tour among all tours. In this sense, Bertsimas-Sim focuses its 
conservatism on just Γ edges, whereas Soyster’s model is conservative on all 
edges. 

Computationally, this model requires the solution of 1+E  separate 

deterministic TSPs, where E  is the total number of edges in the network. 

For example, on a complete network with n customers, ( ) 121 +−nn             

TSP problems must be solved. This approach can be quite expensive 
computationally for practical problem sizes. 

In this paper, we propose an alternative to both Soyster and Bertsimas-
Sim. It is a logical extension of Soyster’s model, which we refer to as 
modified-Soyster, that controls for conservatism and yet retains the same 
complexity computationally as solving a single deterministic TSP. In contrast 
to the focused conservatism of Bertsimas-Sim on Γ edges of a given tour x, 
modified-Soyster takes a more balanced view of the entire uncertainty of x. It 
considers both the eu  and el  values of all edges. The model finds a minimum 

travel-time tour where the travel time of each edge e is given by +el  

( )ee lu −γ  for a parameter [ ],1,0∈γ  which reflects the user’s conservatism. 

This form of conservatism seems a natural fit for managers, since the choice 
of γ has a clear translation to the pessimism or optimism of a manager. For 
example, 25.0=γ  reflects that a manager only wants to put a 25% emphasis 

on the eu  values and thus has a more optimistic perspective. A γ of 0.75 

reflects that a manager wants to put a 75% emphasis on the worst case and 
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thus has a more pessimistic perspective. We detail this new model in Section 
4 and prove several intriguing theoretical properties of the robust solutions it 
provides, which also have managerial consequences. In Section 5, we 
perform computational experiments to evaluate the comparative runtime of 
modified-Soyster and evaluate how the solutions differ from Bertsimas-Sim. 

We also compare modified-Soyster computationally with a fourth model-
a robust deviation model developed by Montemanni et al. [32], which is the 
only existing method we found in the literature designed specifically for 
iTSP. For a specified tour, the tour’s maximum deviation is the difference of 
two values. The first value is the total time of the tour when travel times are 
realized as follows: all edges in the tour are set to their worst-case values ,eu  

while all remaining edges in the network are set to their best-case values .el  

The second value is the optimal tour time under the same realization. Among 
all tours, the method of Montemanni et al. selects a tour having minimum 
maximum deviation. This is also sometimes termed as minimizing maximum 
regret. Using such an approach, the authors avoid tours that only do well in 
the best or worst cases, but they also create a challenging new optimization 
problem which requires specialized algorithms. In order to improve 
computation, the authors also develop heuristics. More details are given in 
Subsection 3.3. 

The paper is organized as follows. Section 2 reviews the related 
literature. In Section 3, we describe Soyster’s model, the model of Bertsimas 
and Sim, and the robust deviation model of Montemanni et al. Section 4 
describes our modification of Soyster’s model and its theoretical properties. 
Section 5 details our computational experiments. Our experiments highlight 
the speed of modified-Soyster and demonstrate that the solutions created by 
modified-Soyster perform as well as the solutions for the other more time-
consuming models. We also demonstrate certain characteristics of the 
solutions created by modified-Soyster that differ from the solutions created 
by Bertsimas-Sim. Managerial insights are provided in Section 6 along with 
a discussion of future work. 
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2. Literature Review 

The TSP is one of the most intensively studied problems in 
combinatorial optimization. Many variants and generalizations of the 
problem have been studied over the years, starting from the pioneering work 
of Dantzig et al. [19]. Comprehensive surveys can be found in Lawler et al. 
[29], Reinelt [35], Gutin and Punnen [22] and Applegate et al. [2]. The 
TSPLIB is a well known library of TSP test instances (Reinelt [34]). The 
TSP is also the basis for many applications in transportation, such as the 
vehicle routing problem (VRP). 

Most literature in transportation dealing with data uncertainty have 
focused on stochastic demand, where it is unknown whether any particular 
customer will need to be visited or, more generally, the amount of customer 
demand is uncertain. For the first type of stochastic demand, the probabilistic 
TSP (PTSP) incorporates demand uncertainty by assuming the need to visit a 
customer is probabilistic. An analytical framework for the PTSP can be 
found in Jaillet [23], and Laporte et al. [28] provide an exact algorithm. 
There have been several papers on heuristic approaches such as Bertsimas et 
al. [13], Bertsimas and Howell [9], Campbell [14] and Tang and Miller-
Hooks [38]. Campbell and Thomas [15, 16] study a variant of the PTSP with 
deadlines to visit customers (PTSPD). For the second type of stochastic 
demand, the stochastic vehicle routing problem (SVRP) models demand at a 
customer as a random variable. In addition, the probabilistic VRP (PVRP) 
assumes both types of stochastic demand. Overviews of research in 
transportation problems with stochastic demand can be found in Powell et al. 
[33], Bertsimas and Simchi-Levi [12] and Gendreau et al. [21]. 

Several papers in transportation consider travel time uncertainty. For 
example, Laporte et al. [27] examine the VRP with stochastic travel times 
assuming that the service time at each customer is also stochastic. They 
provide two solution approaches. The first is a chance-constrained model 
which ensures the probability that the total time (including service times at 
the customers) exceeds a given time limit is less than a certain threshold. The 
second is a stochastic-programming-with-recourse model with expected 
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penalty costs proportional to the excess time incurred beyond the given time 
limit. Algorithmically, they propose branch-and-cut algorithms and report 
computational results for moderately sized problems involving a limited 
number of random scenarios. Lambert et al. [26] consider the possibility of 
congestion, which makes the travel time between nodes uncertain, and 
incorporate a constant penalty in the objective for any tour exceeding a given 
time limit. The authors then propose a heuristic based on Clarke and Wright 
[17]. Kenyon and Morton [25] also propose a VRP model with stochastic 
travel times. Their model minimizes the longest tour (whereas the two papers 
described previously consider the total travel time for all tours). They present 
a branch-and-cut scheme embedded within a sampling-based procedure to 
solve the problem. Finally, Russell and Urban [36] investigate the VRP with 
stochastic travel times and soft time-window constraints and propose a tabu-
search metaheuristic for its solution. 

As mentioned in the Introduction, existing robust optimization 
techniques can be applied to iTSP. For network problems, robust techniques 
often assume only an interval estimate of edge length and that the actual edge 
length may be realized anywhere within the interval. More specifically, let 

( )EVG ,=  be an undirected network. On each edge ,Ee ∈  the uncertain 

travel time is modeled as the interval [ ]ee ul ,  with .0 ee ul ≤≤  No 

additional information about the travel times, e.g., a probability distribution, 
is assumed. (If such information is known, then stochastic programming 
models may be applicable.) Examples of the use of interval estimates can be 
found in Zieliński [39], Averbakh and Lebedev [4], Kasperski and Zieliński 
[24], Montemanni and Gambardella [30] and Montemanni et al. [31] for 
shortest path problems, Montemanni et al. [32] for TSPs, and Bertsimas and 
Sim [10] for various network flow problems. 

Besides the well-known models mentioned in the Introduction and 
detailed in Section 3, there are two additional robust optimization models 
that control for conservatism. First, Ben-Tal and Nemirovski [5], Ben-Tal 
and Nemirovski [6, 7] and Ben-Tal et al. [8] propose ellipsoidal uncertainty 
sets that exclude the unlikely joint extreme realizations in Soyster’s model. 



Modifying Soyster’s Model for the Symmetric Traveling ... 123 

This allows the degree of conservatism of the solution to be controlled by 
choosing ellipsoids of differing volumes. However, this approach transforms, 
for example, an uncertain linear program into a deterministic second-order 
cone program which requires significantly more computational effort 
compared to Soyster’s linear model. Further, this approach is a challenge to 
apply directly to discrete robust optimization problems due to its 
nonlinearities, and thus, we do not apply this approach to iTSP in this paper. 
Second, Fischetti and Monaci [20] introduce the concept of “light 
robustness” which controls for conservatism but appears best suited for 
handling uncertainty in the constraints rather than the objective. 

3. Background 

In this section, we detail the methods that have motivated the modified-
Soyster model (described fully in Section 4) and/or serve as sources of 
comparison in Section 5. We also present an example to illustrate how the 
models differ. 

3.1. Soyster’s model 

Soyster [37] considers the modification of the linear optimization 
problem 

minimize xcT  

subject to bAx ≤  (1) 

to consider uncertainty both in the constraint matrix and in the objective 
function. Suppose that 0≥x  is implied by .bAx ≤  When uncertainty 
occurs and is modeled only in the objective with c~  taking values in ,ĉc ±  
Soyster shows that the corresponding robust formulation is 

minimize ( ) xcc Tˆ+  

subject to .bAx ≤  (2) 

In particular, note that because ,0≥x  the downside realization cc ˆ−  is 
irrelevant. 
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Even though Soyster developed his ideas for linear programs, they can 
also be applied directly to integer programs. For example, under Soyster’s 
model, iTSP, which has uncertainty only in the objective and also has ,0≥x  
becomes 

 ,min xuT
x TSP∈

 (3) 

where 

{ xx E :R∈=TSP  is an indicator vector of a }tour  

and the u vector contains the eu  values for all edges e. Here, the vector of 

worst-case travel times u is identified with the upper-bound vector cc ˆ+  of 
Soyster’s method. This formulation in (3) is equivalent to a single 
deterministic TSP and thus can be solved using any TSP solver. 

 

Figure 1. Example of a robust TSP problem with interval times. 

Figure 1 depicts an example for .4=n  The uncertainty intervals are 
shown on the edges, except when ,ee ul =  in which case only the single 

value is shown. The network has three possible tours, ( ),1,4,3,2,11 =t  

( )1,3,4,2,12 =t  and ( ).1,3,2,4,13 =t  
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For Soyster’s model, the time of each tour is as follows: 

2240011222

229.30009.1222

9.70119.14

timeRobustTour
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So Soyster’s model chooses 2t  as the optimal robust tour. 

3.2. Bertsimas-Sim model 

Bertsimas and Sim [10, 11] also consider the modification of (1) to 
consider uncertainty both in the constraints and the objective. In their 
models, they allow the user to control the level of conservatism of the robust 
optimal solution. Bertsimas and Sim [10] also show that their model is 
applicable to combinatorial problems such as iTSP. This requires a single 
parameter Γ and optimizes 
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with the el  and eu  values defined as in the previous section. For the example 

in Figure 1, the optimal robust tours for different values of Γ are as follows: 
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tourrobustOptimal

t
t
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≥
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When ,0=Γ  the model simply minimizes the optimistic bound xlT  which 

yields .1t  However, depending on the value of Γ, 2t  and 3t  become the 

optimal robust tours since they have edges with smaller ranges ee lu −  than 

.1t  For example, the difference between xlT  for 3t  and 1t  is ( ) 4222 −+  

.83.0≈  When ,1=Γ  the maximum range among all edges of 1t  is 
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( ) ( ) ( ){ } 9.112,0,12,19.2max =−−−  and that of 3t  is ( ){ }1,0,1,0max  

.1=  The difference of the maximum range of edges (0.9) is greater than the 

difference of xlT  (0.83). Thus, 3t  becomes the robust optimal solution when 

.1=Γ  

Computationally, (4) is a large integer program, and Atamtürk [3] studies 
how to strengthen formulations such as (4). While Atamtürk’s methods are 
particularly favorable for mixed-integer formulations, i.e., those with binary 
and continuous variables, for pure binary formulations such as (4), Bertsimas 
and Sim show that the formulation decomposes into several “copies” of the 
deterministic integer program. This is attractive when efficient code for the 
deterministic problem is available. 

In particular, Bertsimas and Sim show that (4) can be solved by solving 
1+E  deterministic TSPs. Assuming that the edge indices are ordered 

E...,,2,1  such that ,2211 EE lululu −≥≥−≥−  and defining an 

artificial edge 1+E  that has ,011 =− ++ EE lu  equation (4) is equivalent 

to 

 ,min
1...,,1

e
Ee

G
+=

 (5) 

where 

 ( ) ( ) ( )( ) .min:
1 ⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−−−++−Γ= ∑
=

∈

e

k
keekk

T
ee

e xluluxlluG
TSPx

 (6) 

Calculating eG  for 1...,,1 += Ee  is a deterministic TSP for which high 

performance software is available, e.g., Concorde (Applegate et al. [1]). 
Finally, the optimal tour is recovered from the inner minimization of the 

minimum .eG  

Even though solving 1+E  TSPs requires much less computational 

effort compared to solving (4) directly or enumerating all possible tours, 
practical problems may still be challenging due to the quadratic growth in the 
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number of TSPs that must be solved (in the case of a complete or nearly 
complete network). In Section 5, we report computational times with this 
approach. 

3.3. Robust deviation model 

Montemanni et al. [32] apply a robust deviation criterion to iTSP 
specifically. Given a tour x and a realization of the uncertain data, the 
deviation of x with respect to the realization is defined to be the difference 
between the time of x and the optimal tour time for that realization. The 
maximum deviation of x is its maximum deviation over all realizations of the 
uncertain data. Montemanni et al. seek to find a tour x which has minimum 
maximum deviation. Based on previous results for the robust counterpart of 
other combinatorial optimization problems such as by Daniels and Kouvelis 
[18], Montemanni et al. show that the robust deviation of a given tour x is 
maximized under the realization in which all e in x have time ,eu  while the 

remaining edges have time .el  The authors refer to such a realization as a 

realization induced by x. This property allows iTSP with robust deviation 
criterion to be expressed in mathematical form as 

 ( ) .minmin ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧

−+− ∑
∈

∈∈ Ee
eeee

T
TSPy

T
x

yxluylxu
TSP

 (7) 

For the example shown in Figure 1, the robust deviations of each tour are as 
follows, where S_Tour_Ind(t) denotes the shortest tour under the realization 
induced by t: 

Tour (t) S_Tour_Ind(t) Robust deviation of t 

1t  2t  17.1224 ≈−  

2t  3t  1.9 

3t  2t  2 

Since the robust deviation of 1t  is smallest, it is the optimal robust tour, and 

the robust deviation is approximately 1.17. 
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The difficulty of this approach is that (7) is equivalent to a large integer 
program. The authors propose solution algorithms based on branch-and-
bound, branch-and-cut, and Bender’s decomposition. Among these three 
exact algorithms, Bender’s decomposition performs best, but it still            
cannot always solve medium-sized problems ( )50≈n  within reasonable 

computational time. 

To partially overcome these computational challenges, the authors also 
propose heuristics. In Section 5, we use their heuristic, which they call HMU, 
for testing. 

4. Modified-Soyster Model 

We now present a simple variant of Soyster’s model that allows one to 
control the model’s conservatism and, when applied to iTSP, can be solved 
by optimizing a single deterministic TSP. The modification ensures that the 
model does not optimize to the extreme realizations of the uncertain data.          
To do this, we introduce a parameter [ ]1,0∈γ  that controls the model’s 

conservatism. When only the objective coefficients are uncertain and ,0≥x  
we have the modified-Soyster model 

minimize ( ) xcc Tˆγ+  

subject to bAx ≤  

for [ ].1,0∈γ  

As with Soyster’s original model, the modified-Soyster model can also 
be applied to integer programs and to iTSP in particular. However, one 
adjustment is required. While Soyster modeled the objective uncertainty as 

cc ˆ±  with center c, our model [ ]ul,  does not possess a natural center. So we 

apply modified-Soyster to iTSP with [ ]1,0∈γ  interpolating along the entire 

range between l and u: 

 ( ) .min xluxl TT
x

−γ+
∈TSP

 (8) 
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This is a deterministic TSP with travel times ( ) .1 ul γ+γ−  In other words, γ 

interpolates between the most optimistic model of travel times, l, and the 
most pessimistic or conservative, u. In this sense, l and u are identified with c 
and cc ˆ+  of modified-Soyster, respectively. A manager who wants to 
consider the worst-case travel times but be more optimistic overall would 
choose a low γ value, whereas a manager who wants to focus more on the 
worst-case eu  values while still considering the el  values of the same edges 

would choose a high γ value. 

The parameter γ plays a similar role to Γ in the model by Bertsimas and 
Sim described in Subsection 3.2. However, γ defines the range of all 
coefficients simultaneously – a balanced approach. On the other hand, Γ 
limits the number of coefficients allowed to change at one time – a focused 
approach. We will examine how taking a balanced versus a focused approach 
can impact the solutions in our computational experiments in Section 5. 
Modified-Soyster also allows the robust problem to remain relatively easy to 
solve, and offers some interesting theoretical properties, as described below 
in Subsection 4.1. 

For our illustrative example with any [ ],1,0∈γ  the robust time of each 

tour is as follows: 

( )

( )

( )0011222

0009.1222

0119.14

timeRobustTour
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+++γ++

+++γ+

t

t

t
 

Thus, as γ varies, the robust optimal solutions are: 
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1

1,12
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tourrobustOptimal

t

t
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−

γ
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4.1. Properties of modified-Soyster for iTSP 

We now describe some interesting properties of modified-Soyster for 
iTSP. Let us first introduce some additional terminology. The range of an 
edge e is ,ee lu −  and the range of a tour x is the sum of all its edge ranges, 

i.e., ( ) .xlu T−  The lower bound and upper bound for x are xlT  and ,xuT  

respectively. In particular, the upper bound for x is the sum of its lower 
bound and range. For a given [ ],1,0∈γ  a robust tour is any optimal solution 

of (8). 

The robust problem (8) may be interpreted as a multi-objective 
optimization problem that seeks to minimize the tour’s lower bound and its       
γ-weighted range. As γ changes, one can expect a natural trade-off between 
the lower bounds and ranges of the resulting robust tours. We formalize this 
idea here. 

Introducing two auxiliary scalar variables L and R (for “lower bound” 
and “range”) and appealing to standard polyhedral theory, we write (8) as 

min RL γ+  

s.t. ( )TSPhull.convex∈x  

xlL T=  

( ) .xluR T−=  

In the space of the variables ( ),,, RLx  the feasible set is a polytope, and so 

its projection onto just ( )RL,  is also a polytope. In other words, 

( )

( )

( ) ⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

−=

=

∈

∃ℜ∈=

xluR

xlL

x

xRLP
T

T

TSPhull.convex

satisfying:,: 2  

is a polytope in .2ℜ  Note that, in general, P has an exponential number of 
edges and vertices. Still, problem (8) can be written implicitly as the two-
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variable linear program 

min ( )γγ+ LPRL  

s.t. ( ) ., PRL ∈  

We let ( )γLPopt  denote the set of optimal solutions of ( ).γLP  

Consider the schematic of P shown in Figure 2. ( )0LP  minimizes only 

the lower bound L, which implies ( ) ( ){ }.,opt 000 RLLP =  As γ increases, i.e., 

as more weight is put on minimizing the tour’s range, ( )γLPopt  is found on 

the bottom left boundary of P (shown in bold in the figure). In our context, γ 
is bounded above by 1, but one can imagine that, as ( )γ∞→γ LP,  puts more 

and more weight on the range R. Eventually, after a certain threshold for γ, it 
holds that ( ) ( ){ }.,opt ∞∞γ = RLLP  

 
Figure 2. Schematic of polytope P. 

Figure 2 provides intuition for Propositions 1-3 below. At a high level, 
Propositions 1-3 describe the following properties: 

– As γ increases, the lower bound of a robust tour increases while its 
range decreases. This confirms a natural impact of increased 
conservatism: one must sacrifice the most optimistic outcome to 
guarantee a reduction in the pending uncertainty. 
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– The upper bound of a robust tour decreases as γ increases. Note that a 
tour’s upper bound, which is the sum of its lower bound and range, is 
independent of γ and reflects the most pessimistic measure of a tour. 
In this sense, increased conservatism is guaranteed to mitigate the 
worst possible outcome. 

– When γ is increased, the amount sacrificed in a robust tour’s lower 
bound is always some fraction of the amount gained in the reduction 
of the tour’s range. For a specific example, suppose 01 =γ  and 

.5.02 =γ  Then the amount sacrificed in the lower bound L by being 

more conservative is never more than 50% of what is gained by the 
reduction in the range R. 

Each of the results deals with two choices of γ, namely .21 γ<γ  We use the 

notation ( )11, RL  and ( )22, RL  to indicate optimal pairs for ( )1opt γLP  and 

( ),opt
2γLP  respectively. We first prove an important lemma. 

Lemma 1. ( ) ( ).21212211 RRLLRR −γ≤−≤−γ  

Proof. Because ( ) ( ),opt,
111 γ∈ LPRL  it holds that 

( ) .12211212111 LLRRRLRL −≤−γ⇔γ+≤γ+  

Likewise, ( ) ( )2opt, 22 γ∈ LPRL  implies ( ).21212 RRLL −γ≤−  

Proposition 1. 21 LL ≤  and .21 RR ≥  

Proof. Using the lemma, ( ) ,2121
1

21 RRRR −≤−γγ −  which guarantees 

.21 RR ≥  Then 012 ≥− LL  since it is sandwiched between two nonnegative 

values. 

Proposition 2. .1122 RLRL +≤+  

Proof. Using the lemma and ,12 ≤γ  we have ,2112 RRLL −≤−  as 

desired. 
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Proposition 3. Define 0: 12 ≥−=Δ LLL  and .0: 21 ≥−=Δ RRR  Then 

.21 RLR Δγ≤Δ≤Δγ  

Proof. This is just a restatement of the lemma with Proposition 1. 

Figure 3 illustrates Propositions 1 and 2 for a specific instance of iTSP. 
The instance is based on swiss42.tsp from TSPLIB. For various values 
of [ ]1,0∈γ  the optimal values L and R of ( )γLP  are plotted; the sum RL +  

is also plotted. Proposition 1 is illustrated by the fact that L increases with γ, 
while R decreases as γ increases. The fact that RL +  decreases with 
increasing γ demonstrates Proposition 2. 

 
Figure 3. Example of the solutions provided by modified-Soyster for iTSP. 

 
Figure 4. Example of the solutions provided by modified-Soyster for iTSP. 
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In addition, Figure 4 depicts a scatter plot of the optimal pairs ( )RL,  for 

the same example, and the γ values corresponding to several points are 
highlighted ( ).0.1,5.0,0.0=γ  One can view the points as the vertices of the 

polyhedron P. In addition, Proposition 3 has the following interpretation in 
terms of the figure: the slope between any two pairs is less than or equal to         
–1. (However, we caution the reader that the aspect ratio of Figure 4 is not 
1 : 1, and so some slopes may appear greater than –1.) 

Propositions 1-3 do not appear to have direct analogs for the Bertsimas- 
Sim model. As an example, consider Figure 5. For missing edges, we assume 
sufficiently large travel times so as to make them part of no optimal solution. 
Then there are only two possible tours, ( )1,5,4,3,2,11 =t  and =2t  

( ).1,5,3,4,2,1  Table 1 shows the solutions and associated values for 

Bertsimas-Sim. It is clear none of the analogs of Propositions 1-3 are 
satisfied in this case. The main reason is Bertsimas-Sim’s focused approach 
of considering only the ranges of a given number Γ of edges, while the 
ranges of remaining edges are in essence ignored. In contrast, the balanced 
approach of modified-Soyster seems to be critical in establishing results such 
as Propositions 1-3. 

 

Figure 5. Second example of robust TSP problem with interval times. 
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Table 1. Optimal tours and associated times with the Bertsimas-Sim model 

Γ 
Optimal robust 

tour x 
Lower bound 

xlT  
Range 

( ) xlu T−  
Upper bound 

xuT  
0 1t  4.75 1.75 6.5 

1 2t  5 2 7 

2≥  1t  4.75 1.75 6.5 

Finally, we note that Propositions 1-3 are about the behaviors of the 
solution and associated times as the degree of conservatism changes. Since 
the level of conservatism is not controllable in the model by Montemanni et 
al., there are no analogs to these propositions for the robust deviation model. 

5. Computational Experiments 

In this section, we compare the four models computationally. We first 
discuss our test instances and computing environment. Then we examine 
computational times, which demonstrate that modified-Soyster enjoys 
relatively quick solution times compared to the other models, while still 
incorporating uncertainty and allowing one to control the level of 
conservatism. Next, we show that the solution provided by modified-Soyster 
does reasonably well at creating solutions of high quality for other objectives 
if γ is chosen appropriately. In this regard, one may also consider modified-
Soyster a quick heuristic for more time-consuming uncertainty objectives. 
Lastly, we demonstrate a nice property of the solutions found by modified-
Soyster as compared with Bertsimas-Sim. 

5.1. Test instances and computational environment 

We test 72 instances of iTSP created by Montemanni et al. [32] based on 
12 problems in TSPLIB. We thank the authors for sharing their instances. 
Given a TSPLIB problem with travel times ec  and a parameter ( ),1,0∈β  

they form an instance of iTSP by randomly choosing integer ∈el  

( )[ ]ee cc ,1 β−  and integer ( )[ ].1, eee ccu β+∈  In particular, the el  and eu  
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values may vary from ec  by different amounts, and the β parameter 

determines the maximum distance these values may vary from .ec  The 72 

instances used here consist of 3 random instances with 25.0=β  and 3 with 

5.0=β  for each of the 12 TSPLIB instances. 

We employ Concorde (Applegate et al. [1]) to solve the deterministic 
TSPs. For each model, the code was written in MATLAB with calls to 
Concorde on an Intel Pentium D 3.20 GHz machine. 

In the following two subsections, we will actually consider two 
specifications of modified-Soyster as well as two specifications of Bertsimas-
Sim. The full list of models considered is: 

1. Soyster’s “pure pessimistic” model with all travel times set to eu  

( );1M  

2. “optimistic” modified-Soyster with n5=γ  ( );2M  

3. “pessimistic” modified-Soyster with 5.0=γ  ( );3M  

4. the robust-deviation model of Montemanni et al. ( );4M  

5. “optimistic” Bertsimas-Sim with 5=Γ  ( );5M  

6. “pessimistic” Bertsimas-Sim with 2n=Γ  ( ).6M  

Note that modified-Soyster for a given γ is not directly comparable to 
Bertsimas-Sim with a certain Γ. However, we choose n5=γ  and 5=Γ  to 

reflect low levels of conservatism (i.e., more optimism) and 5.0=γ  and 

2n=Γ  to represent high level of conservatism (i.e., more pessimism). 

5.2. Computational times 

Table 2 shows the average run time (in seconds) by problem size n for 
the 72 instances. As mentioned in Subsection 3.3, we will use Montemanni et 
al.’s HMU heuristic for solving their robust deviation model. This table 
makes clear that modified-Soyster is competitive in terms of speed with 
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Soyster (as one would expect) and slightly faster than robust deviation. The 
more notable observation is that Bertsimas-Sim is quite time-consuming 
especially for the larger problem sizes. 

5.3. Quality of modified-Soyster for other models 

We investigate the quality of the tours provided by modified-Soyster in 
terms of the more time-consuming objectives. For each of the 72 test 
instances, we solved the instance with both modified-Soyster specifications 
( )32 and MM  and three other models ( ).through 64 MM  We saved the 

tours from 2M  and 3M  and the optimal values from the remaining. We use 

( )ij Mv  to represent the objective value of a tour found with model i when 

evaluated using the objective function for .jM  Then, for a model pair ( )ji,  

with { }3,2∈i  and { },6,5,4∈j  we calculate the modified-Soyster optimality 

gap for that instance: 

( )
( ) %.1001 ×⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

jj

ij
Mv
Mv

 

Table 2. Average computational times (in seconds) by problem size 

n # instances Soyster 
Mod-

Soyster 
( )n5=γ

Mod-
Soyster 
( )5.0=γ

Robust 
deviation

Bert-Sim 
( )5=Γ  

Bert-Sim 
( )2n=Γ  

17 6 0.0 0.0 0.0 0.2 6.2 6.1 

21 6 0.0 0.0 0.0 0.1 4.0 4.1 

24 6 0.0 0.0 0.0 0.2 9.2 9.2 

26 6 0.0 0.0 0.0 0.2 14.9 14.7 

42 12 0.1 0.1 0.1 0.4 61.7 61.5 

48 12 0.1 0.1 0.1 0.5 144.8 141.3 

58 6 0.2 0.3 0.2 1.2 461.0 463.2 

120 6 0.6 0.5 2.1 6.0 4,738.5 4,793.9 

175 6 2.4 2.4 0.5 7.2 33,274.3 33,338.0 

180 6 1.2 0.6 1.2 6.0 19,702.1 19,841.4 
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Table 3 shows these optimality gaps averaged over the 36 instances with 
,25.0=β  and Table 4 shows the same except for .50.0=β  

Table 3. Average optimality gaps for modified-Soyster with respect to other 
models for 25.0=β  

 
Modified-Soyster 

( )n5=γ  
Modified-Soyster 

( )5.0=γ  

Robust deviation 7.64% 1.19% 

Bertsimas-Sim ( )5=Γ   0.44% 0.45% 

Bertsimas-Sim ( )2n=Γ   1.31% 0.35% 

Table 4. Average optimality gaps for modified-Soyster with respect to other 
models for 50.0=β  

 
Modified-Soyster 

( )n5=γ  
Modified-Soyster 

( )5.0=γ  

Robust deviation 16.24% 1.46% 

Bertsimas-Sim ( )5=Γ   2.13% 1.90% 

Bertsimas-Sim ( )2n=Γ   5.70% 0.98% 

Pessimistic modified-Soyster performs within 1% of pessimistic 
Bertsimas-Sim for both β values, and optimistic modified-Soyster performs 
within 2.13% of optimistic Bertsimas-Sim across both tables. This indicates 
that the choice of γ and Γ provide comparable levels of conservatism. It is 
surprising that pessimistic modified-Soyster performs closer to optimistic 
Bertsimas-Sim than optimistic modified-Soyster in Table 4, but it is by a 
fairly small margin. 

The largest gaps in both tables are between optimistic modified-Soyster 
and the robust deviation models, indicating robust deviation is a rather 
pessimistic approach. We observe that pessimistic modified-Soyster performs 
within 1.46% of robust deviation across both β values, indicating that 
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modified-Soyster with a high γ can be potentially be used as an alternative 
for robust deviation. Even though the runtimes are not drastically different, 
this may be preferred because of its simpler implementation. 

Overall, Tables 3 and 4 illustrate that the tours provided by modified- 
Soyster often do well as solutions of the other models. We propose that 
modified-Soyster, with an appropriate choice of γ, could be used as a quick 
heuristic for other uncertainty models, particularly Berstimas-Sim. 

5.4. Further comparison between modified-Soyster and Bertsimas-Sim 

To close this section, we provide one more computational comparison 
between modified-Soyster and Bertsimas-Sim. In particular, we would like to 
contrast the focused conservatism of Bertsimas-Sim (i.e., Γ edges take on 
their eu  values, while the remaining stay at )el  and the balanced conservatism 

of modified-Soyster (i.e.,  each edge takes on the value ( )).eee lul −γ+  We 

claim that, at least from the point of view of worst-case performance of a 
tour, the balanced conservatism of modified-Soyster may be more 
appropriate for instances of iTSP having many edges with similar el  values 

but larger and more varied eu  values. 

To support this claim, we create and solve 36 such instances - one 
derived from each of the 36 instances of iTSP with 5.0=β  used in the 

preceding subsections. Although we admit the new instances are somewhat 
ad hoc, they more readily illustrate the case of similar el  values and more 

extreme eu  values. 

Our construction is as follows. Let ( )ul,  be the data of a given instance, 

and define eEe ls ∈= min:  to be the smallest optimistic travel time. For each 

,Ee ∈  also choose a random integer { }[ ],,2min,~
ee ussl ∈  and define eu~  

.eu=  The data for the new iTSP is then ( ).~,~ ul  This new instance is highly 

likely to have small variation in l~  and larger, more varied values in .~u  

Each of the new 36 problems is solved with optimistic modified-Soyster 
( )n5=γ  and optimistic Bertsimas-Sim ( ),5=Γ  and the two optimal tours 
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are saved. Then the optimality gaps for these tours are computed with respect 
to Soyster’s model (whose optimal value is separately calculated). Table 5 
presents the average optimality gaps. 

Table 5. Average optimality gaps for modified-Soyster and Bertsimas-Sim 
with respect to Soyster’s model for new set of 36 instances 

Modified-Soyster ( )n5=γ  Bertsimas-Sim ( )5=Γ  

11.3% 33.9% 

Table 5 shows the benefit of balanced conservatism on such instances. 
By incorporating all eu  values into its calculations, modified-Soyster 

produces a tour that protects much better against the worst case than 
Bertsimas-Sim. In contrast, by focusing on just Γ worst-case eu  values per 

tour, Bertsimas-Sim produces a tour that may do poorly in the worst case. 
Since modified-Soyster takes the full range of ee lu −  into account for all 

edges, it clearly changes the choice of edges for comparable levels of 
optimism. 

6. Managerial Insights and Future Work 

From a managerial perspective, modified-Soyster is a good model to use 
for instances of iTSP. It allows managers to designate the level of optimism 
or conservatism in the solutions and does so without increasing 
computational difficulty relative to the TSP. This can be quite useful in 
practice. For example, if a manager is creating a route that will be driven 
during off-peak travel times, this may make him or her optimistic in terms of 
the travel times that will occur. Among edges with similar best case, or ,el  

travel times, the manager would prefer those with lower eu  travel times in 

case some traffic does occur. Thus, such a manager may use modified-
Soyster with a low value of γ and achieve similar runtimes as with the 
classical TSP. Our experiments have shown that Bertsimas-Sim, the other 
approach that allows for control of conservatism, does so in a way that is 
much more time consuming computationally and offers solutions that can 
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differ greatly in terms of worst-case evaluation. Our experiments also suggest 
that managers may use modified-Soyster even when interested in other 
models. Modified-Soyster, with the appropriate choice of γ, can yield 
solutions that perform well in terms of other objectives, while being easy to 
implement as well as quick to solve. A manager may also like some of the 
structural properties for modified-Soyster listed in Subsection 4.1, which 
highlight predictable effects of changing γ. For example, by increasing γ, the 
manager can be sure that he or she will obtain a tour with better worst-case 
performance. Also, a higher γ guarantees a tour having a narrower range of 
potential time outcomes, thus reducing the manager’s uncertainty. 

In the future, we would like to extend our results to more complicated 
but related problems. Specifically, we are interested in modifying and 
extending our results for the asymmetric TSP, where the travel time on an 
edge can differ depending on the direction being traveled. We are also 
interested in variants of the iTSP where the value of γ can be an edge specific 
value .eγ  

Acknowledgements 

Research supported by National Science Foundation Grants CCF-
0545514 (Burer) and CMMI-0237726 (Campbell). 

References 

 [1] D. Applegate, R. Bixby, V. Chvátal and W. Cook, 2005. 
See: http://www.tsp.gatech.edu/concorde. 

 [2] D. Applegate, R. Bixby, V. Chvátal and W. Cook, The Traveling Salesman 
Problem: A Computational Study, Princeton University Press, 2006. 

 [3] A. Atamtürk, Strong formulations of robust mixed 0-1 programming, Math. 
Program. 108 (2-3, Ser. B) (2006), 235-250. 

 [4] I. Averbakh and V. Lebedev, Interval data minmax regret network optimization 
problems, Discrete Appl. Math. 138(3) (2004), 289-301. 

 [5] A. Ben-Tal and A. Nemirovski, Robust convex optimization, Math. Oper. Res. 
23(4) (1998), 769-805. 



Nayoung Cho, Samuel Burer and Ann Melissa Campbell 142 

 [6] A. Ben-Tal and A. Nemirovski, Robust solutions of uncertain linear programs, 
Oper. Res. Lett. 25(1) (1999), 1-13. 

 [7] A. Ben-Tal and A. Nemirovski, Robust solutions of linear programming problems 
contaminated with uncertain data, Math. Program. 88(3) (2000), 411-424. 

 [8] A. Ben-Tal, A. Goryashko, E. Guslitzer and A. Nemirovski, Adjustable robust 
solutions of uncertain linear programs, Math. Program. 99(2) (2004), 351-376. 

 [9] D. Bertsimas and L. Howell, Further results on the probabilistic traveling 
salesman problem, European J. Oper. Res. 65 (1993), 68-95. 

 [10] D. Bertsimas and M. Sim, Robust discrete optimization and network flows, Math. 
Program. 98(1-3) (2003), 49-71. 

 [11] D. Bertsimas and M. Sim, The price of robustness, Oper. Res. 52(1) (2004),      
35-53. 

 [12] D. Bertsimas and D. Simchi-Levi, A new generation of vehicle routing research: 
robust algorithms, addressing uncertainty, Oper. Res. 44(2) (1996), 286-304. 

 [13] D. Bertsimas, P. Jaillet and A. Odoni, A priori optimization, Oper. Res. 38 (1990), 
1019-1033. 

 [14] A. Campbell, Aggregation for the probabilistic traveling salesman problem, 
Comp. Oper. Res. 33 (2006), 2703-2724. 

 [15] A. Campbell and B. Thomas, Probabilistic traveling salesman problem with 
deadlines, Transport. Sci. 42(1) (2008), 1-21. 

 [16] A. Campbell and B. Thomas, Runtime reduction techniques for the probabilistic 
traveling salesman problem with deadlines, Comp. Oper. Res. 36(4) (2009),        
1231-1248. 

 [17] G. Clarke and J. Wright, Scheduling of vehicles from central depot to number of 
delivery points, Oper. Res. 12(4) (1964), 568-581. 

 [18] R. Daniels and P. Kouvelis, Robust scheduling to hedge against processing time 
uncertainty in single-stage production, Manag. Sci. 41(2) (1995), 363-376. 

 [19] G. Dantzig, D. Fulkerson and S. Johnson, Solutions of a large scale traveling 
salesman problem, Oper. Res. 2 (1954), 393-410. 

 [20] M. Fischetti and M. Monaci, Light robustness, Robust and Online Large-scale 
Optimization, R. K. Ahuja, R. H. Möhring and C. D. Zaroliagis, eds., Lecture 
Notes in Computer Science, Vol. 5868, Springer, 2009, pp. 61-84. 

 [21] M. Gendreau, G. Laporte and R. Seguin, Stochastic vehicle routing, European J. 
Oper. Res. 1882 (1996), 3-12. 



Modifying Soyster’s Model for the Symmetric Traveling ... 143 

 [22] G. Gutin and A. Punnen, The Traveling Salesman Problem and its Variations, 
Kluwer, Dordrecht, 2002. 

 [23] P. Jaillet, Probabilistic traveling salesman problems, Ph.D. Thesis, Massachusetts 
Institute of Technology, 1985. 

 [24] A. Kasperski and P. Zieliński, The robust shortest path problem in series-parallel 
multidigraphs with interval data, Oper. Res. Lett. 34(1) (2006), 69-76. 

 [25] A. Kenyon and D. Morton, Stochastic vehicle routing with random travel times, 
Transport. Sci. 37(1) (2003), 69-82. 

 [26] V. Lambert, G. Laporte and F. Louveaux, Designing collection routes through 
bank branches, Comp. Oper. Res. 20(7) (1993), 783-791. 

 [27] G. Laporte, F. Louveaux and H. Mercure, The vehicle-routing problem with 
stochastic travel-times, Transport. Sci. 26 (1992), 161-170. 

 [28] G. Laporte, F. Louveaux and H. Mercure, A priori optimization of the 
probabilistic traveling salesman problem, Oper. Res. 42 (1994), 543-549. 

 [29] E. Lawler, J. Lenstra, A. Rinnooy-Kan and D. Shmoys, The Traveling Salesman 
Problem, Wiley, Chichester, U.K., 1985. 

 [30] R. Montemanni and L. Gambardella, An exact algorithm for the robust shortest 
path problem with interval data, Comp. Oper. Res. 31(10) (2004), 1667-1680. 

 [31] R. Montemanni, L. Gambardella and A. Donati, A branch and bound algorithm for 
the robust shortest path problem with interval data, Oper. Res. Lett. 32(3) (2004), 
225-232. 

 [32] R. Montemanni, J. Barta, M. Mastrolilli and L. M. Gambardella, The robust 
traveling salesman problem with interval data, Transport. Sci. 41(3) (2007),        
366-381. 

 [33] W. Powell, P. Jaillet and A. Odoni, Stochastic and dynamic networks and routing, 
Network Routing, M. O. Ball, T. L. Magnanti, C. L. Monma and G. L. 
Nemhauser, eds., Handbooks in Operations Research and Management Science, 
Elsevier Science, North-Holland, Amsterdam, Vol. 8, 1995, pp. 141-295. 

 [34] G. Reinelt, TSPLIB - a traveling salesman problem library, ORSA J. Computing 3 
(1991), 376-384. 
See: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95/. 

 [35] G. Reinelt, The Traveling Salesman: Computational Solutions for TSP 
Applications, Springer-Verlag, Berlin, Germany, 1994. 

 [36] R. Russell and T. Urban, Vehicle routing with soft time windows and Erlang 
travel times, J. Oper. Res. Soc. 59(9) (2008), 1220- 1228. 



Nayoung Cho, Samuel Burer and Ann Melissa Campbell 144 

 [37] A. Soyster, Convex programming with set-inclusive constraints and applications 
to inexact linear-programming, Oper. Res. 21(5) (1973), 1154-1157. 

 [38] H. Tang and E. Miller-Hooks, Approximate procedures for probabilistic traveling 
salesperson problem, Transport. Research Record 1882 (2004), 27-36. 

 [39] P. Zieliński, The computational complexity of the relative robust shortest path 
problem with interval data, European J. Oper. Res. 158(3) (2004), 570-576. 


