
Chapter 8
Copositive Programming

Samuel Burer

8.1 Introduction

A symmetric matrix S is copositive if yT S y≥0 for all y≥0, and the set of all
copositive matrices, denoted C∗, is a closed, pointed, convex cone; see [25] for a
recent survey. Researchers have realized how to model many NP-hard optimization
problems as copositive programs, that is, programs over C∗ for which the objective
and all other constraints are linear [7, 9, 13, 16, 32–34]. This makes copositive
programming NP-hard itself, but the models are nevertheless interesting because
copositive programs are convex, unlike the problems which they model. In addition,
C∗ can be approximated up to any accuracy using a sequence of polyhedral-
semidefinite cones of ever larger sizes [13, 30], so that an underlying NP-hard
problem can be approximated up to any accuracy if one is willing to spend the
computational effort.

In actuality, most of these NP-hard problems are modeled as linear programs
over the dual cone C of completely positive matrices, that is, matrices Y that can
be written as the sum of rank-1 matrices yyT for y ≥ 0 [4]. These programs are
called completely positive programs, and the aforementioned copositive programs
are constructed using standard duality theory.

Currently the broadest class of problems known to be representable as com-
pletely positive programs are those with nonconvex quadratic objective and linear
constraints over binary and continuous variables [9]. In addition, complementarity
constraints on bounded, nonnegative variables can be incorporated. In this chapter,
we recount and extend this result using the more general notion of matrices that are
completely positive over a closed, convex cone.
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Recall the concept of a linear conic program over K , where K is assumed to be
a closed, convex cone [2]:

min{cT x : Ax = b, x ∈ K}. (8.1)

The standard form (8.1) is quite general. For example, it can be used to model
mixed linear, second-order-cone, semidefinite programs with free variables. In such
cases, K is the Cartesian product of a nonnegative orthant, second-order cones,
positive semidefinite cones, and a Euclidean space. The form of (8.1) is also critical
for the design, analysis, and implementation of algorithms such as the simplex
method whenK is a nonnegative orthant and interior-point methods more generally.
For example, the iteration complexity of an interior-point method for (8.1) will
depend on the self-concordancy barrier parameter for K [29]. Loosely speaking,
understandingK is key for optimizing (8.1).

When faced with a new optimization problem, it thus seems prudent to determine
if that problem can be modeled as a linear conic program over some (hopefully) well
understoodK .

In this chapter, we show that any NP-hard nonconvex quadratic conic program

ν∗ :=min
{
xT Qx+2cT x : Ax = b, x ∈ K

}
(8.2)

can be modeled as an explicit linear conic program over the closed, convex cone
C of matrices that are completely positive over �+ ×K , i.e., matrices Y that can
be written as the sum of rank-1 matrices yyT with y ∈ �+ ×K .1 We also extend
this result to include certain types of nonconvex quadratic constraints. While C
may be harder to understand than K [3, 27], our approach provides a convex
formulation for (8.2). For example, strong relaxations of C can be used to compute
high quality lower bounds on ν∗. In addition, (8.2) motivates the study of such
cones C, particularly for commonK such as the Cartesian product of a nonnegative
orthant, second-order cones, semidefinite cones, and a Euclidean space.2

The equivalence of (8.2) with a linear conic program over C is actually based on
the characterization of a certain convex hull in C. This is the core of Sect. 8.2. We
also extend in Sect. 8.2 the main convex hull result in several directions, e.g., the
result is extended to incorporate certain types of nonconvex quadratic constraints
in the variable x. Section 8.3 applies the convex hull results to (8.2) and related
optimization problems and also presents some basic duality results. Section 8.4

1The paper [20] has established a similar result concurrently with this chapter, and the paper [19]
studies the generalized notion of copositivity over an arbitrary set, analyzing important properties
of the resulting convex cone.
2If K is a semidefinite cone, than K must be encoded in its “vectorized” form to match the
development in this chapter. For example, the columns of a d × d semidefinite matrix could be
stacked into a single, long column vector of size d2, and then the CP matrices yyT over �+ ×K
would have size (d2 +1)× (d2 +1).
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discusses techniques for working with C, particularly when K is the nonnegative
orthant�n

+, which has been the most studied case. Section 8.5 concludes the chapter
with a few applications.

We make two important remarks. First, this chapter is not meant to be a complete
survey of copositive programming. For this, please see the excellent, recent paper
[17]. Instead, we intend only to give an introduction to some of the main results in
the area, tainted with our own biases. Second, most research has examined the case
when K = �n

+. Our hope is that this chapter will stimulate further investigations
for more general K , especially when K is the Cartesian product of a nonnegative
orthant, second-order cones, semidefinite cones, and a Euclidean space.

8.2 Convex Hull Results

We first prove the main convex hull results that will be the basis of Sect. 8.3.

8.2.1 Main Result

Define the feasible set and recession cone of (8.2) to be

L := {x ∈ K : Ax = b}, L∞ := {d ∈ K : Ad = 0},

where A ∈ �m×n and b ∈ �m. We assume L � ∅, i.e., (8.2) is feasible. The set of
completely positive matrices over the cone�+ ×K is defined as

C :=

⎧⎪⎪⎨⎪⎪⎩
∑

k

(
ζk

zk

)(
ζk

zk

)T
:
(
ζk

zk

)
∈ �+ ×K

⎫⎪⎪⎬⎪⎪⎭ .

C is closed because �+ × K is closed [35, Lemma 1]. The representation of
Y ∈ C in terms of (ζk,zk) is called a completely positive decomposition, and the
decomposition is proper if (ζk,zk)� 0 for all k. Also define the following two subsets
of C:

L1 :=
{(

1
x

)(
1
x

)T
: x ∈ L

}
, L0∞ :=

{(
0
d

)(
0
d

)T
: d ∈ L∞

}
.

One can think of L1 and L0∞ as quadratic versions of L and L∞, respectively.
The following proposition relates these two sets, where conv(·) denotes the convex
hull, cone(·) denotes the convex conic hull, and clconv(·) denotes the closure of the
convex hull.

Proposition 8.1. conv(L1)+ cone(L0∞) ⊆ clconv(L1).
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Proof. We represent an arbitrary element Y ∈ conv(L1) + cone(L0∞) via a finite
sum

Y =
∑

k∈P

λk

(
1
xk

)(
1
xk

)T
+

∑

k∈Z

(
0
dk

)(
0
dk

)T

where P and Z are finite index sets, xk ∈ L, dk ∈ L∞, λk > 0, and
∑

k∈Pλk = 1. Next
let x̄ ∈ L be fixed, and let εk > 0 for k ∈ P∪Z be fixed such that

∑
k∈P εk =

∑
k∈Z εk.

Define

Yε :=
∑

k∈P

(λk − εk)
(

1
xk

)(
1
xk

)T
+

∑

k∈Z
εk

(
1

x̄+dk/
√
εk

)(
1

x̄+dk/
√
εk

)T
.

If ε is sufficiently close to the zero vector, then Yε ∈ conv(L1). Taking a sequence of
such ε converging to zero, we see Yε → Y, which implies Y ∈ clconv(L1). �


We next introduce a third subset of C:

R :=

{(
1 xT

x X

)
∈ C :

Ax = b
diag(AXAT ) = b ◦b

}
.

Here, the symbol ◦ indicates the Hadamard product of vectors. Note that R is
closed and convex. By standard relaxation techniques, L1 is contained in R. So
clconv(L1) ⊆ R. We can prove more.

Proposition 8.2. clconv(L1) ⊆ R ⊆ conv(L1)+ cone(L0∞).

Proof. The first containment holds by construction. To show the second, let

(
1 xT

x X

)
=

∑

k

(
ζk

zk

)(
ζk

zk

)T
(8.3)

be an arbitrary element of R with proper completely positive decomposition.
Partition the summands of (8.3) via the index sets P := {k : ζk > 0} and Z := {k :
ζk = 0}. We claim: (i) k ∈ P implies zk/ζk ∈ L; (ii) k ∈ Z implies zk ∈ L∞.

To prove both parts of the claim, we need a technical result. From (8.3), we see

∑

k

(ζk)2 = 1. (8.4)

Moreover, since Ax = b and diag(AXAT ) = b ◦b, we have

b =
∑

k

ζk(Azk)

b ◦b =
∑

k

diag(Azk(zk)T AT ) =
∑

k

(Azk)◦ (Azk). (8.5)
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Thus ⎛⎜⎜⎜⎜⎜⎜⎝
∑

k

ζk(Azk)

⎞⎟⎟⎟⎟⎟⎟⎠◦
⎛⎜⎜⎜⎜⎜⎜⎝
∑

k

ζk(Azk)

⎞⎟⎟⎟⎟⎟⎟⎠ =
⎛⎜⎜⎜⎜⎜⎜⎝
∑

k

(ζk)2

⎞⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
∑

k

(
Azk

)
◦
(
Azk

)
⎞⎟⎟⎟⎟⎟⎟⎠

and so by the equality-case of the Cauchy–Schwarz inequality, there exists δ ∈ �m

such that, for all k,

ζk δ = Azk. (8.6)

Claimed item (ii) follows directly from (8.6) and the fact that ζk = 0 when k ∈ Z. To
prove (i), it suffices to show δ = b. Indeed, (8.4), (8.5), and (8.6) imply

b =
∑

k

ζk(Azk) =
∑

k

ζk(ζk δ) = δ.

With claims (i) and (ii) established, we now complete the proof of the theorem.
Taking λk := (ζk)2, xk := zk/ζk for all k ∈ P, and dk := zk for all k ∈ Z, we can write
the completely positive decomposition (8.3) in the more convenient form

(
1 xT

x X

)
=

∑

k∈P

λk

(
1
xk

)(
1
xk

)T
+

∑

k∈Z

(
0
dk

)(
0
dk

)T
(8.7)

where λk > 0,
∑

k∈Pλk = 1, xk ∈ L, and dk ∈ L∞. �

Propositions 8.1 and 8.2 combine to give the following key theorem.

Theorem 8.1. R = clconv(L1).

The proofs for Proposition 8.1–8.2 and Theorem 8.1 have been inspired by [5, 9].

8.2.2 Additional Implied Constraints

Because R is contained in the positive semidefinite cone, the constraints Ax = b and
diag(AXAT ) = b ◦ b actually imply more. The following proposition and corollary
were proved in [10], and very closely related results appear in [21].

Proposition 8.3. Suppose

Y =

(
1 xT

x X

)
� 0

and define M :=
(
b, −A

)
to be the matrix formed by concatenating b and −A. Then

the following are equivalent:

(i) Ax = b, diag(AXAT ) = b ◦b.
(ii) MYMT = 0.

(iii) MY = 0.
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Proof. We will use the following equations:

MY =
(
b, −A

)(1 xT

x X

)
=

(
b−Ax bxT −AX

)

MYMT = MY

(
bT

−AT

)
= bbT −AxbT −bxT AT +AXAT . (8.8)

(i )⇒ (ii ): We have MYMT = AXAT −bbT with zero diagonal. Since Y is positive
semidefinite, so is MYMT . Hence, MYMT = 0.

(ii ) ⇒ (iii ): Let Y = VVT be a Gram representation of Y, which exists because
Y � 0. We have 0 = trace(MYMT ) = trace(MVVT MT ) = ‖MV‖2F , where F indicates
the Frobenius norm, and so MV = 0, which implies MY = (MV)VT = 0.

(iii ) ⇒ (i ): Ax = b is clear from (8.8). Also AX = bxT , which implies AXAT =

bbT , so diag(AXAT ) = b ◦b. �

Because C is a subset of the positive semidefinite matrices, Proposition 8.3

implies that the constraints MYMT = 0 and MY = 0 are redundant for R.

Corollary 8.1. Define M :=
(
b, −A

)
. Then every Y ∈ R satisfies the additional

equations MYMT = 0 and MY = 0.

Proposition 8.3 also establishes that R lacks interior, where by definition Y ∈ R
is interior if Y ∈ int(C). Since C is contained in the positive semidefinite matrices,
int(C) is contained in the positive definite matrices. As every Y ∈ R has nontrivial
null space as demonstrated by MY = 0, every Y ∈ R is not positive definite, i.e.,
R∩ int(C) = ∅.

8.2.3 Extraneous Variables

It is sometimes possible to eliminate the variable x in R and consequently express R
in terms of a slightly smaller cone C0 instead of C. The coneC0 is the set of matrices
that are completely positive overK :

C0 :=

⎧⎪⎪⎨⎪⎪⎩
∑

k

zk(zk)T : zk ∈ K
⎫⎪⎪⎬⎪⎪⎭ .

The key property we require is the following:

∃ y ∈ �m s.t. ATy ∈ K∗, bTy = 1, (8.9)

where K∗ := {s ∈ �n : sT x ≥ 0 ∀ x ∈ K} is the dual cone of K . In this subsection,
we assume (8.9) and define

α := ATy ∈ K∗. (8.10)
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A direct consequence of (8.9) is that αT x = 1 is redundant forL. So Theorem 8.1
establishes that

R = clconv(L1) = clconv
(
L1∩

{
x : αT x = 1

})

= R∩
{(

1 xT

x X

)
:
αT x = 1
αT Xα = 1

}
.

In other words, αT x = 1 and αT Xα = 1 are redundant for R. Now applying
Proposition 8.3, we see

(
1, −αT

) (1
x

)
= 0 ⇐⇒ x = Xα

and so

R =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
1 αT X

Xα X

)
∈ C :

AXα = b
diag(AXAT ) = b ◦b
αT Xα = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

Finally, the equations αT Xα = 1 and

(
1 αT X

Xα X

)
=

(
α I

)T
X

(
α I

)

along with α ∈ K∗ demonstrate that

X ∈ C0 =⇒
(

1 αT X
Xα X

)
∈ C.

Moreover, the converse holds because the bottom-right n×n principal submatrix of
a matrix in C is necessarily in C0. Hence:

Theorem 8.2. Suppose (8.9) holds, and define α via (8.10). Then

R =
{(

1 αT X
Xα X

)
: X ∈ R0

}

where

R0 :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X ∈ C0 :

AXα = b
diag(AXAT ) = b ◦b
αT Xα = 1

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
.

In addition, R0 := clconv
(
{xxT : x ∈ L}

)
.

Besides a more compact representation, an additional benefit of R0 over R is
that R0 may have an interior, whereas R never does (see discussion in previous
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subsection). This is an important feature of R0 since the existence of an interior
is generally a benefit both theoretically and computationally. However, it seems
difficult to establish general conditions under which R0 is guaranteed to have an
interior. This is due in part to the general data (A,b) but also to the fact that not
much is known about the structure of the interior of C0. The paper [18] studies the
case when K =�n

+.

8.2.4 Quadratic Constraints

Consider a quadratic function xT Fx+2 f T x, and define

φ∗ :=min
x∈L

(
xT Fx+2 f T x

)
, φ∗ :=max

x∈L
(
xT Fx+2 f T x

)
.

We wish to establish conditions under which a result similar to Theorem 8.1 holds
for the further constrained feasible set

L′ :=L∩{x : xT Fx+2 f T x = φ∗}.

In addition to the sets L∞ and L0∞ already defined in Sect. 8.2.1, define

(L′)1 :=
{(

1
x

)(
1
x

)T
: x ∈ L′

}

R′ := R∩
{(

1 xT

x X

)
: F •X+2 f T x = φ∗

}
,

where • indicates the trace inner product.

Theorem 8.3. Suppose both φ∗ and φ∗ are finite and there exists x̄ ∈ L′ such that
dT (Fx̄+ f ) = 0 for all d ∈ L∞. Then R′ = clconv

(
(L′)1

)
.

Proof. Analogous to Propositions 8.1 and 8.2, we argue

conv((L′)1)+ cone(L0∞) ⊆ clconv((L′)1)

clconv((L′)1) ⊆ R′ ⊆ conv((L′)1)+ cone(L0∞).

To prove the first, we imitate the proof of Proposition 8.1, except here we
specifically choose x̄ as hypothesized. The only thing to check is that Yε ∈
conv((L′)1) or, more specifically, that x̄+dk/

√
εk ∈ L′. It suffices to show x̄+d ∈ L′

for all d ∈ L∞. We already know x̄+d ∈ L. It remains to show

(x̄+d)T F(x̄+d)+2 f T (x̄+d) = φ∗ ⇐⇒
dT Fd+2dT (Fx̄+ f ) = 0 ⇐⇒
dT Fd = 0
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which is true since −∞ < φ∗ and φ∗ < ∞; otherwise, d would be a direction of
recession to drive xT Fx+2 f T x to −∞ or∞.

To prove the second, we imitate the proof of Proposition 8.2. The inclusion
conv((L′)1) ⊆ R′ is clear. For the second inclusion, the representation (8.7) holds
without change. We next show that the constraint F • X + 2 f T x = φ∗ implies
(xk)T Fxk + 2 f T xk = φ∗ for all k ∈ P. From the previous paragraph, we know
(dk)T Fdk = 0 for all k ∈ Z. Hence

φ∗ = F •X+2 f T x =
∑

k∈P

λk

(
(xk)T Fxk +2 f T xk

)
.

By the definition of φ∗, each summand on the right is at least λkφ∗, and since λk > 0
and

∑
k∈Pλk = 1, it follows that each (xk)T Fxk +2 f T xk = φ∗, as desired. �


A common situation in which the condition dT (Fx̄+ f ) = 0 for all d ∈ L∞ occurs
when L is bounded and consequently L∞ = {0}. Another situation is when all
variables x j involved in xT Fx+2 f T x are bounded.

As an example, consider the quadratic equation xix j = 0 when L implies both xi

and x j are nonnegative and bounded. Then Theorem 8.3 shows that the constraint
Xi j = 0 in R′ captures the complementarity constraint xix j = 0. Similarly, the binary
condition xi ∈ {0,1} is captured by the equations x2

i = xi and Xii = xi whenever L
implies 0 ≤ xi ≤ 1.

Theorem 8.3 also gives the following convex-hull result, which is significant
because L′ is generally nonconvex.

Corollary 8.2. clconv(L′) =
{

x :

(
1 xT

x X

)
∈ R′ for some X

}
.

Said differently, the closed convex hull of L intersected with the equation xT Fx+
2 f T x = φ∗ is the projection of R′ onto the coordinates corresponding to x.

Multiple quadratic constraints {xT F jx+2( f j)T x = (φ j)∗}, where

(φ j)∗ :=min{xT F jx+2( f j)T x : x ∈ L},
(φ j)∗ :=max{xT F jx+2( f j)T x : x ∈ L},

may be easily incorporated as long as there exists x̄ ∈L satisfying all of the quadratic
constraints and each quadratic constraint individually satisfies the assumptions of
Theorem 8.3.

8.3 Optimization and Duality Results

In this section, we apply the convex hull results of Sect. 8.2 to the optimization (8.2)
and related problems. We then discuss some basic duality results.
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8.3.1 Optimization

By standard results, (8.2) may be expressed as

ν∗ =min
{
Q̂•Y : Y ∈ clconv(L1)

}
, where Q̂ :=

(
0 cT

c Q

)
.

Thus, Theorem 8.1 implies

ν∗ =min
{
Q̂•Y : Y ∈ R

}
. (8.11)

We formally state the relationship between (8.2) and (8.11) in the following
corollary.

Corollary 8.3. The nonconvex quadratic conic program (8.2) is equivalent to the
linear conic program (8.11), i.e.: (i) both share the same optimal value; (ii) if

Y∗ =
(

1 (x∗)T

x∗ X∗

)

is optimal for (8.11), then x∗ is in the convex hull of optimal solutions for (8.2).

Proof. Item (i) follows from the preceding discussion. To prove (ii), we assume
without loss of generality that ν∗ > −∞ and claim dT Qd ≥ 0 for all d ∈ L∞. If not,
then there exists a nonnegative direction d along which the objective xT Qx+ 2cT x
can be driven to −∞.

Item (ii) is then proved by examining the representation (8.7) for Y∗. In such a
case, we must have xk optimal for (8.2) for all k ∈ P; otherwise, Q̂ •Y∗ could not
equal ν∗. In fact, we know (zk)T Qzk = 0 for all k ∈ Z. Since x∗ =

∑
k∈P λkxk, item (ii)

follows. �

Note that item (ii) of the corollary does not imply that x∗ is itself optimal, just that
it is a convex combination of optimal solutions.

In the context of Sect. 8.2.3, we also conclude that (8.2) is equivalent to

min
{
Q•X+2cT Xα : X ∈ R0

}
(8.12)

as stated in the following corollary of Theorem 8.2.

Corollary 8.4. Suppose (8.9) holds, and define α via (8.10). Then (8.12) is
equivalent to (8.2), i.e.: (i) both share the same optimal value; (ii) if X∗ is optimal
for (8.12), then X∗α is in the convex hull of optimal solutions for (8.2).

A similar results also holds for the situation of quadratic constraints discussed in
Sect. 8.2.4 relative to the optimization problems
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min

{
xT Qx+2cT x :

Ax = b, x ∈ K
xT Fx+2 f T x = φ∗

}
(8.13)

min
{
Q̂•Y : Y ∈ R′

}
. (8.14)

Corollary 8.5. Suppose both φ∗ and φ∗ are finite and there exists x̄ ∈ L′ such that
dT (Fx̄+ f ) = 0 for all d ∈L∞. Then (8.14) is equivalent to (8.13), i.e.: (i) both share
the same optimal value; (ii) if

Y∗ =
(

1 (x∗)T

x∗ X∗

)

is optimal for (8.14), then x∗ is in the convex hull of optimal solutions for (8.13).

8.3.2 Duality

We now investigate some basic duality results for the linear conic problem (8.11),
which is equivalent to (8.2) via Corollary 8.3. We first prove a technical detail that
helps to interpret some of the results.

Proposition 8.4. Suppose A has full row rank. Then the constraints of problem
(8.11) have the full-row-rank property.

Proof. The full-row-rank property for (8.11) is equivalent to linear independence of
the following 2m+1 matrices (i = 1, . . . ,m):

(
1 0
0 0

)
,

(
0 aT

i
ai 0

)
,

(
0 0
0 aiaT

i

)

where aT
i is the i-th row of A. Because the three types of matrices act in different

portions of the matrix space, it suffices to show that the three types are separately
independent. The first is a singleton; so independence is clear. For the second type,
independence holds because A has full row rank. For the third, let di be multipliers
such that m∑

i=1

diaia
T
i = 0 ⇐⇒ AT DA = 0

where D is the diagonal matrix containing di. Since A has full row rank, (AAT )−1

exists, and so AAT DAAT = 0⇔ D = 0, as desired. �

The dual cone of C is

C∗ :={S : S •Y ≥ 0 ∀ Y ∈ C}

=

{
S :

(
ζ
z

)T
S
(
ζ
z

)
≥ 0 ∀

(
ζ
z

)
∈ �+ ×K

}
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with interior

int(C∗) :=
{
S :

(
ζ
z

)T
S
(
ζ
z

)
> 0 ∀ 0 �

(
ζ
z

)
∈ �+ ×K

}
.

Note that int(C∗) � ∅; for example, any positive definite S is an element of int(C∗).
We useC∗ to derive the dual of the formulation (8.11). By standard constructions,

the dual is

max

⎧⎪⎪⎨⎪⎪⎩λ+bTy+ (b ◦b)Tw : Q̂−
⎛⎜⎜⎜⎜⎜⎝
λ 1

2y
T A

1
2 ATy AT Diag(w)A

⎞⎟⎟⎟⎟⎟⎠ ∈ C∗
⎫⎪⎪⎬⎪⎪⎭ . (8.15)

In general, one needs to verify some constraint qualification in order to guarantee
that strong duality holds. As mentioned in the previous subsection, (8.11) never has
an interior. This implies that the level sets of (8.15) are unbounded under Proposition
8.4 [2], which includes the optimal solution set (if it exists). If (8.15) has interior,
then the optimal value ν∗ of (8.11) is attained. One checkable, sufficient condition
for (8.15) to have an interior is stated in the following proposition.

Proposition 8.5. Suppose there exist λ,y,w such that

Q̂−
⎛⎜⎜⎜⎜⎜⎝
λ 1

2y
T A

1
2 ATy AT Diag(w)A

⎞⎟⎟⎟⎟⎟⎠ � 0.

Then (8.15) has interior, and (8.11) attains its optimal value ν∗.

8.4 Working with the Cone C

In this section, we restrict our attention to cones K that are the Cartesian product
of a nonnegative orthant, second-order cones, semidefinite cones, and a Euclidean
space.

8.4.1 Basic Results

In general, the conesC and C∗ are intractable. For example, whenK =�n
+, checking

S ∈ C∗ is co-NP complete [27]. On the other hand, some basic results are known or
straightforward to prove. We define

I := {x ∈ �n : x1 ≥ ‖(x2, . . . , xn)‖} (second-order or “ice cream”)

P := {X symmetric matrix : X � 0} (positive semidefinite)

N := {X square matrix : X ≥ 0} (nonnegative)
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In each of the following propositions,C is the set of (n+1)× (n+1) matrices, which
are completely positive over�+ ×K :

Proposition 8.6. IfK =�n
+, then C⊆P∩N . In addition, equality holds if and only

if n ≤ 3.

Proof. The definition of X ∈ C implies X ∈ P∩N . The low-dimension result is due
to [26]. �

To keep the dimensions clear, we caution the reader that P∩N consists of size
(n+1)× (n+1) matrices.

Proposition 8.7. If K = In, then

C ⊆
⎧⎪⎪⎨⎪⎪⎩

(
χ xT

x X

)
� 0 :

x ∈ In

X22+ · · ·+Xnn ≤ X11

⎫⎪⎪⎬⎪⎪⎭ .

Proof. Let x̄ ∈ I. To prove the result, it suffices to show

⎛⎜⎜⎜⎜⎜⎝
χ xT

x X

⎞⎟⎟⎟⎟⎟⎠ :=

(
1
x̄

)(
1
x̄

)T

=

⎛⎜⎜⎜⎜⎜⎝
1 x̄T

x̄ x̄x̄T

⎞⎟⎟⎟⎟⎟⎠

is in the right-hand-side set. Positive semidefiniteness is clear, and so is x ∈ I. The
constraint X22 + · · · + Xnn ≤ X11 is equivalent to x̄2

2 + · · · + x̄2
n ≤ x̄2

1, which is true
because x̄ ∈ I. �

In fact, [35] shows that

C0 := cone({xxT : x ∈ I}) = {X � 0 : X22+ · · ·+Xnn ≤ X11}

which can be viewed as a strengthening of Proposition 8.7 in the bottom-right n×n
block.

Proposition 8.8. If K =�n, then C = P.

Proof. C ⊆ P is clear. To prove the reverse inclusion, let Y ∈ P and write a Gram
representation Y =

∑
k y

k(yk)T for yk ∈ �n+1. Without loss of generality, the first
component of each yk is nonnegative; if not, just negate yk without affecting yk(yk)T .
This shows Y ∈ C. �


In the next subsection, we discuss further results for the case K =�n
+. To our

knowledge, however, the above are the only known results for K involving Eu-
clidean spaces and second-order cones. Nothing is known whenK is a semidefinite
cone. In addition, the case whenK is the mixed Cartesian product of such cones has
not been studied.



214 S. Burer

8.4.2 More When K =�n
+

The case of the nonnegative orthant, i.e., when K = �n
+ and C is the cone of

completely positive matrices, has received considerable attention in the literature.
The recent monograph [4] studies C from the point of view of linear algebra, and
the survey [25] covers C∗ from the point of view of convex analysis. We focus on
relatively recent results from the optimization point of view.

As mentioned in the Introduction, [13, 30] discuss a hierarchy of linear- and
semidefinite-representable cones approximatingC∗ from the inside. More precisely,
there exist closed, convex cones D∗r (r = 0,1,2, . . .) such that D∗r ⊂ D∗r+1 for all
r ≥ 0 and cl(∪rD∗r ) = C∗. The corresponding dual cones Dr approximate C from
the outside: Dr ⊃ Dr+1 for all r and ∩rDr = C. Explicit representations of the
approximating cones have been worked out in [6, 30]. For example,D0 is the cone
of so-called doubly nonnegative matrices – P∩N as introduced in Proposition 8.6.
Moreover, using these approximating cones, [6,22,31] prove approximation results
for several NP-hard problems. Variations of Dr and D∗r have been presented in
[31, 37], and adaptive polyhedral approximations similar in spirit have been
presented in [8]. Another type of hierarchy is presented in [12].

A recent line of research has examinedC for small values of n. This can shed light
on larger completely positive matrices since principal submatrices are completely
positive. According to Proposition 8.6, 5 × 5 is the smallest size for which the
doubly nonnegative matrices do not capture the completely positive matrices. (This
corresponds to n = 4 in our notation.) The papers [11, 15] provide closed-form
inequalities to separate structured 5 × 5 matrices in P ∩N \ C. [12] provides a
separation algorithm for 5× 5 completely positive matrices, which establishes that
5×5 completely positive matrices are tractable.

Computationally, approaches involving techniques of the two preceding para-
graphs have mostly been limited to small or medium sized problems. For the
approximating cones Dr and D∗r , the size of the description of these cones grows
exponentially with r, and even r= 0 can present a challenge for off-the-shelf interior-
point methods for, say, n ≥ 100. Working with 5×5 principal submatrices of an n×n
completely positive matrix also presents challenges because there are O(n5) such
submatrices.

As an alternative to interior-point methods, several large-scale algorithms [10,
36, 38] have been used to solve semidefinite programs over D0 = P∩N . The key
idea is to decouple the positive semidefinite constraint of P from the nonnegativity
constraint of N , and then to devise an algorithmic framework that nevertheless
handles the decoupling, e.g., a decomposition method. Successful results have been
reported up to n≈1,000. Exploiting symmetry [14,23] is also a promising technique
to increase the size of solvable problems.

The authors of [8] also report the success of their adaptive algorithm for solving
copositive programs on standard quadratic programs (see Sect. 8.5) up to size
n = 10,000.
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8.5 Applications

We close this chapter with a brief discussion of a few specific applications of linear
conic programs over C that have appeared in the literature. The applications are
given roughly in chronological order.

As far as we are aware, [7] establishes the first copositive representation of an
NP-hard problem.

Theorem 8.4. The standard quadratic program min{xT Qx : eT x = 1, x ≥ 0} is
equivalent to the linear conic program min{Q • X : eT Xe = 1,X ∈ C0}, where C0

is the cone of matrices, which are completely positive over K =�n
+, and e ∈ �n is

the all-ones vector.

The paper [13] shows that the NP-hard maximum stable set problem is a completely
positive program.

Theorem 8.5. Let G = (V,E) be an undirected graph with vertex set V = {1, . . . ,n}
and edge set E ⊆ V ×V. The maximum stable set problem on G is equivalent to the
linear conic program

max

{
eT Xe :

Xi j = 0 ∀ (i, j) ∈ E
trace(X) = 1,X ∈ C0

}

where C0 is the cone of matrices, which are completely positive over K =�n
+.

The authors also establish an explicit, finite bound on the size r which guarantees
that the maximum stable set size is achieved (after rounding down) whenDr is used
as an approximation of the completely positive cone. Later papers [22, 31] improve
upon this bound. Related to these results, [24] shows the following:

Theorem 8.6. The chromatic number χ of a graph G is the optimal value of a
completely positive program.

Related results can be found in [16].
In the thesis [32] and related papers [33, 34], it is shown that a certain class of

quadratic programs over transportation matrices can be represented as completely
positive programs. Transportation matrices are element-wise nonnegative with pre-
specified row- and column-sums. One example of this is the quadratic assignment
problem.

Theorem 8.7. The quadratic assignment problem can be formulated as a com-
pletely positive program.

We mention that the specific derivation of Theorem 8.7 in [34] is not subsumed
by the techniques of this chapter (though the results herein can be used to give a
second derivation of the theorem). However, Theorem 8.7 uses the Cauchy–Schwarz
inequality just as the proof of Theorem 8.1 does.

The paper [9] contains the result on which this chapter is primarily based.
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Theorem 8.8. Any nonconvex quadratic program having a mix of binary and
continuous variables, as well as complementarity constraints on bounded variables,
can be formulated as a completely positive program.

Using similar proof techniques, [28] shows the following:

Theorem 8.9. Consider a 0-1 integer program with uncertain objective vector,
which nevertheless has known first moment vector and second moment matrix. The
expected optimal value of the integer program can be formulated as a completely
positive program.

This theorem finds applications in order statistics and project management.
Combining Theorem 8.1 and the low-dimensional case of Proposition 8.6, which

establish C = P∩N for n ≤ 3, [1] investigates low-dimensional convex hulls.

Theorem 8.10. Let K =�n
+. For n ≤ 3,

clconv(L1) =

{(
1 xT

x X

)
∈ P∩N :

Ax = b
diag(AXAT ) = b ◦b

}
.

For n ≤ 4, suppose in addition that (8.9) holds, and define α via (8.10). Then

clconv(L1) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

(
1 αT X

Xα X

)
:

AXα = b
diag(AXAT ) = b ◦b
αT Xα = 1
X ∈ P∩N

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

The authors use this approach, for example, to derive a closed-form representation of

clconv
({(

1
x

)(
1
x

)T
: 0 ≤ x ≤ e

})

where x ∈ �2, which previously had only been partially characterized in the global
optimization literature. To achieve the result, the authors add slack variables to form
the system {(x, s) ≥ 0 : x+ s = e} and then apply the theorem with dimension n = 4.

Acknowledgements The author wishes to thank Mirjam Dür and Janez Povh for stimulating
discussions on the topic of this chapter. The author also acknowledges the support of National
Science Foundation Grant CCF-0545514.

References

1. Anstreicher, K.M., Burer, S.: Computable representations for convex hulls of low-dimensional
quadratic forms. Mathematical Programming (series B) 124, 33–43 (2010)

2. Ben-Tal, A., Nemirovski, A.: Lectures on modern convex optimization: Analysis, algorithms,
and engineering applications. MPS/SIAM Series on Optimization. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA (2001)



8 Copositive Programming 217

3. Berman, A., Rothblum, U.G.: A note on the computation of the CP-rank. Linear Algebra Appl.
419, 1–7 (2006)

4. Berman, A., Shaked-Monderer, N.: Completely Positive Matrices. World Scientific (2003)
5. Bomze, I., Jarre, F.: A note on Burer’s copositive representation of mixed-binary QPs.

Optimization Letters 4, 465–472 (2010)
6. Bomze, I.M., de Klerk, E.: Solving standard quadratic optimization problems via linear,

semidefinite and copositive programming. Dedicated to Professor Naum Z. Shor on his 65th
birthday. J. Global Optim. 24(2), 163–185 (2002)

7. Bomze, I.M., Dür, M., de Klerk, E., Roos, C., Quist, A.J., Terlaky, T.: On copositive
programming and standard quadratic optimization problems. J. Global Optim. 18(4), 301–320
(2000)

8. Bundfuss, S., Dür, M.: An adaptive linear approximation algorithm for copositive programs.
SIAM J. Optim. 20(1), 30–53 (2009)

9. Burer, S.: On the copositive representation of binary and continuous nonconvex quadratic
programs. Mathematical Programming 120, 479–495 (2009)

10. Burer, S.: Optimizing a polyhedral-semidefinite relaxation of completely positive programs.
Mathematical Programming Computation 2(1), 1–19 (2010)

11. Burer, S., Anstreicher, K.M., Dür, M.: The difference between 5× 5 doubly nonnegative and
completely positive matrices. Linear Algebra Appl. 431(9), 1539–1552 (2009)

12. Burer, S., Dong, H.: Separation and relaxation for cones of quadratic forms. Manuscript,
University of Iowa (2010) Submitted to Mathematical Programming.

13. de Klerk, E., Pasechnik, D.V.: Approximation of the stability number of a graph via copositive
programming. SIAM J. Optim. 12(4), 875–892 (2002)

14. de Klerk, E., Sotirov, R.: Exploiting group symmetry in semidefinite programming relaxations
of the quadratic assignment problem. Math. Programming 122(2, Ser. A), 225–246 (2010)

15. Dong, H., Anstreicher, K.: Separating Doubly Nonnegative and Completely Positive Matrices.
Manuscript, University of Iowa (2010) To appear in Mathematical Programming. Available at
http://www.optimization-online.org/DB HTML/2010/03/2562.html.

16. Dukanovic, I., Rendl, F.: Copositive programming motivated bounds on the stability and the
chromatic numbers. Math. Program. 121(2, Ser. A), 249–268 (2010)

17. Dür, M.: Copositive Programming—A Survey. In: Diehl, M., Glineur, F., Jarlebring, E.,
Michiels, W. (eds.) Recent Advances in Optimization and its Applications in Engineering,
pp. 3–20. Springer (2010)

18. Dür, M., Still, G.: Interior points of the completely positive cone. Electron. J. Linear Algebra
17, 48–53 (2008)

19. Eichfelder, G., Jahn, J.: Set-semidefinite optimization. Journal of Convex Analysis 15, 767–801
(2008)

20. Eichfelder, G., Povh, J.: On reformulations of nonconvex quadratic programs over convex
cones by set-semidefinite constraints. Manuscript, Faculty of Information Studies, Slovenia,
December (2010)

21. Faye, A., Roupin, F.: Partial lagrangian relaxation for general quadratic programming. 4OR 5,
75–88 (2007)
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