
Second-Order-Cone Constraints for
Extended Trust-Region Subproblems

Samuel Burer∗ and Kurt M. Anstreicher†

Department of Management Sciences
University of Iowa

Iowa City, IA, 52242-1994, USA

March 4, 2011
Revised: July 7, 2012

Revised: November 16, 2012

Abstract

The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic ob-
jective over the unit ball. In this paper, we consider extensions of TRS having extra
constraints. When two parallel cuts are added to TRS, we show that the resulting non-
convex problem has an exact representation as a semidefinite program with additional
linear and second-order-cone constraints. For the case where an additional ellipsoidal
constraint is added to TRS, resulting in the “two trust-region subproblem” (TTRS),
we provide a new relaxation including second-order-cone constraints that strengthens
the usual SDP relaxation.

Keywords: trust-region subproblem, second-order cone programming, semidefinite
programming, nonconvex quadratic programming.

Mathematics Subject Classification: 90C20, 90C22, 90C25, 90C26, 90C30.

1 Introduction

The classical trust-region subproblem (TRS) minimizes a nonconvex quadratic objective over

the unit ball: v(TRS) := min{xTQx + cTx : ‖x‖ ≤ 1}. TRS is a key subproblem in trust-

region methods for nonlinear optimization [6], and several efficient algorithms are available

for its solution [8, 11, 16]. The complexity to construct an ε-optimal solution of TRS is

∗Email: samuel-burer@uiowa.edu. The research of this author was supported in part by NSF Grant
CCF-0545514.
†Email: kurt-anstreicher@uiowa.edu.

1

considered in [7, 20]. Although TRS is nonconvex, it is well known that v(TRS) equals the

optimal value of the following polynomial-time solvable semidefinite program (SDP) [16]:

v(TRS) = min
{
Q •X + cTx : trace(X) ≤ 1, X � xxT

}
. (1)

Indeed, this equivalence with a convex problem provides one perspective on the tractability

of TRS; [18] provides another. For additional background on TRS, we refer the reader to

[16, Section 1.1].

The paper [16] also mentions several applications of TRS with additional constraints.

For example, [5] presents a sequential quadratic programming method that makes use of

the two trust-region subproblem (TTRS), which is TRS with an additional strictly convex

quadratic constraint. Another variant has a second non-strictly convex quadratic constraint

[21]. TRS with extra constraints also arises in the analysis and relaxation of NP-hard com-

binatorial optimization problems [14], where semidefinite programming plays an important

role. Indeed, any quadratically constrained quadratic program (QCQP) with at least one

strictly convex quadratic constraint can be viewed as an extension of TRS, with a natural

semidefinite relaxation. The exact nature of the additional constraints, of course, determines

the strength of that relaxation.

For the case where a single linear constraint aTx ≤ u is added to TRS—a problem which

we denote as TRS1—the paper [19] shows that the problem’s optimal value can also be

calculated by solving a convex program, in this case an SDP with one added second-order

cone (SOC) constraint:

min

{
Q •X + cTx :

‖ux−Xa‖ ≤ u− aTx
trace(X) ≤ 1, X � xxT

}
. (2)

The derivation of the constraint ‖ux − Xa‖ ≤ u − aTx in (2) appears to be unique in

the literature. To generate valid linear constraints in (x,X), a common approach involves

multiplying together two valid linear constraints in x to create a redundant quadratic con-

straint, which is then linearized via X = xxT . Such constraints are commonly referred to

as “RLT” constraints, after the reformulation-linearization technique of [17]. In contrast,

the SOC constraint in (2) is obtained by linearizing the valid quadratic SOC constraint

‖(u−aTx)x‖ = (u−aTx)‖x‖ ≤ u−aTx. We call an SOC constraint obtained in this fashion

an “SOC-RLT” constraint. Subsequent to [19], SOC-RLT constraints have also appeared in

[21] and [4].

In this paper, we study TRS with extra constraints, and in particular, we are interested

in tight SDP relaxations that employ ordinary RLT and SOC-RLT constraints. We focus on

2

four problems, which are organized by the complexity of the geometry of their feasible regions:

(i) TRS1, which is TRS with one cut; (ii) TRS2p, which is TRS with two parallel cuts; (iii)

TRS2, which is TRS with two general cuts (either intersecting or non-intersecting within the

ball {x : ‖x‖ ≤ 1}); and (iv) TTRS, which is TRS with a second full-dimensional ellipsoid

constraint. Note that two parallel cuts can be viewed as a degenerate ellipsoidal constraint.

In Section 2, we re-prove the result of [19], which shows that TRS1 is representable as

a mixed SOCP/SDP. Our proof of this result introduces important machinery that will be

required later in the paper. In Section 3, we show that TRS2p also has a representation as an

SDP with three added constraints: a single RLT constraint and two SOC-RLT constraints.

Then in Section 4, we provide an example to show that the analogous SDP is not tight for

TRS2, at least when the two cuts are intersecting. Finally, in Section 5, we provide a new

family of polynomial-time separable SOC-RLT constraints for TTRS (which in fact apply to

any QCQP with two or more convex quadratic constraints). We show that the use of these

constraints resolves several known examples where there is a gap between the solution value

of TTRS and its standard SDP relaxation. At the same time, we show instances of TTRS

where the addition of our new SOC-RLT constraints to the SDP relaxation closes most—but

not all—of the gap.

An important implication of our results is that the computational complexity of solving

an extended trust-region problem is highly dependent on the geometry of the feasible set.

For example, if the feasible set is a ball cut by two parallel half spaces (TRS2p), then

the problem is polynomial-time solvable. On the other hand, if the two half-spaces are

not parallel and furthermore intersect within the ball (the intersecting case of TRS2), the

complexity is unknown. A more complicated geometry (e.g., TTRS) appears to be even

more difficult.

Both TRS2p and TTRS were considered in [21], where the authors establish “trajectory

following” procedures that solve these problems. (As far as we are aware, [21] is the only

paper in the literature to study TRS2p formally, and in fact this paper motivated our study

here.) The procedure for TRS2p is actually polynomial-time but requires the consideration

of two separate cases. The procedure for TTRS is not known to be polynomial but ap-

pears to be quite efficient in practice. The authors of [21] asked whether there are exact

convex formulations of TRS2p and TTRS. This paper answers the question affirmatively for

TRS2p and also provides a tighter—but still not exact—relaxation scheme for TTRS. The

computational complexity of TTRS remains an open question.

We point out that TTRS is a well studied problem. A classic reference establishing

optimality conditions is Peng and Yuan [13], and this paper cites many references from the

1990s. More recently, Beck and Eldar [2] and Ai and Zhang [1] also consider TTRS (and

3

generalizations of it), and Ai-Zhang give a thorough background on TTRS up until 2009.

Each of these papers is concerned with necessary and/or sufficient conditions describing when

the standard SDP relaxation of TTRS is tight. Of course, these conditions do not apply to

all instances. The approach that we take in this paper is to strengthen the SDP relaxation

generally, and we demonstrate the success of our approach computationally.

Notation. For symmetric matrices X and Y , Y � X denotes that Y − X is positive

semidefinite, and X • Y is the matrix inner product X • Y = trace(XY). The operator

diag(X) returns the diagonal of X as a vector, and X·j denotes the jth column of X. We

use e to denote a vector of suitable dimension with each component equal to one, and e1

to denote a vector whose first component is one and whose remaining components are zero.

For a vector u we use (1;u) to denote the vector
(
1
u

)
.

2 TRS with one cut

In this section, we study the problem TRS1, which is the ordinary TRS with an additional

linear constraint aTx ≤ u. In particular, we re-establish the result of Sturm and Zhang [19]

that v(TRS1) can be represented as the optimal value of a mixed SOCP/SDP. Our intent is

to introduce machinery that will be needed in Section 3 and to provide an alternative proof

of the result that may be of independent interest. (Beck and Eldar [2] also studied TRS1

but only discussed conditions under which the basic SDP relaxation is tight.)

In order to simplify notation (here and in Section 3), we employ an orthogonal transfor-

mation of <n to put TRS1 in the form

v(TRS1) := min
{
xTQx+ cTx : x1 ≤ u, ‖x‖ ≤ 1

}
.

For the problem in this form, the corresponding SOCP/SDP relaxation is

r(TRS1) := min

{
Q •X + cTx :

‖ux−X·1‖ ≤ u− x1
trace(X) ≤ 1, X � xxT

}
. (3)

By the following proposition, (3) is equivalent to the SOCP/SDP relaxation (2) that would

be obtained without first performing the orthogonal transformation.

Proposition 1. Let P be an orthogonal matrix such that Pa = e1. Then the feasible sets of

(3) and

min

{
(PQP T) • Z + (P T c)T z :

‖uz − Za‖ ≤ u− aT z
trace(Z) ≤ 1, Z � zzT

}

4

are in bijective correspondence via the invertible mapping (x,X) ↔ (Pz, PZP T). In ad-

dition, corresponding points (x,X) and (z, Z) share the same objective value, so that the

optimal values are equal.

Proof. Let (z, Z) be feasible, and define (x,X) = (Pz, PZP T). Then

‖ux−X·1‖ = ‖uPz − PZP T e1‖ = ‖P (uz − Za)‖ = ‖uz − Za‖

≤ u− aT z = u− eT1 Pz = u− x1.

Also, trace(X) = trace(PZP T) = trace(Z) ≤ 1 and X = PZP T � PzzTP T = xxT . So

(x,X) is feasible. Given feasible (x,X), a similar argument shows that (z, Z) = (P Tx, P TXP)

is feasible. Moreover Q • X + cTx = Q • (PZP T) + cT (Pz) = (P TQP) • Z + (P T c)z, and

therefore corresponding objective values are equal.

We would like to prove r(TRS1) = v(TRS1). We will accomplish this by showing that

every extreme point (x,X) of the feasible set of (3) satisfies rank[Y (x,X)] = 1, where

Y (x,X) :=

(
1 xT

x X

)
.

Note that rank[Y (x,X)] = 1 ⇐⇒ X = xxT . Our proof relies in part on the following result

for extreme points of semidefinite constraint systems due to Pataki [12]:

Proposition 2. Consider an SDP feasible set in block standard form: F := {Xj � 0, j =

1, . . . , p :
∑p

j=1A
j
i •Xj = bi, i = 1, . . . ,m}. Let (X1, . . . , Xp) be an extreme point of F , and

define rj := rank(Xj). Then
∑p

j=1 rj(rj + 1) ≤ 2m.

Using Proposition 2, we can give a very short proof of the following lemma that shows

that the SDP representation of TRS in (1) is correct.

Lemma 1. Suppose that (x,X) is an extreme point of the convex set {(x,X) : trace(X) ≤
θ, X � xxT} for some θ > 0. Then X = xxT .

Proof. The given convex set can be expressed in the form of Proposition 2 as

F :=

{
Y =

(
χ xT

x X

)
� 0, s ≥ 0 : χ = 1, trace(X) + s = θ

}
,

and clearly (x,X) is extreme if and only if the corresponding (Y, s) is extreme. Proposition 2

then implies that if (Y, s) is extreme in F , rY (rY +1)+rs(rs+1) ≤ 4, where rY = rank(Y) and

rs = rank(s). Then rY ≤ 1, and since Y 6= 0 it must be that rY = 1, implying X = xxT .

5

To analyze TRS1 we need one additional result, which will also be used in Section 3.

Lemma 2. Suppose that X � xxT and X11 = x21. Then X·1 = x1x. If in addition (x,X) is

an extreme point of the feasible set of (3), then X = xxT .

Proof. Since Y (x,X) � 0, for all j = 2, . . . , n,

det

 1 x1 xj

x1 X11 Xj1

xj Xj1 Xjj

 = (X11 − x21)(Xjj − x2j)− (Xj1 − x1xj)2 ≥ 0. (4)

Hence, X11 = x21 implies X·1 = x1x.

Now assume that (x,X) is an extreme point of (3). Let x̄ denote the last n−1 components

of x and X̄ denote the bottom-right (n−1)×(n−1) principal submatrix ofX. If x1 = X11 = 1,

then x̄ = 0 and X̄ = 0, so X = e1e
T
1 = xxT . If x1 < 1, then (x̄, X̄) is feasible for the lower-

dimensional set F (x1) := {(w,W) : trace(W) ≤ 1 − x21,W � wwT}. In addition, any

(w,W) ∈ F (x1) can be used to construct a feasible point of (3) via the linear mapping

(
1 wT

w W

)
→

 1 0

x1 0

0 I

(1 w

w W

)(
1 x1 0

0 0 I

)
=

 1 x1 wT

x1 x21 x1w
T

w x1w W

 .

In particular, (x,X) is the image of (x̄, X̄) under this mapping. As a result, since (x,X) is

extreme in (3), (x̄, X̄) must be extreme in F (x1). Then Lemma 1 implies that every extreme

point of F (x1) has W = wwT , which implies X = xxT .

We are now ready to prove that every extreme point (x,X) of (3) satisfies X = xxT . We

employ a proof technique that takes a general (x,X) that is feasible for (3) and writes Y (x,X)

as a structured convex combination of other feasible points. The structure is specific enough

so that, when one also assumes (x,X) to be extreme, then one can prove rank(Y (x,X)) = 1

as desired. However, we caution the reader that the structure of the convex combination

is not particularly intuitive, though we have tried to simplify the presentation as much as

possible. A similar approach is used throughout Section 3.

Theorem 1. Every extreme point (x,X) of the feasible set of (3) satisfies X = xxT .

Proof. Let (x,X) be an extreme point of (3). We break the proof into the following cases:

x1 = u; x1 < u and ‖ux−X·1‖ = u− x1; or x1 < u and ‖ux−X·1‖ < u− x1.
Assume first that x1 = u, in which case X·1 = ux. Then X11 = ux1 = x21, and by Lemma

2, X = xxT .

6

Next assume that x1 < u and ‖ux−X·1‖ < u−x1. Since the second-order-cone constraint

is inactive, (x,X) is also an extreme point of {(x,X) : trace(X) ≤ 1, X � xxT}, and so

X = xxT holds by Lemma 1.

Finally, assume that x1 < u and ‖ux −X·1‖ = u − x1. Then z := (u − x1)−1(ux −X·1)
satisfies ‖z‖ = 1 and

z1 =
ux1 −X11

u− x1
≤ ux1 − x21

u− x1
= x1 < u,

hence (z, zzT) is feasible for (3). For ε > 0, consider the rank-1 shift

Yε :=

(
χε xTε

xε Xε

)
:= Y − ε(u− x1)2yyT ,

where

y =

(
1

z

)
= (u− x1)−1

(
1 xT

x X

)(
u

−e1

)
= (u− x1)−1Y

(
u

−e1

)
.

Because y ∈ Range(Y) and Y � 0, we know Yε � 0 for sufficiently small ε > 0. Furthermore,

χε = 1− ε(u− x1)2,

trace(Xε) = trace(X − ε(u− x1)2zzT) = trace(X)− ε(u− x1)2

≤ 1− ε(u− x1)2 = χε,

and (
uχε − [xε]1
uxε − [Xε]·1

)
= Yε

(
u

−e1

)
= Y

(
u

−e1

)
− ε(u− x1)2yyT

(
u

−e1

)
= (u− x1)y − ε(u− x1)2(u− z1)y

= (u− x1) [1− ε(u− x1)(u− z1)] y,

which implies ‖uxε − [Xε]·1‖ ≤ uχε − [xε]1 for sufficiently small ε > 0 since y 6= 0 is in the

second-order cone. So χ−1ε (xε, Xε) is feasible for (3) for sufficiently small ε > 0, and the

equation Y = χε (χ−1ε Yε) + (1 − χε)yyT shows that Y is a nontrivial convex combination of

feasible points. Since Y is extreme, χ−1ε Yε must equal yyT , and rank(Y) = 1.

Corollary 1. r(TRS1) = v(TRS1).

7

3 TRS with two parallel cuts

In this section, we study the case of TRS constrained by two parallel linear inequality

constraints l ≤ aTx ≤ u, a problem which we call TRS2p. We assume throughout that

l < u, since otherwise the problem is trivially equivalent to an instance of TRS of dimension

n− 1. By an appropriate orthogonal transformation, the problem may be stated as

v(TRS2p) := min
{
xTQx+ cTx : l ≤ x1 ≤ u, ‖x‖ ≤ 1

}
.

We will consider the relaxation

r(TRS2p) := min

Q •X + cTx :

X11 + lu ≤ (l + u)x1

‖X·1 − lx‖ ≤ x1 − l
‖ux−X·1‖ ≤ u− x1

trace(X) ≤ 1, X � xxT

 . (5)

Compared to (3), the relaxation (5) contains the second SOC-RLT constraint coming from

(x1− l)‖x‖ ≤ x1− l as well as the ordinary RLT constraint coming from (u−x1)(x1 − l) ≥ 0.

As in the case of TRS1, the relaxation is equivalent to the one that would be obtained without

first using the orthogonal transformation.

Similar to Section 2, we will show r(TRS2p) = v(TRS2p) by demonstrating that every

extreme point (x,X) of the feasible set of (5) satisfies X = xxT . We need several lemmas to

accomplish this. First, a result analogous to Lemma 2 also holds for (5).

Lemma 3. Suppose (x,X) is an extreme point of the feasible set of (5) with X11 = x21. Then

X = xxT .

Proof. The proof for Lemma 2 holds. One simply notes that if W � wwT and trace(W) ≤
1− x21, then the map (

1 wT

w W

)
→

 1 x1 wT

x1 x21 x1w
T

w x1w W


results in Y (x,X) feasible for (5).

Lemma 4. Let (x,X) be feasible for (5) with X11 > x21 and X11 + lu = (l + u)x1, which

ensures l < x1 < u. Then there are z1 6= z2, both feasible for TRS2p, 0 < λ < 1, and

8

W ∈ <(n−1)×(n−1) with diag(W) ≥ 0 such that Y (x,X) = (1− λ)Y 1 + λY 2, where

Y 1 :=

(
1

z1

)(
1

z1

)T
+

0 0 0

0 0 0

0 0 W

 , Y 2 :=

(
1

z2

)(
1

z2

)T
.

Moreover rank[Y (x,X)] ≥ 2, and W = 0 if rank[Y (x,X)] = 2.

Proof. The strict inequalities l < x1 < u can be proved directly from x21 < X11 = (l+u)x1−
lu. Define

z1 :=
u− x1
X11 − x21

(
X·1 −

(
ux1 −X11

u− x1

)
x

)
z2 :=

1

u− x1
(ux−X·1)

λ :=
(u− x1)2

(u− x1)2 + (X11 − x21)
.

We first prove the existence of W such that Y (x,X) = (1 − λ)Y 1 + λY 2. From the

definitions, one can verify algebraically that x = (1−λ)z1+λz2 and X·1 = (1−λ)z11z
1+λz21z

2

(see the Appendix for details). In addition, using (4) one can also verify

(X11 − x21)
(
Xjj − (1− λ)(z1j)

2 − λ(z2j)
2
)
≥ 0

for all j ≥ 2. This proves the existence of W with diag(W) ≥ 0, as claimed. (Note that

the proof to this point does not use the assumption X11 + lu = (l+ u)x1. This is important

because we will need the same result below in Lemma 5 without this assumption.)

Next we show that z1 6= z2 are both feasible for TRS2p. Note that X11 + lu = (l + u)x1

implies that

z1 =
u− x1

(u− x1)(x1 − l)

(
X·1 −

(
l(u− x1)
u− x1

)
x

)
=

1

x1 − l
(X·1 − lx) .

Then X11− lx1 = ux1− lu implies that z11 = u, and ‖z1‖ ≤ 1 follows from ‖X·1− lx‖ ≤ x1− l.
The fact that ‖z2‖ ≤ 1 is immediate from ‖ux−X·1‖ ≤ u− x1. Moreover

z21 =
ux1 −X11

u− x1
=
lu− lx1
u− x1

= l,

because X11 + lu = (l + u)x1. Therefore z21 < u, which shows that z1 6= z2.

9

Finally we prove that rank[Y (x,X)] ≥ 2, and W = 0 if rank[Y (x,X)] = 2. Note that

the representation Y (x,X) = (1− λ)Y 1 + λY 2 shows that the first two columns of Y (x,X)

are linear combinations of (1; z1) and (1; z2) and these columns are not proportional to one

another because z11 6= z21 . Therefore rank[Y (x,X)] ≥ 2. In addition, if rank[Y (x,X)] = 2

and W 6= 0, then any nonzero column of0 0 0

0 0 0

0 0 W


must be a linear combination of (1; z1) and (1; z2), which is clearly impossible.

Lemma 5. Let (x,X) be feasible for (5) with l < x1 < u, X11 > x21, and either ‖ux−X·1‖ =

u − x1 or ‖X·1 − lx‖ = x1 − l. Then all conclusions of Lemma 4 hold, and in addition Y 1

satisfies all constraints of (5) except possibly positive semidefiniteness.

Proof. We give the proof for the case of ‖ux−X·1‖ = u−x1; the case of ‖X·1− lx‖ = x1− l
is similar and is omitted. Let z1, z2 and λ be exactly as in the proof of Lemma 4. Then

Y = (1− λ)Y 1 + λY 2 for W with diag(W) ≥ 0, exactly as before.

We next show that z1 6= z2 are both feasible for TRS2p. We have ‖z2‖ = 1,

z21 =
ux1 −X11

u− x1
≥ lu− lx1

u− x1
= l,

because X11 + lu ≤ (l + u)x1 and

z21 =
ux1 −X11

u− x1
<
ux1 − x21
u− x1

= x1 < u,

because x21 < X11. Now consider z1. First, note that

z11 =
u− x1
X11 − x21

(
X11 −

(
ux1 −X11

u− x1

)
x1

)
= u.

In addition
1 ≥ trace(X) = (1− λ) (‖z1‖2 + trace(W)) + λ‖z2‖2

= (1− λ) (‖z1‖2 + trace(W)) + λ,
(6)

which shows that ‖z1‖ ≤ 1. Thus z1 6= z2 are both feasible for TRS2p, as claimed. The

argument that rank[Y (x,X)] ≥ 2, and W = 0 if rank[Y (x,X)] = 2, is identical to that used

in the proof of Lemma 4.

Finally we prove that Y 1 satisfies all constraints of (5) except possibly Y 1 � 0. Given the

10

structure of Y 1, the constraints of (5) are Y 1 � 0, ‖z1‖2+trace(W) ≤ 1, (z11)2+lu ≤ (l+u)z11 ,

‖z11z1−lz1‖ ≤ z11−l, and ‖uz1−z11z1‖ ≤ u−z11 . The last three are satisfied because ‖z1‖ ≤ 1

and z11 = u, while ‖z1‖2 + trace(W) ≤ 1 follows from (6).

Theorem 2. Every extreme point (x,X) of the feasible set of (5) satisfies X = xxT .

Proof. Let (x,X) be an extreme point of (5). We break the proof into the following cases:

(i) x1 = l, x1 = u, or X11 = x21;

(ii) l < x1 < u, X11 > x21, and ‖X·1 − lx‖ = x1 − l or ‖ux−X·1‖ = u− x1;

(iii) l < x1 < u, X11 > x21, ‖X·1 − lx‖ < x1 − l, and ‖ux−X·1‖ < u− x1.

Case (i) follows by Lemma 3 because either of the conditions x1 = l and x1 = u imply

X11 = x21.

Now consider case (iii). Since both second-order-cone constraints are inactive, (x,X) is

also an extreme point of {
(x,X) :

X11 + lu ≤ (l + u)x1

trace(X) ≤ 1, X � xxT

}
, (7)

which is equivalent to the following block SDP system in standard form:

F :=

{
Y =

(
χ xT

x X

)
� 0, s, t ≥ 0 :

X11 + lu+ s = (l + u)x1

χ = 1, trace(X) + t = 1

}
.

Moreover, the extreme points of F and (7) are clearly in bijective correspondence, so (x,X)

corresponds to an extreme point (Y (x,X), s, t) of F . Also define rY := rank(Y), rs :=

rank(s), and rt := rank(t). Then Proposition 2 implies

rY (rY + 1) + rs(rs + 1) + rt(rt + 1) ≤ 6,

in which case rY ≤ 2, and since Y 6= 0, rY = 1 or rY = 2. If rY = 2, then X11+ lu = (l+u)x1

and trace(X) = 1, but then Lemma 4 shows that Y is a non-trivial convex combination of

distinct points in (5), which contradicts the assumption that (x,X) is extreme. So in fact

rY = 1.

Finally, consider case (ii). As in the proof of Lemma 5, we give a detailed proof assuming

that ‖ux − X·1‖ = u − x1; the analysis for the case of ‖X·1 − lx‖ = x1 − l is similar and

is omitted. Lemma 5 expresses Y = (1 − λ)Y 1 + λY 2 with 0 < λ < 1. Furthermore, Y 2 is

11

feasible for (5) and Y 1 is nearly feasible. For ε ≥ 0, define

Y 1(ε) := (1− λ+ ε)Y 1 + (λ− ε)Y 2,

and note Y 1(0) = Y � 0. Clearly, Y is also a convex combination of Y 1(ε) and Y 2, where

Y 1(ε) satisfies all constraints of (5) except possibly the semidefiniteness condition.

We next prove that, for small ε > 0, Y 1(ε) is also positive semidefinite, i.e., Y 1(ε) is

feasible for (5). First note that Y 1(ε) � 0 if and only if Ỹ (ε) := (1−λ)(1−λ+ ε)−1Y (ε) � 0.

We have

Ỹ (ε) = (1− λ)Y 1 +
(1− λ)(λ− ε)

1− λ+ ε
Y 2 = Y + f(ε)

(
1

z2

)(
1

z2

)T
,

where

f(ε) :=
(1− λ)(λ− ε)

1− λ+ ε
− λ.

It holds that f(0) = 0 and f ′(ε) = −(1 − λ)/(1 − λ + ε)2 < 0. So, for small ε > 0, Ỹ (ε)

equals Y − δ(1; z2)(1; z2)T for small δ > 0. Since

(u− x1)
(

1

z2

)
=

(
u− x1
ux−X·1

)
= u

(
1

x

)
−
(
x1
X·1

)
∈ Range(Y),

it follows that Ỹ (ε) � 0 for sufficiently small ε > 0. Then Y is a nontrivial convex combi-

nation of Y 1(ε) and Y 2, both of which are feasible for (5). Since Y is extreme, Y 1(ε) = Y 2,

and rank(Y) = 1.

Corollary 2. r(TRS2p) = v(TRS2p).

4 TRS with two general cuts

The previous section has shown that problem TRS2p, the TRS with two parallel cuts, has

an exact representation as the mixed SOCP/SDP (5). An analogous relaxation can be easily

developed for the problem TRS2, the TRS with two general cuts. In this short section, we

discuss whether this relaxation is tight for TRS2.

To simplify notation, by employing an orthogonal transformation, we may assume with-

out loss of generality that an instance of TRS2 has the form

v(TRS2) := min
{
xTQx+ cTx : l ≤ x1 + εx2, x1 ≤ u, ‖x‖ ≤ 1

}
for some scalar ε. Note that ε = 0 gives parallel cuts, so ε controls the slope of the first cut

12

and consequently whether the two cuts intersect inside the ball {x : ‖x‖ ≤ 1}. If the cuts

do intersect inside, we say the instance of TRS2 is intersecting ; if not, then the instance is

non-intersecting . The corresponding relaxation is

r(TRS2) := min

Q •X + cTx :

X11 + lu+ εX21 ≤ (l + u)x1 + εux2

‖X·1 − lx+ εX·2‖ ≤ x1 − l + εx2

‖ux−X·1‖ ≤ u− x1
trace(X) ≤ 1, X � xxT

 . (8)

Consider the non-intersecting case of TRS2. We have not been able to prove whether

v(TRS2) equals r(TRS2) in this case; in particular, the proofs of Section 3 for TRS2p do

not seem to carry over directly. On the other hand, we have tested many random instances

of TRS2 with non-intersecting cuts in low dimensions (n ≤ 10) and have always found

empirically that r(TRS2) does equal v(TRS2). So we conjecture that the two values are

equal when the cuts do not intersect.

For the intersecting case, we have found the following example for which v(TRS2) <

r(TRS2). Let n = 3, and define an instance of TRS2 with

Q =

 2 3 12

3 −19 6

12 6 0

 , c =

14

14

9

 , l = −1
2
, u = 0, ε = 5

4
.

Using the global optimization software Couenne [3], one can verify that v(TRS2) ≈ −12.9419

with x∗ ≈ (−0.8529,−0.2941, 0.4313)T . In contrast, r(TRS2) ≈ −13.8410 with optimal

x̄ ≈

−0.3552

0.3881

−0.2119

 , X̄ ≈

 0.2595 −0.2248 −0.0913

−0.2248 0.4495 −0.0694

−0.0913 −0.0694 0.2911

 .

In particular Y (x̄, X̄) has numeral rank 3. The relative gap for this instance is thus about

7%.

Our experiences with TRS2 thus suggest two interesting avenues of further research: (i)

either prove or disprove that v(TRS2) equals r(TRS2) when the cuts are non-intersecting;

(ii) develop ways to strengthen the SOCP/SDP relaxation in order to close the gap when

they are intersecting.

13

5 Two trust regions

In this section, we consider the so-called two trust region subproblem (TTRS), which is the

regular TRS with an additional full-dimensional ellipsoidal constraint:

v(TTRS) = min

{
xTQx+ cTx :

‖x‖ ≤ 1

‖H1/2(x− h)‖ ≤ 1

}
,

where H � 0 and h ∈ <n is the center of the second ellipsoid. We remark that TTRS is in

fact just a special case of the generalized trust-region subproblem for nonlinear constrained

optimization introduced and studied in [5, 15], where the more general constraint ‖ATx−b‖ ≤
ξ is added to TRS for someA ∈ <m×n. In this sense, TTRS and TRS2p represent two extreme

cases with ‖ATx − b‖ ≤ ξ defining a full dimensional ellipsoid and a highly degenerate

ellipsoid.

The standard SDP relaxation of TTRS is

r(TTRS) = min

{
Q •X + cTx :

H •X − 2hTHx+ hTHh ≤ 1

trace(X) ≤ 1, X � xxT

}
.

It is not immediately clear how to strengthen this SDP relaxation. For example, there are

no explicit linear inequality constraints from which to derive SOC-RLT constraints.

We suggest to derive SOC-RLT constraints from supporting hyperplanes of the ball B :=

{x : ‖x‖ ≤ 1}. Let bd(B) := {x : ‖x‖ = 1} denote the boundary of B. Given any

vector a ∈ bd(B), the inequality aTx ≤ 1 supports B at a, and so the SOC-RLT constraint

‖H1/2(x−Xa− (1− aTx)h)‖ ≤ 1− aTx strengthens the SDP relaxation. This suggests the

following improved relaxation:

r+(TTRS) = min

Q •X + cTx :

H •X − 2hTHx+ hTHh ≤ 1

trace(X) ≤ 1, X � xxT

(x,X) ∈ H


where

H :=
{

(x,X) : ‖H1/2(x−Xa− (1− aTx)h)‖ ≤ 1− aTx ∀ a ∈ bd(B)
}
.

The set H can also be interpreted as enforcing all of the ordinary RLT constraints coming

from pairs aTx ≤ 1 and bTx ≤ γ of supporting hyperplanes of B and the second ellipsoid

{x : ‖H1/2(x−h)‖ ≤ 1}, respectively. Fixing aTx ≤ 1, all of these ordinary RLT constraints

can be conveniently combined into the single SOC-RLT constraint presented. Then H is

14

derived by varying a. In analogy with H, one could also generate another set from SOC-

RLT cuts, say, H′ using the supporting hyperplanes of the second ellipsoid. However, H′

could also be interpreted as enforcing all of the ordinary RLT constraints between the two

ellipsoids, and so one can show formally that H′ = H with no further strengthening of

r+(TTRS).

The semi-infinite SOCP/SDP defining r+(TTRS) does not appear to have an equivalent

finite representation that can be solved directly. Indeed, its bilinear nature involving the

terms Xa and aTx looks intractable. However, we next prove that the separation problem

for H can be solved in polynomial time to ε tolerance, which guarantees that r+(TTRS) can

be computed to ε tolerance in polynomial time. We call a point (x,X) ε-feasible for H if it

satisfies each constraint defining H with right-hand side relaxed to 1− aTx+ ε.

Proposition 3. The separation problem for H is solvable to ε tolerance in time polynomial

in n and log(1/ε).

Proof. Let (x̄, X̄) be given. We need to determine in polynomial time whether (x̄, X̄) is ε-

feasible for H and, if not, find a ∈ bd(B) such that the corresponding SOC-RLT constraint

is violated. Consider the following optimization over a ∈ bd(B):

min
{

(1− aT x̄)2 − ‖H1/2(x̄− X̄a− (1− aT x̄)h)‖2 : a ∈ bd(B)
}
.

This is ε-solvable in polynomial time because it is equivalent to the classical (equality con-

strained) TRS, which is polynomial in n and log(1/ε). In addition, if the objective value of

the approximate solution a∗ is greater than or equal to 0, then we have verified that (x̄, X̄)

is ε-feasible for H, while if the optimal value is less than 0, then a∗ corresponds to a violated

SOC-RLT constraint.

Corollary 3. r+(TTRS) can be computed to ε tolerance in time polynomial in n and

log(1/ε).

Proof. Since the separation problem for H is polynomial-time solvable to tolerance ε, the

separation problem for the feasible set of the optimization problem defining r+(TTRS) is also

polynomial-time to tolerance ε. The corollary thus follows by the equivalence of separation

and optimization via the ellipsoid method [9].

In the following subsections, we investigate the strength of r+(TTRS) computationally.

15

5.1 Instances from Yuan and Ye-Zhang

Yuan [22] presents an instance of TTRS with n = 2,

Q =

(
−1 0

0 1

)
, c =

(
2

0

)
, H =

(
1 0

0 1

)
, h =

(
2

0

)
,

and, in particular, the radius of the ball is 2 (not 1 as above). Adjusting for the different

radius, we calculate the optimal solution of the basic SDP relaxation to be

x̄ =

(
1.75

0

)
, X̄ =

(
4 0

0 0

)

with value Q• X̄+ cT x̄ = −0.5. In addition, rank(Y (x̄, X̄)) = 2, providing evidence that the

basic SDP relaxation is not tight. So we calculate r+(TTRS) by separating the SOC-RLT

cuts in H. In fact, the single SOC-RLT cut based on the supporting hyperplane aTx ≤ 2,

where a = (1, 0)T suffices to deliver the optimal solution

x∗ =

(
2

0

)
, X∗ =

(
4 0

0 0

)
,

which has value Q •X∗ + cTx∗ = 0 and rank(Y (x∗, X∗)) = 1, proving that x∗ is optimal for

this TTRS instance. Yuan also presents a second instance for which the basic SDP relaxation

delivers an optimal, rank-1 solution Y (x,X) and hence is tight.

Ye and Zhang [21] also present three instances of TTRS for which the basic SDP relax-

ation is not tight, i.e., r(TTRS) < v(TTRS). By applying the above separation routine to

calculate r+(TTRS), we obtain r+(TTRS) = v(TTRS) for each of the three instances, and

in each case, the strengthened relaxation yields a global optimal solution via a rank-1 matrix

solution Y (x,X).

5.2 An example with a positive gap

Despite the examples of the preceding subsection, it does not always hold that r+(TTRS)

equals v(TTRS). Consider n = 2 and

min{xTQx+ cTx : ‖x‖ ≤ 1, ‖H1/2x‖ ≤ 1},

which is a special case with concentric trust regions. The paper [21] shows that the SDP

16

Figure 1: Counterexample with r+(TTRS) < v(TTRS)

relaxation is tight for such a problem if c = 0. On the other hand, with

H = 1
2

(
3 0

0 1

)
, Q =

(
−4 1

1 −2

)
, c =

(
1

1

)
,

one can verify that v(TTRS) = −4 at x∗ = (±1,∓1)T/
√

2, while r(TTRS) = −4.25. In

Figure 1 we illustrate the feasible region for this problem, as well as the optimal objective

contour (noting that the objective is concave). The fact that v(TTRS) = −4 can be verified

in several ways; one approach uses the result of Section 3 and the fact that the feasible region

of the problem can be written as the union of the feasible regions for two instances of the

form TRS1. Applying our strengthened approach yields r+(TTRS) ≈ −4.0360, which still

leaves a 0.9% gap to the true solution value.

5.3 Random instances from Mart́ınez

In this subsection, we explore additional TTRS instances where r+(TTRS) often equals

v(TTRS) but sometimes not. In our opinion, these experiments illustrate both the compu-

tational value of our approach and the extent to which more work is needed to solve TTRS

17

fully.

Mart́ınez [10] proved that the single TRS admits at most one local-nonglobal minimizer

and also provided the following guarantee of when a local-nonglobal minimizer exists:

Theorem 3 ([10] Lemma 3.4). Consider the trust-region subproblem min{xTQx + cTx :

‖x‖ ≤ ∆}, where the radius ∆ is a parameter. Let Q = V ΛV T be the spectral decomposition

of Q with ordered eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn along the diagonal matrix Λ. If λ1 < λ2

and [QT c]1 6= 0, then there exists positive ∆0 such that, for all ∆ > ∆0, the trust-region

subproblem admits both a unique global minimizer and a unique local-nonglobal minimizer.

This theorem is potentially valuable for constructing interesting instances of TTRS. In par-

ticular, given an instance of TRS with global minimizer x∗ and local-nonglobal minimizer

x̄, one can enforce another ellipsoid that cuts off x∗ but leaves x̄ feasible. For the resulting

instance of TTRS, x̄ becomes a natural candidate for the new optimal solution, although

points near x∗ that remain feasible are good candidates as well. Accordingly, with sev-

eral candidates for the new optimal solution, one may expect this TTRS instance to be a

challenging one.1

Based on this intuition, we generate random instances of TTRS as follows:

1. Fix the dimension n and set ∆ = n. We set ∆ to this relatively large value since

Theorem 3 indicates that larger radii tend to lead to the existence of a local-nonglobal

minimizers.

2. Generate Q as a diagonal matrix with diagonal entries distributed uniformly in [−1, 1],

and generate c with entries also distributed uniformly in [−1, 1]. With a high likelihood,

Q and c satisfy the assumptions of Theorem 3.

3. Solve TRS with (Q, c,∆), and save its global optimal solution x∗. Construct an or-

thogonal matrix V such that x∗ = V T e1. Then the TRS instance with (Q̄, c̄, ∆̄) :=

(V QV T , V c,∆) has optimal solution ∆e1. Update (Q, c,∆)← (Q̄, c̄, ∆̄), which is done

simply to facilitate the construction of H in the next step.

4. Form an instance of TTRS by enforcing the additional ellipsoid constraint ‖H1/2(x−
h)‖ ≤ ∆, where h = 0 and H is a diagonal matrix with H11 = 2 and entries

H22, . . . , Hnn generated uniformly in [0.5, 2]. This construction guarantees that the

optimal solution of TRS from step 3, ∆e1, is not feasible for TTRS.

1We thank Henry Wolkowicz for this valuable suggestion.

18

For varying choices of n, we generate 1000 such TTRS instances and solve the SOCP/SDP

relaxation by separating SOC-RLT cuts. We continue resolving and separating cuts until

either we can find no additional cuts—indicating that we have calculated r+(TTRS)—or

until we have separated 25 cuts. We impose this limit of 25 only because we found that

some instances would keep generating non-productive cuts due to numerical issues in the

solver. All computations were obtained with SeDuMi 1.3 under Matlab 7.14 (R2012a) on

an Intel Core 2 Quad CPU running at 2.4 GHz with 4 KB cache and 4 GB RAM under the

Ubuntu 10.04 operating system (32-bit).

Our primary interest is the gap v(TTRS) − r+(TTRS), but we actually do not know

v(TTRS). It could be calculated exactly by the trajectory-following procedure of Ye and

Zhang [21], but here we adopt a simpler approach to only estimate the gap via an upper

bound on v(TTRS). Specifically, let (x,X) be any solution satisfying the constraints of the

standard SDP relaxation of TTRS. Then x is feasible for TTRS since I � 0, H � 0, and

X � xxT imply

‖x‖2 = I • xxT ≤ I •X = trace(X) ≤ 1

‖H1/2(x− h)‖2 = H • xxT − 2hTHx+ hTHh ≤ H •X − 2hTHx+ hTHh ≤ 1.

So xTQx+ cTx is a valid upper bound on v(TTRS) that could be used to estimate the gap.

In our case, we choose the upper bound v(TTRS) := (x∗)TQx∗+ cTx∗, where (x∗, X∗) is the

calculated optimal solution of our relaxation, i.e., r+(TTRS) = Q •X∗ + cTx∗. Hence, our

gap estimate is r+(TTRS)− v(TTRS). In fact, to standardize the scale, we investigate the

relative gap
r+(TTRS)− v(TTRS)

|v(TTRS)|
.

We are also interested in two additional measures for each instance. First, we observe a

certain “rank measure” of the optimal Y (x∗, X∗) for the relaxation, which is defined as

λn[Y (x∗, X∗)]

λn−1[Y (x∗, X∗)]
,

where λn and λn−1 are the largest and second-largest eigenvalues, respectively. If this measure

is large, then Y (x∗, X∗) is numerically rank 1, but smaller values indicate rank 2 or higher.

Second, we track the number of SOC-RLT cuts required to calculate r+(TTRS). As it turns

out, the relative gap and the number of cuts are both highly negatively correlated with the

rank measure. We detail these relationships in Figures 2 and 3.

Figure 2(a) plots the relative gap (vertical axis, log10 scale) against the rank measure

19

−12

−10

−8

−6

−4

−2

0

0 1 2 3 4 5 6 7 8 9 10 11 12

(a) 1000 random instances with n = 5

−12

−10

−8

−6

−4

−2

0

0 1 2 3 4 5 6 7 8 9 10 11 12

(b) 1000 random instances with n = 10

−12

−10

−8

−6

−4

−2

0

0 1 2 3 5 6 7 8 9 10 11

(c) 1000 random instances with n = 20

Figure 2: TTRS results based on Mart́ınez [10]. Each chart depicts the relative gap (vertical
axis, log10 scale) versus the rank measure (horizontal axis, log10 scale). For each chart, the
rank measure has been grouped into bins of width 1 for the box plots. A higher rank measure
indicates lower numerical rank.

20

(horizontal axis, log10 scale) for 1000 random instances with n = 5. The instances are

grouped into bins of width 1 with centers 100, 101, 102, etc, and a box plot is shown for

each bin. It is evident that larger rank measures correlate with smaller relative gaps. In

fact, the relationship appears nearly linear in the log-log scale. So the rank measure is a

reliable, secondary measure of global optimality. Figures 2(b) and 2(c) show similar trends

for n = 10 and n = 20.

Figure 3(a) presents a scatter plot of the same 1000 instances for n = 5, which depicts

the number of SOC-RLT cuts required (vertical axis) versus the rank measure (horizontal

axis, log10 scale). We first note that there is a very clear inverse relationship between the

number of cuts required and the rank measure, indicating that our relaxation is more likely to

deliver a lower-rank solution when it requires fewer cuts. In particular, we note three groups

of points in the figure. First, 92.2% of instances required 0 cuts and the corresponding rank

measure was 107 or higher. The second group (4.0% of instances) mostly requires 1-5 cuts

and achieves rank measures mostly above 104. The third group (3.8% of instances) mostly

requires 6-15 cuts and achieves rank measures in the range 1 to 104. These three groups

show clear jumps in the rank measure as the number of cuts changes.

In Figure 3(b), we present a similar chart for 1000 instances with n = 10. Here again,

there is a very clear inverse trend and several distinct groups following similar patterns:

24.6% of instances require 0 cuts with high rank measure; 68.4% require about 1-5 cuts with

medium rank measure; and 6.0% require about 6-20 cuts with low rank measure. There

is also 1.0% that require the maximum of 25 cuts, in which case even our relaxation is

not solved to optimality. Compared to n = 5, these percentages indicate that the n = 10

instances of TTRS are generally harder to solve.

Figure 3(c) shows similar trends for n = 20. Using the same groupings as for n = 10,

the percentages are 4.1%, 85.5%, 7.6%, and 2.8%, respectively. So the n = 20 instances are

generally harder to solve than when n = 10.

We further summarize our experiments in Table 1, where we say that an instance is

“solved by adding SOC-RLT cuts” if the instance is not solved by the basic SDP and the

subsequent relative gap based on r+(TTRS) is less than 10−4. The table makes clear that

the use of SOC-RLT cuts provides a substantial strengthening of the basic SDP relaxation,

especially for larger dimensions.

Lastly, we mention the average computational times for the 1000 instances: n = 5

averaged 2.5 seconds, n = 10 averaged 5.9 seconds, and n = 20 averaged 14.3 seconds.

21

0 2 4 6 8 10 12
0

5

10

15

20

25

(a) 1000 random instances with n = 5

0 2 4 6 8 10 12
0

5

10

15

20

25

(b) 1000 random instances with n = 10

0 2 4 6 8 10 12
0

5

10

15

20

25

(c) 1000 random instances with n = 20

Figure 3: TTRS results based on Mart́ınez [10]. Each chart depicts the number of SOC-RLT
cuts (vertical axis) versus the rank measure (horizontal axis, log10 scale). A higher rank
measure indicates lower numerical rank.

22

% solved by % solved by adding % unsolved
n basic SDP SOC-RLT cuts
5 92.2 3.7 4.1

10 24.6 68.4 7.0
20 4.1 85.5 10.4

Table 1: Summary of outcomes on TTRS instances from Mart́ınez

Acknowledgments

The authors would like to thank three anonymous referees and Henry Wolkowicz for helpful
and insightful suggestions to improve the paper.

References

[1] W. Ai and S. Zhang. Strong duality for the CDT subproblem: a necessary and sufficient
condition. SIAM J. Optim., 19(4):1735–1756, 2008.

[2] A. Beck and Y. C. Eldar. Strong duality in nonconvex quadratic optimization with two
quadratic constraints. SIAM J. Optim., 17(3):844–860 (electronic), 2006.

[3] P. Belotti. Couenne: A user’s manual. Technical report, Clemson University, 2010.

[4] S. Burer and A. Saxena. The MILP road to MIQCP. IMA Volumes in Mathematics
and its Applications, to appear, 2011.

[5] M. R. Celis, J. E. Dennis, and R. A. Tapia. A trust region strategy for nonlinear
equality constrained optimization. In Numerical Optimization, 1984 (Boulder, Colo.,
1984), pages 71–82. SIAM, Philadelphia, PA, 1985.

[6] A. R. Conn, N. I. M. Gould, and P. L. Toint. Trust-Region Methods. MPS/SIAM Series
on Optimization. SIAM, Philadelphia, PA, 2000.

[7] M. Fu, Z.-Q. Luo, and Y. Ye. Approximation algorithms for quadratic programming.
J. Combinatorial Optimization, 2:29–50, 1998.

[8] N. I. M. Gould, S. Lucidi, M. Roma, and P. L. Toint. Solving the trust-region subproblem
using the Lanczos method. SIAM J. Optim., 9(2):504–525 (electronic), 1999.

[9] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer–Verlag, New York, 1988.

[10] J. M. Mart́ınez. Local minimizers of quadratic functions on Euclidean balls and spheres.
SIAM J. Optim., 4(1):159–176, 1994.

[11] J. J. Moré and D. C. Sorensen. Computing a trust region step. SIAM J. Sci. Statist.
Comput., 4(3):553–572, 1983.

23

[12] G. Pataki. On the rank of extreme matrices in semidefinite programs and the multiplicity
of optimal eigenvalues. Math. Oper. Res., 23:339–358, 1998.

[13] J.-M. Peng and Y.-X. Yuan. Optimality conditions for the minimization of a quadratic
with two quadratic constraints. SIAM J. Optim., 7(3):579–594, 1997.

[14] S. Poljak, F. Rendl, and H. Wolkowicz. A recipe for semidefinite relaxation for (0, 1)-
quadratic programming. J. Global Optim., 7(1):51–73, 1995.

[15] M. J. D. Powell and Y. Yuan. A trust region algorithm for equality constrained opti-
mization. Math. Programming, 49(2, (Ser. A)):189–211, 1990/91.

[16] F. Rendl and H. Wolkowicz. A semidefinite framework for trust region subproblems with
applications to large scale minimization. Math. Programming, 77(2, Ser. B):273–299,
1997.

[17] H. D. Sherali and W. P. Adams. A Reformulation-Linearization Technique for Solving
Discrete and Continuous Nonconvex Problems. Kluwer, 1997.

[18] R. J. Stern and H. Wolkowicz. Indefinite trust region subproblems and nonsymmetric
eigenvalue perturbations. SIAM J. Optim., 5(2):286–313, 1995.

[19] J. F. Sturm and S. Zhang. On cones of nonnegative quadratic functions. Math. Oper.
Res., 28(2):246–267, 2003.

[20] Y. Ye. A new complexity result on minimization of a quadratic function with a sphere
constraint. In C. Floudas and P. Pardalos, editors, Recent Advances in Global Opti-
mization. Princeton University Press, Princeton, NJ, 1992.

[21] Y. Ye and S. Zhang. New results on quadratic minimization. SIAM J. Optim., 14(1):245–
267 (electronic), 2003.

[22] Y. Yuan. On a subproblem of trust region algorithms for constrained optimization.
Math. Programming, 47(1, (Ser. A)):53–63, 1990.

Appendix

In this appendix, we verify the relations x = (1−λ)z1 +λz2, X·1 = (1−λ)z11z
1 +λz21z

2, and

diag(W) ≥ 0, which appear in the proof of Lemma 4.

24

Proof: x = (1− λ)z1 + λz2

Let d := (u − x1)
2 + (X11 − x21) > 0 denote the denominator of λ, and note that d =

u2 − 2ux1 +X11, λ = d−1(u− x1)2 and 1− λ = d−1(X11 − x21). Also let 1 ≤ j ≤ n. We have

(1− λ)z1j = d−1(X11 − x21)z1j

= d−1(X11 − x21) ·
u− x1
X11 − x21

(
Xj1 −

(
ux1 −X11

u− x1

)
xj

)
= d−1(u− x1)

(
Xj1 −

(
ux1 −X11

u− x1

)
xj

)
= d−1 ((u− x1)Xj1 − (ux1 −X11)xj)

= d−1 (uXj1 − x1Xj1 − ux1xj +X11xj)

and

λz2j = d−1(u− x1)2z2j

= d−1(u− x1)2 ·
1

u− x1
(uxj −Xj1)

= d−1(u− x1)(uxj −Xj1)

= d−1(u2xj − uXj1 − ux1xj + x1Xj1).

Hence,

(1− λ)z1j + λz2j = d−1
(
u2xj − 2ux1xj +X11xj

)
= d−1

(
u2 − 2ux1 +X11

)
xj = xj.

Proof: X·1 = (1− λ)z1
1z

1 + λz2
1z

2

From the previous paragraph, note in particular that

(1−λ)z11 = d−1(uX11−x1X11−ux1x1+X11x1) = d−1(uX11−ux21) = d−1(X11−x21)u = (1−λ)u,

which implies z11 = u. Hence, it holds that

(1− λ)z11z
1
j = (1− λ)uz1j = d−1u (uXj1 − x1Xj1 − ux1xj +X11xj) .

25

In addition,

λz2j z
2
1 = d−1(u2xj − uXj1 − ux1xj + x1Xj1)z

2
1

= d−1(u− x1)(uxj −Xj1)z
2
1

= d−1(u− x1)(uxj −Xj1) ·
1

u− x1
(ux1 −X11)

= d−1(uxj −Xj1)(ux1 −X11)

= d−1
(
u2x1xj − uxjX11 − ux1Xj1 +X11Xj1

)
.

So

(1− λ)z11z
1
j + λz21z

2
j = d−1

(
u2Xj1 − 2ux1Xj1 +X11Xj1

)
= Xj1.

Proof: diag(W) ≥ 0

Using the preceding equations, we have

(1− λ)(z1j)
2 = (1− λ)−1

(
(1− λ)z1j

)2
=

d

X11 − x21
· d−2 (uXj1 − x1Xj1 − ux1xj +X11xj)

2

= d−1(X11 − x21)−1 (uXj1 − x1Xj1 − ux1xj +X11xj)
2

= d−1(X11 − x21)−1
[
u2X2

j1 − 2ux1X
2
j1 − 2u2x1xjXj1 + 2uxjX11Xj1 + x21X

2
j1

+2ux21xjXj1 − 2x1xjX11Xj1 + u2x21x
2
j − 2ux1x

2
jX11 + x2jX

2
11

]
and

λ(z2j)
2 = λ−1

(
λz2j
)2

=
d

(u− x1)2
· d−2(u− x1)2(uxj −Xj1)

2

= d−1(uxj −Xj1)
2

= d−1(X11 − x21)−1(X11 − x21)(uxj −Xj1)
2

= d−1(X11 − x21)−1(X11 − x21)(u2x2j − 2uxjXj1 +X2
j1)

= d−1(X11 − x21)−1
(
u2x2jX11 − 2uxjX11Xj1 +X11X

2
j1 − u2x21x2j + 2ux21xjXj1 − x21X2

j1

)
.

26

Hence,

(1− λ)(z1j)
2 + λ(z2j)

2 = d−1(X11 − x21)−1
[
u2X2

j1 − 2ux1X
2
j1 +X11X

2
j1 − 2u2x1xjXj1 + u2x2jX11

+4ux21xjXj1 − 2X11x1xjXj1 − 2ux1x
2
jX11 +X11x

2
jX11

]
= d−1(X11 − x21)−1

[
dX2

j1 − 2dx1xjXj1 + dx2jX11

]
= (X11 − x21)−1

(
X2
j1 − 2x1xjXj1 + x2jX11

)
.

Using (4),

detj := det

 1 x1 xj

x1 X11 Xj1

xj Xj1 Xjj

 = (X11 − x21)(Xjj − x2j)− (Xj1 − x1xj)2

= (X11 − x21)Xjj −
(
X2
j1 − 2x1xjXj1 + x2jX11

)
,

and so

(X11 − x21)
(
Xjj −

[
(1− λ)(z1j)

2 + λ(z2j)
2
])

= detj ≥ 0,

which implies diag(W) ≥ 0.

27

