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Abstract This paper introduces a fundamental family of unbounded convex sets
that arises in the context of non-convex mixed-integer quadratic programming. It
is shown that any mixed-integer quadratic program with linear constraints can be
reduced to the minimisation of a linear function over a face of a set in the family.
Some fundamental properties of the convex sets are derived, along with connections
to some other well-studied convex sets. Several classes of valid and facet-inducing
inequalities are also derived.
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1 Introduction

A Mixed-integer quadratic program (MIQP) is an optimisation problem that can be
written in the following form:

min
{

cT x + xT Qx : Ax = b, x ∈ Z
n1+ × R

n2+
}

, (1)

Research supported in part by NSF Grant CCF-0545514.

S. Burer
Department of Management Sciences, Tippie College of Business, University of Iowa, Iowa, IA, USA
e-mail: samuel-burer@uiowa.edu

A. N. Letchford (B)
Department of Management Science, Lancaster University, Lancaster, UK
e-mail: a.n.letchford@lancaster.ac.uk; A.N.Letchford@lancaster.ac.uk

123



232 S. Burer, A. N. Letchford

where n = n1 + n2, c ∈ Q
n , Q ∈ Q

n×n , A ∈ Q
m×n , b ∈ Q

m , and Q is symmetric
without loss of generality.

Mixed-integer quadratic programs are a generalisation of mixed-integer linear pro-
grams and therefore NP-hard to solve. On the other hand, they can be regarded as
a special kind of mixed-integer non-linear program (MINLP). If Q is positive semi-
definite (psd), then the objective function is convex, and one can use any method for
convex MINLPs (such as those described in [4,14]). Otherwise, the objective function
is non-convex, and even solving the continuous relaxation of the MIQP is an NP-hard
global optimisation problem (see, e.g., [36,40]).

Following a standard approach in global optimisation (e.g., [26]), we re-write the
MIQP problem in the following form:

min cT x + qT y

s.t. Ax = b

yi j = xi x j (1 ≤ i ≤ j ≤ n)

x ∈ Z
n1+ × R

n2+
y ∈ R

(n+1
2 ),

where q ∈ Q
(n+1

2 ) is a suitable vector representing Q. This makes the objective
function linear, though at the cost of having non-linear (and non-convex) constraints
linking the x and y variables.

We are interested in the convex hull of feasible pairs (x, y) to this transformed
problem. This is because valid linear (or, more generally, convex) inequalities for this
convex hull could be used within lower-bounding procedures or exact algorithms,
based on linear (or convex) programming, for non-convex MIQPs.

In this paper, we focus on the convex sets associated with unconstrained non-
convex MIQPs, in which the linear system Ax = b is absent. Although this is a
genuine limitation, we will show (in Sect. 3.6) that the convex set associated with a
constrained instance is always a face of one of the convex sets that we study. This
suggests that the valid inequalities that we derive for the unconstrained case are likely
to be useful also for constrained problems. (Moreover, our inequalities are also valid
for problems with quadratic constraints.)

It turns out that there are two serious complications. First, the convex hulls turn out
not to be closed. Second, the closure of the convex hull turns out to be non-polyhedral,
even when n2 = 0. For these reasons, we have to combine traditional polyhedral theory
(see [35]) with elements of convex analysis (see [17]). A similar strategy was used by
us in [6] to study a continuous quadratic optimisation problem.

The paper is structured as follows. In Sect. 2, we review the relevant literature.
In Sect. 3, we define our convex sets more formally, and establish several results
concerning them, including a determination of their dimension, complexity, extreme
points and rays, and affine symmetries. The next three sections study certain valid
linear inequalities and their associated faces for the pure continuous case (Sect. 4),
pure integer case (Sect. 5), and mixed case (Sect. 6), respectively. Then, in Sect. 7,
we present complete linear descriptions for some small values of n1 and n2. Finally,
in Sect. 8, we pose some questions for future research.
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Unbounded convex sets 233

Remark An extended abstract of this paper appeared in the IPCO proceedings [20].
The results given in this full version are however much more extensive, and also more
general, since [20] was concerned only with the pure integer case.

2 Literature review

In this section, we review the relevant literature. We cover matrix cones in Sect. 2.1,
matrix variables in Sect. 2.2, the Boolean quadric polytope in Sect. 2.3, and some other
related polytopes and convex sets in Sect. 2.4.

2.1 Matrix cones

We begin by recalling some results on matrices and related cones. A symmetric matrix
M ∈ R

n×n is psd if it can be factorised as AAT for some real matrix A. The set of psd
matrices of order n forms a convex, closed and pointed cone in R

n×n . The extreme
rays of this cone correspond to the rank-1 psd matrices, i.e., those that can be written
as vvT for some v ∈ R

n (see, e.g., [16]).
A symmetric matrix M ∈ R

n×n is called completely positive if it can be factorised
as AAT for some non-negative real matrix A [25]. The set of completely positive
matrices of order n also forms a convex, closed and pointed cone in R

n×n , and the
extreme rays of that cone correspond to the rank-1 completely positive matrices [3].

It is known that a symmetric matrix M ∈ R
n×n is psd if and only if vT Mv ≥ 0 for

all vectors v ∈ R
n . This provides a complete description of the psd cone in terms of

linear inequalities. On the other hand, testing whether a matrix is completely positive
is NP-hard [9,28], which makes it unlikely that a complete linear description of
the completely positive cone will ever be found. (Of course, the completely positive
cone is contained in the intersection of the psd cone and the non-negative orthant
R

n×n
+ .)

2.2 Matrix variables

The idea of introducing new variables, which represent products of pairs of orig-
inal variables, has been applied to many different problems, including non-convex
quadratically-constrained programs [11,33,38], 0–1 linear programs [23,36] and 0–1
quadratic programs [21,31]. It is common practice to view those variables as being
arranged in a symmetric matrix.

Specifically, given an arbitrary vector x ∈ R
n , consider the matrix X = xxT . Note

that X is real, symmetric and psd, and that, for 1 ≤ i ≤ j ≤ n, the entry Xi j is nothing
but our variable yi j . Moreover, as pointed out in [23], the augmented matrix

X̂ :=
(

1

x

)(
1

x

)T

=
(

1 xT

x X

)
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234 S. Burer, A. N. Letchford

is also psd. This fact enables one to construct useful semidefinite programming
(SDP) relaxations of various NP-hard optimisation problems (e.g., [11,15,21,23,
31,33,38]).

Clearly, if x ∈ R
n
+, then X̂ is completely positive rather than merely psd. One can

use this fact to derive stronger SDP relaxations; see the survey [10].

2.3 The Boolean quadric polytope

The Boolean quadric polytope is a polytope associated with unconstrained 0-1
quadratic programs. The Boolean quadric polytope of order n, which we will denote
by BQPn , is defined as:

BQPn = conv
{
(x, y) ∈ {0, 1}n+(n

2) : yi j = xi x j (1 ≤ i < j ≤ n)
}

.

Note that here, there is no need to define the variable yi j when i = j , since squaring
a binary variable has no effect.

Padberg [30] derived various valid and facet-defining inequalities for BQPn , called
triangle, cut and clique inequalities. A class of inequalities that includes all of Pad-
berg’s inequalities as a special case was introduced by Boros and Hammer [5]. These
take the form:

n∑
i=1

vi (vi + 2s + 1)xi + 2
∑

1≤i< j≤n

viv j yi j + s(s + 1) ≥ 0
(∀v ∈ Z

n
, s ∈ Z

)
.

(2)

We will call these simply Boros-Hammer inequalities. To see that they are valid,
simply note that (vT x + s)(vT x + s + 1) ≥ 0 when v and s are integral and x is
binary. Expanding this quadratic inequality, replacing xi x j by yi j and x2

i by xi where
possible, yields (2).

Many other valid and facet-defining inequalities have been discovered for BQPn .
For an excellent survey, we refer the reader to the book [8].

2.4 Other related polytopes and convex sets

There are several other papers on polytopes related to quadratic versions of traditional
combinatorial optimisation problems. Among them, we mention only [18] on the
quadratic assignment polytope, [37] on the quadratic semi-assignment polytope, and
[15] on the quadratic knapsack polytope.

There are also three papers on the following (non-polyhedral) convex set [1,6,42]:

conv
{

x ∈ [0, 1]n, y ∈ R
(n+1

2 ), yi j = xi x j (1 ≤ i ≤ j ≤ n)
}

.

This convex set is associated with non-convex quadratic programming with box con-
straints, a classical problem in global optimisation. As mentioned in the introduction,
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Unbounded convex sets 235

we used in [6] a combination of polyhedral theory and convex analysis to analyse this
convex set.

Finally, we mention that Saxena et al. [34] described a lift-and-project technique
for generating valid inequalities for non-convex MIQPs.

3 The convex sets and their basic properties

In this section, we define the convex sets formally and then establish some of their
basic properties.

3.1 Definitions

For a given pair (n1, n2) of non-negative integers, let:

F+
n1,n2

=
{
(x, y) ∈ (

Z
n1+ × R

n2+
) × R

(n
2)+ : yi j = xi x j (1 ≤ i ≤ j ≤ n)

}
.

We are interested in the convex hull of F+
n1,n2

. Unfortunately, we immediately face the
following complication:

Proposition 1 The convex hull of F+
n1,n2

is not closed.

Proof First, we show that F+
1,0 is not closed. For any t ∈ Z+, let (xt , yt ) be the

member of F+
1,0 that arises when (x1, y11) = (t, t2). Moreover, for t > 0, let

(
x̃ t , x̃ t) = 1

t2

(
xt , yt) + t2 − 1

t2

(
x0, y0

)
=

(
t−1, 1

)
.

Note that (x̃ t , x̃ t ) is a convex combination of members of F+
1,0 and therefore lies in the

convex hull. However, limt→∞(x̃ T , ỹT ) = (0, 1) does not lie in conv F+
1,0 because

any (x, y) ∈ conv F+
1,0 with x = 0 must have y = 0. Since the convex hull does not

contain all of its limit points, it is not closed.
Now suppose that n1 > 0. Then F+

1,0 is the face of F+
n1,n2

induced by the valid
inequalities yii ≥ 0 for all i > 1. Since this face is not closed, neither is F+

n1,n2
itself.

A similar argument shows that F+
0,1 is not closed, and therefore that F+

n1,n2
is not

closed when n2 > 0. �	
We are therefore led to look at the closure of the convex hull, which we denote

by MIQ+
n1,n2

. Figure 1 represents MIQ+
1,0. Observe that MIQ+

1,0, despite having facets,
is not a polyhedron. (A polyhedron is defined as the intersection of a finite number
of half-spaces, but MIQ+

1,0 is the intersection of a countably infinite number of half-

spaces.) Moreover, it is easy to see that MIQ+
0,1 is a convex set with a curved boundary.

Indeed, MIQ+
n1,n2

is never polyhedral.
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236 S. Burer, A. N. Letchford

Fig. 1 The convex set MIQ+
1,0

For the purposes of what follows, we introduce a version of F+
n1,n2

that does not
involve non-negativity. More precisely, we define:

Fn1,n2 :=
{
(x, y) ∈ (

Z
n1 × R

n2
) × R

(n+1
2 ) : yi j = xi x j (1 ≤ i ≤ j ≤ n)

}
.

One can show that the convex hull of Fn1,n2 is closed when n1 = 0 and when (n1, n2) =
(1, 0). We will show in Sect. 3.4 that it is not closed when n1 ≥ 2. We do not know if
it is closed when n1 = 1 and n2 > 0. In any case, in what follows, we will work with
the closure of the convex hull, which we denote by MIQn1,n2 .

3.2 Complexity

Next, we present some complexity results.

Proposition 2 Minimising a linear function over MIQ+
0,n, MIQn,0 or MIQ+

n,0 is NP-
hard in the strong sense.

Proof It follows from the definitions that these three problems are equivalent to min-
imising an arbitrary quadratic function over R

n
+, Z

n or Z
n
+, respectively. The first

problem was shown to be strongly NP-hard in [28]. The second problem includes as
a special case the well-known closest vector problem (CVP), which takes the form:

min
{‖Bx − t‖2 : x ∈ Z

n}
,

where B ∈ Z
n×n and t ∈ Q

n . The CVP was shown to be strongly NP-hard in [41].
As for the third problem, one can reduce the CVP to that as well, by writing it as:

min
{‖B(x − x ′) − t‖2 : x, x ′ ∈ Z

n
+
}
.

Thus, the third problem is also strongly NP-hard. �	
Proposition 3 Minimising a linear function over MIQ0,n is polynomial-time solvable.
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Unbounded convex sets 237

Proof This is equivalent to minimising an arbitrary quadratic function over R
n . If the

quadratic function is convex, the problem can be solved by elementary linear algebra.
If not, the problem is unbounded. �	

Proposition 2 suggests that there is no hope of obtaining complete linear descriptions
of MIQ+

n,0, MIQ+
0,n or MIQn,0 for general n. On a more positive note, we have the

following result:

Proposition 4 Minimising a linear function over MIQ+
0,n or MIQn,0 is solvable in

polynomial time when n is fixed.

Proof When n is fixed, one can minimise an arbitrary quadratic function over R
n
+

by enumerating all of the faces of R
n
+, and solving a Karush–Kuhn–Tucker system

for each face. So consider minimising an arbitrary quadratic function over Z
n . If the

quadratic function is not convex, the problem is easily shown to be unbounded. If, on
the other hand, the quadratic function is convex, then the problem can be solved for
fixed n with the algorithm described in [19]. �	

There is therefore some hope of obtaining complete linear descriptions of MIQ+
0,n

and MIQn,0 for small values of n. We do not know the complexity of minimising a
linear function over MIQ+

n,0 for fixed n.

3.3 Dimension

We next establish the dimensions of MIQ+
n1,n2

and MIQn1,n2 .

Proposition 5 For all n = n1+n2, both MIQ+
n1,n2

and MIQn1,n2 are full-dimensional,

i.e., of dimension n + (n+1
2

)
.

Proof Consider the following points in MIQ+
n1,n2

:

• the origin (i.e., all variables set to zero);
• for i = 1, . . . , n, the point having xi = yii = 1 and all other variables zero;
• for i = 1, . . . , n, the point having xi = 2, yii = 4 and all other variables zero;
• for 1 ≤ i < j ≤ n, the point having xi = x j = 1, yii = y j j = yi j = 1, and all

other variables zero.

These n + (n+1
2

) + 1 points are easily shown to be affinely independent, and therefore
MIQ+

n1,n2
is full-dimensional. Since MIQ+

n1,n2
is contained in MIQn1,n2 , the same is

true for MIQn1,n2 . �	

3.4 Extreme points and rays

Next, we characterise the extreme points and rays of MIQ+
n1,n2

and MIQn1,n2 .

Lemma 1 The extreme points of MIQ+
n1,n2

and MIQn1,n2 are the members of F+
n1,n2

and Fn1,n2 , respectively.
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238 S. Burer, A. N. Letchford

Proof From the definition of MIQ+
n1,n2

, each one of its extreme points must be a
member of F+

n1,n2
. Moreover, given any vector x∗ ∈ Z

n1+ × R
n2+ , there is a (convex)

quadratic function that achieves its minimum uniquely at x∗. Accordingly, given any
pair (x∗, y∗) ∈ F+

n1,n2
, there is a linear function such that the minimum of that function

over MIQ+
n1,n2

is achieved only at (x∗, y∗). A similar argument applies to MIQn1,n2 .
�	

Theorem 1 Consider the following two sets, which are affine images of the extreme
rays of the completely positive and psd cones, respectively:

G+
0,n =

{
y ∈ R

(n+1
2 ) : ∃ x ∈ R

n
+ s.t. (x, y) ∈ F+

0,n

}

G0,n =
{

y ∈ R
(n+1

2 ) : ∃ x ∈ R
n s.t. (x, y) ∈ F0,n

}
.

The sets of extreme rays of MIQ+
n1,n2

and MIQn1,n2 are
{
(0, y) : y ∈ G+

0,n

}
and{

(0, y) : y ∈ G0,n
}

respectively.

Proof We prove the free case; the nonnegative case is similar.
Let (�x,�y) be a ray of MIQn1,n2 and let �X be the symmetric matrix corre-

sponding to �y. From the result of Lovász and Schrijver [23] mentioned in Sect. 2.2,
the augmented matrix

(
1 M�xT

M�x M�X

)
=

(
1 0
0 0

)
+ M

(
0 �xT

�x �X

)

must be psd for all M ∈ R+. This implies that �x = 0. It also implies that �X is psd,
which means that it is the sum of rank-1 psd matrices. Equivalently, �y is the sum of
members of G0,n .

To complete the proof, we show that, for each y∗ ∈ G0,n , the vector (0, y∗) is an
extreme ray of MIQn1,n2 . So, let x∗ be the vector corresponding to y∗, and let M be
an arbitrarily large positive integer. We can decompose Mx∗ into an integral part and
a (possibly) fractional part by writing Mx∗ = x̃ + ε, where x̃ ∈ Z

n
+ and ε ∈ [0, 1)n .

Let (x̃, ỹ) be the member of Fn1,n2 corresponding to x̃ . We have:

y∗
i j = M−2 (

x̃i x̃ j + εiε j + x̃iε j + εi x̃ j
)

= M−2 ỹi j + M−2 (
εiε j + x̃iε j + εi x̃ j

)
.

Now, since the origin is also a member of Fn1,n2 , the vector M−2(x̃, ỹ) belongs to conv
Fn1,n2 . Moreover, as M increases, M−2(x̃, ỹ) approaches arbitrarily closely to (0, y∗).
Therefore, (0, y∗) lies in the closure of conv Fn1,n2 , and so does any positive multiple
of it. It is therefore a ray of MIQn1,n2 . Moreover, it is extreme, since the associated
symmetric matrix (say, X∗) has rank 1, and every rank-1 matrix is an extreme ray of
the psd cone. �	
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The following two results then arise as fairly simple corollaries:

Corollary 1 The projection of MIQ+
n1,n2

into y-space is an affine image of the com-
pletely positive cone of order n, and the projection of MIQn1,n2 into y-space is an
affine image of the psd cone of order n.

Proof By Lemma 1, if (x∗, y∗) is an extreme point of MIQn1,n2 , then the corresponding
symmetric matrix X∗ lies in the psd cone of order n. By Theorem 1, (0,�y) is a ray
of MIQn1,n2 if and only if the corresponding matrix �X∗ lies in the psd cone of order
n. For MIQ+

n1,n2
, just replace ‘psd’ with ‘completely positive’. �	

Corollary 2 The convex hull of Fn1,n2 is not closed when n1 ≥ 2.

Proof By setting x = (1,
√

2, 0, . . . , 0)T in Theorem 1, we obtain an extreme ray of
MIQn1,n2 with y11 = 1, y22 = 2, y12 = √

2 and all other y variables equal to 0. Since√
2 is irrational, this cannot be a ray of conv Fn1,n2 . �	

3.5 Affine symmetries

Now we examine the affine symmetries of MIQ+
n1,n2

and MIQn1,n2 , i.e., affine trans-
formations that map the convex sets onto themselves. It turns out that these are closely
related to the affine symmetries of the corresponding subsets of R

n :

Proposition 6 Let T be an affine transformation that maps the set Zn1+ ×R
n2+ (respec-

tively, Z
n1 × R

n2 ) onto itself. There exists an affine transformation T ′ that maps
MIQ+

n1,n2
(respectively, MIQn1,n2 ) onto itself, and maps any point (x, y) onto a point

(x ′, y′) with x ′ = T (x).

Proof Let T (x) = Ax + b, where A ∈ R
n×n is non-singular and b ∈ R

n . Given any
pair (x, y), let X be the symmetric matrix associated with y as usual. Let T̃ be the
affine mapping that maps X onto AX AT + (Ax)bT + b(xT AT ) + bbT . Let T ′ be the
affine mapping that maps x onto T (x), and maps y onto the vector corresponding to
the matrix T̃ (X). Observe that, when (x, y) is an extreme point of either MIQ+

n1,n2
or

MIQn1,n2 , we have X = xxT and T̃ (X) = (Ax + b)(Ax + b)T = x ′(x ′)T . Then, the
point T ′(x, y) = (x ′, y′) satisfies y′

i j = x ′
i x ′

j for all 1 ≤ i ≤ j ≤ n, and is therefore
also an extreme point. �	
Remark 1 The only affine transformations that map Z

n1+ onto itself are the rotations
that permute the indices 1, . . . , n1. The only affine transformations that map R

n2+ onto
itself are those consisting of rotations that permute the indices 1, . . . , n2, together with
‘stretches’ that map x onto Dx , where D is a nonnegative diagonal matrix. Thus, the
affine symmetries of MIQ+

n1,n2
are rather uninteresting linear symmetries.

Remark 2 The affine transformations that map Z
n1 onto itself are those of the form

U x + w, where U is any unimodular integral square matrix of order n1, and w is
any integer vector of order n1. The affine transformations that map R

n2 onto itself are
those of the form Ax + b, where A is any non-singular square matrix of order n2 and
b is any vector of order n2. Thus, the affine symmetries of MIQn1,n2 are non-trivial.
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240 S. Burer, A. N. Letchford

Since there are an infinite number of unimodular integral square matrices of any
order, we have:

Corollary 3 Any facet of MIQn,0 is affinely congruent to a countably infinite number
of other facets.

Next, we note that it is possible to convert any facet-inducing inequality for MIQn,0
into a facet-inducing inequality for MIQ+

n,0:

Theorem 2 Suppose the inequality αT x +βT y ≥ γ induces a facet of MIQn,0. Then
there exists a vector t ∈ Z

n
+ such that the inequality

(α − 2Bt)T x + βT y ≥ γ + αT t − βT w (3)

induces a facet of MIQ+
n,0, where:

• B is the symmetric matrix defined by Bii = βi i and Bi j = 1
2βi j for i < j ;

• wi j = ti t j for i ≤ j .

Proof Let d = n + (n+1
2

)
. Since the original inequality αT x + βT y ≥ γ induces a

facet of MIQn,0, there exist d affinely-independent members of Fn,0 that satisfy it at
equality. Let (x1, y1), . . . , (xd , yd) denote these points. Using the definition of B, we
have αT x j + (x j )T Bx j = γ .

Now, for i = 1, . . . , n, set ti := − min{0, min1≤ j≤d x j
i }, and define the shifted

points x̃ j := x j + t for all j . In particular, t ∈ Z
n
+ and x̃ j ∈ Z

n
+. Also, define (x̃ j , ỹ j )

to be the corresponding members of F+
n,0. Then (x̃1, ỹ1), . . . , (x̃d , ỹd) are d affinely

independent members that satisfy

αT
(

x̃ j − t
)

+
(

x̃ j − t
)T

B
(

x̃ j − t
)

= γ

or, equivalently,

(α − 2Bt)T x̃ j + βT ỹ j = γ + αT t − βT w.

It remains to show that the claimed inequality is actually valid for MIQ+
n,0. Let

(x̃, ỹ) be any member of F+
n,0, and define (x, y) ∈ Fn,0 with x = x̃ − t . Then, by the

logic of the previous paragraph, (α − 2Bt)T x̃ + βT ỹ ≥ γ + αT t − βT w if and only
if αT x + βT y ≥ γ , which holds by assumption. �	

Therefore, any inequality inducing a facet of MIQn,0 yields a countably infinite
family of facet-inducing inequalities for MIQ+

n,0 as well.

3.6 Connection with the constrained case

Now suppose that an MIQP instance is constrained, i.e., that a system Ax = b of linear
equations is present. Intuitively, one could reduce such an instance to an unconstrained
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Unbounded convex sets 241

one, by adding the quadratic penalty term M ||Ax − b||22 to the objective function, for
a ‘sufficiently large’ positive scalar M . The determination of an appropriate value for
M is, however, unclear. Fortunately, this doesn’t matter, since we can instead optimise
the original linear function over a face of MIQ+

n1,n2
. This is expressed in the following

proposition:

Proposition 7 Let Ax = b be a system of p linear equations, and let ak x = bk denote
the kth such equation, for k = 1, . . . , p. Let E(A, b) denote the set of points (x, y)

in F+
n1,n2

that satisfy Ax = b, and let C(A, b) denote the closure of the convex hull of
E(A, b). Then C(A, b) is nothing but the face of MIQ+

n1,n2
defined by the following p

valid linear inequalities:

n∑
i=1

(
ak

i

)2
yii + 2

∑
1≤i≤ j≤n

ak
i ak

j yi j − (2bk) ak · x + b2
k ≥ 0 (k = 1, . . . , p). (4)

Proof The fact that the linear inequalities (4) are valid for MIQ+
n1,n2

follows from the
fact that all vectors x ∈ R

n satisfy the convex quadratic inequalities (ak · x −bk)
2 ≥ 0

for k = 1, . . . , p, together with the fact that all points (x, y) in F+
n1,n2

satisfy yi j = xi x j

for all 1 ≤ i ≤ j ≤ n. For the same reasons, E(A, b) is nothing but the set of members
of F+

n1,n2
that satisfies the inequalities (4) at equality.

Now, let F be the face of MIQ+
n1,n2

in question. Lemma 1 implies that the set of
extreme points of F is E(A, b). Moreover, Theorem 1 implies that the extreme rays of
F , if any, are the vectors (0,�y) such that the symmetric matrix �X corresponding
to �y is equal to xxT for some vector x ∈ Z

n1+ × R
n2+ satisfying Ax = 0. But these

vectors are extreme rays of C(a, b) as well, since, if x1 satisfies Ax = b and x2

satisfies Ax = 0, then x1 + λx2 satisfies Ax = b for any λ ∈ R+. �	

4 The continuous case (n1 = 0)

This section presents some results concerned with the (relatively) easy case in which
all variables are continuous, i.e., in which n1 = 0.

4.1 Conic characterisation

The following proposition gives a characterisation of MIQ0,n and MIQ+
0,n in terms of

matrix cones:

Proposition 8 Given a pair (x∗, y∗), let X∗ be the symmetric matrix corresponding
to y∗, and let

X̂∗ =
(

1 (x∗)T

x∗ X∗
)

be the corresponding augmented matrix. Then (x∗, y∗) lies in MIQ0,n if and only if

X̂∗ is psd, and (x∗, y∗) lies in MIQ+
0,n if and only if X̂ is completely positive.
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Proof Necessity was already pointed out in Sect. 2.2. We prove sufficiency. Note that,
if C is a closed convex cone and H is a hyperplane passing through the interior of C ,
then any point in C ∩ H is a convex combination of extreme points of C ∩ H , and all
such extreme points are also extreme rays of C . Setting C to be the psd cone of order
n +1 and H to be the hyperplane enforcing that the top-left entry of X̂∗ must be equal
to 1, we see that, if X̂∗ is psd, then it can be expressed as a convex combination of
rank-1 matrices of the form

(
1 xT

x xxT

)
.

By Lemma 1, each such rank-1 matrix corresponds to an extreme point of MIQ0,n .
The case of MIQ+

0,n is similar. �	

4.2 Psd inequalities

The next lemma introduces a class of valid inequalities:

Lemma 2 For any non-zero vector v ∈ R
n and scalar s ∈ R, the following ‘psd’

inequality is valid for both MIQ0,n and MIQ+
0,n:

(2s)vT x +
n∑

i=1

v2
i yii + 2

∑
1≤i< j≤n

viv j yi j + s2 ≥ 0. (5)

Proof If a matrix M is psd, then vT Mv ≥ 0 for all non-zero v ∈ R
n . Applying this

to the matrix X̂ we find that:

(
s vT

) (
1 xT

x X

) (
s
v

)
≥ 0 (6)

for all v and s. The correspondence between X and y then yields the desired inequal-
ities. �	

To our knowledge, the validity of the psd inequalities (5) for extended formulations
of quadratic optimisation problems was first observed by Ramana [33]. Note that the
inequalities (4) in Sect. 3.6 are psd inequalities.

It turns out that the psd inequalities yield a complete description of MIQ0,n :

Proposition 9 The psd inequalities provide a complete and non-redundant linear
description of MIQ0,n, and each such psd inequality induces a maximal face of dimen-

sion
(n+1

2

) − 1.

Proof It is known (e.g., [16]) that the inequalities vT Mv ≥ 0 for all non-zero v ∈ R
n

provide a complete and non-redundant linear description of the cone of psd matrices of
order n, and that each such inequality induces a maximal face of dimension

(n
2

)
. Now,

let S denote the set of matrices X̂ that are psd. Since S is obtained by intersecting the
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psd cone of order n +1 with a hyperplane (see proof of Proposition 8), the inequalities
(6) provide a complete and non-redundant linear description of S, and each such
inequality induces a maximal face of dimension

(n+1
2

) − 1. The result then follows
from Proposition 8 and the fact that the mapping from S to MIQ0,n is a linear mapping
that preserves dimension. �	

The psd inequalities are of course valid for MIQ+
0,n as well. Using the same proof

technique as in Sect. 4 of our earlier paper [6], one can prove the following:

Proposition 10 Let v ∈ R
n and s ∈ R be given. The psd inequality (5) induces a

proper face of MIQ+
0,n if and only if there exists a point x∗ ∈ R

n
+ such thatvT x∗+s = 0.

This face is maximal if and only if there exists such a point x∗ in which all components
are positive. If it is maximal, it has dimension

(n+1
2

) − 1.

4.3 Non-negativity inequalities

Since MIQ+
0,n is contained in the completely positive cone, it is clear that all variables

are constrained to be non-negative. The following theorem states conditions under
which non-negativity inequalities induce facets of MIQ+

0,n .

Theorem 3 The inequalities xi ≥ 0 for all 1 ≤ i ≤ n, and the inequalities yi j ≥ 0
for all 1 ≤ i < j ≤ n, induce facets of MIQ+

0,n. The inequalities of the form yii ≥ 0
do not induce faces of maximal dimension.

Proof To see that the inequalities of the form yi j ≥ 0 induce facets, simply note that
all but one of the affinely-independent points listed in the proof of Proposition 5 satisfy
yi j = 0. To see that the inequalities of the form yii ≥ 0 do not induce facets, simply
note that all points satisfying yii = 0 also satisfy xi = 0. The inequalities of the form
xi ≥ 0 are a little more tricky: one can easily construct n + (n

2

)
affinely-independent

points with xi = 0, but to complete the proof one needs an additional n extreme rays
of MIQ+

0,n having xi = 0. Take one ray to have yii = 1 and all other variables zero,
and n − 1 rays to have yii = yi j = y j j = 1 for j �= i . �	

5 The integer case (n2 = 0)

This section is concerned with the case in which all variables are integer-constrained,
i.e., in which n2 = 0.

5.1 Non-negativity inequalities

First, we consider the status of the non-negativity inequalities:

Proposition 11 The inequalities xi ≥ 0 for all 1 ≤ i ≤ n, and the inequalities yi j ≥ 0
for all 1 ≤ i < j ≤ n, induce facets of MIQ+

n,0. The inequalities of the form yii ≥ 0,

on the other hand, never induce facets of MIQ+
n,0.

Proof Just follow the proof of Theorem 3, and note that all of the affinely-independent
points listed there and in the proof of Proposition 5 have integral coordinates. �	
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5.2 Split inequalities

It is well-known (see, e.g., [7]) that, for any vector v ∈ Z
n and scalar s ∈ Z, all

vectors x ∈ Z
n satisfy the so-called split disjunction (vT x ≤ s) ∨ (vT x ≥ s + 1).

The following proposition uses split disjunctions to derive an infinite family of valid
inequalities:

Proposition 12 For any vector v ∈ Z
n and scalar s ∈ Z, the following ‘split’ inequal-

ity is valid for both MIQn,0 and MIQ+
n,0:

(2s + 1)vT x +
n∑

i=1

v2
i yii + 2

∑
1≤i< j≤n

viv j yi j + s(s + 1) ≥ 0 . (7)

Proof The split disjunction (vT x ≤ −s − 1) ∨ (vT x ≥ −s) implies the quadratic
inequality (vT x + s)(vT x + s + 1) ≥ 0. Expanding this and substituting Y for xxT

yields vT Yv + (2s + 1)vT x + s(s + 1) ≥ 0, which is equivalent to the inequality (7).
�	

We remark that an important class of cutting planes for Mixed-Integer Linear
Programs, called split cuts, can be derived using split disjunctions [7]. It is impor-
tant to note however that the split inequalities (7) are not split cuts in the traditional
sense. Indeed, split cuts arise from the interaction between a split disjunction and a
set of linear constraints, whereas the split inequalities (7) are directly implied by the
disjunctions themselves.

It turns out that the split inequalities dominate the psd inequalities:

Theorem 4 The split inequalities (7) dominate the psd inequalities (5).

Proof Suppose a point (x∗, y∗) violates a psd inequality with non-integral v or s, and
let ε be a small positive quantity. Let v′ be a rational vector such that |v′

i − vi | < ε for
all i , and let s′ be a rational number such that |s′ − s| < ε. Provided ε is small enough,
the psd inequality obtained by using v′ and s′ in place of v and s will also be violated
by (x∗, y∗). Now let M be a positive integer such that Mv′ ∈ Z

n and Ms′ ∈ Z. The
psd inequality with Mv′ and Ms′ in place of v′ and s′ will also be violated by (x∗, y∗).

From this it follows that the psd inequalities with integral v and s define the same
convex set as the general psd inequalities. (That is, even though the set of psd inequal-
ities is uncountable, a countable subset of them suffices to describe the convex set in
question.)

Now, suppose that a psd inequality is derived using an integral vector v and an
integral scalar s. Recall that the psd inequality can be written as vT Yv+(2s)vT x+s2 ≥
0. This is dominated by the two inequalities vT Yv + (2s + 1)vT x + s(s + 1) ≥ 0 and
vT Yv + (2s − 1)vT x + s(s − 1) ≥ 0, which are both split inequalities. �	

In fact, split inequalities induce facets under mild conditions:

Theorem 5 Split inequalities induce facets of MIQn,0 if the non-zero components of
v are relatively prime.
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Proof First, note that the trivial inequality y11 ≥ x1 is a split inequality, obtained by
linearising the quadratic inequality (x1 −1)x1 ≥ 0. This trivial split inequality induces
a facet of MIQn,0, because all but one of the affinely-independent points listed in the
proof of Proposition 5 satisfy y11 = x1.

Now consider a non-trivial split inequality of the form (7), and assume that the non-
zero components of v are relatively prime. A well-known result on integral matrices
(see, e.g., p. 15 of Newman [29]) implies that there exists a unimodular matrix U ∈
Z

n×n having v as its first row. Let U be such a matrix, and let w ∈ Z
n be an arbitrary

vector satisfying w1 = s + 1. Note that, if (x, y) is an extreme point of MIQn,0 and
(x ′, y′) is the transformed extreme point described in Remark 2, then x ′

1 = vT x +
s + 1 and y′

11 = (x ′
1)

2 = vT Yv + 2(s + 1)vT x + (s + 1)2. Thus, if we apply the
transformation mentioned in Corollary 3 to the trivial split inequality y11 ≥ x1, we
obtain the inequality vT Yv+2(s +1)vT x +(s +1)2 ≥ vT x +s +1. This is equivalent
to the non-trivial split inequality. By Corollary 3, it induces a facet of MIQn,0. �	
Theorem 6 Split inequalities induce facets of MIQ+

n,0 if the non-zero components of
v are relatively prime and not all of the same sign.

Proof First, note that when v satisfies the stated condition, there exists a vector w ∈ Z
n

such that vT w = 0 and such that wi > 0 for all i . To see this, let k and k′ be the
number of components of v that are positive and negative, respectively, and let m be
the product of the non-zero components of v. The desired vector w can be obtained
by setting wi to k′|m|/vi when vi > 0, to k|m|/|vi | when vi < 0, and to 1 otherwise.

Second, observe that an extreme point (x̄, ȳ) of MIQn,0 satisfies the split inequality
(7) at equality if and only if vT x̄ ∈ {−s − 1,−s}. Therefore, if (x̄, ȳ) is such an
extreme point, then so is the extreme point obtained by replacing x̄ with x̄ + w, and
adjusting ȳ accordingly. Let us call this (affine) transformation ‘shifting’.

Now, since the split inequality induces a facet of MIQn,0 under the stated conditions,
there exist n+(n+1

2

)
affinely-independent points in Fn,0 that satisfy the split inequality

at equality. By shifting this set of points, repeatedly if necessary, we obtain n +(n+1
2

)
affinely-independent points in F+

n,0 that satisfy the split inequality at equality.

Therefore the split inequality induces a facet of MIQ+
n,0 as well. �	

Remark 3 A split inequality is satisfied at equality at the origin if and only if s ∈
{0,−1}. Moreover, when n ≥ 2, there is an infinite number of vectors v satisfying the
condition in either Theorems 5 or 6. It follows that, when n ≥ 2, the origin lies on
an infinite (though countable) number of facets of either MIQn,0 or MIQ+

n,0. It then
follows from Remark 2 that, again when n ≥ 2, every extreme point of MIQn,0 lies
on an infinite number of facets. The same can be shown for MIQ+

n,0 (proof omitted for
brevity).

If the non-zero components of the vector v all have the same sign, then the split
inequality need not induce even a proper face of MIQ+

n,0, because there may not exist

a lattice point x ∈ Z
n
+ such that vT x ∈ {−s − 1,−s}. Theorem 2 implies however the

following result:

Corollary 4 Let v ∈ Z
n be such that all its components are relatively prime and of

the same sign. Then there exists an integer s such that the split inequality (7) induces
a facet of MIQ+

n,0.
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Proof Let v be as stated and let s be an arbitrary integer. By Theorem 5, the corre-
sponding split inequality defines a facet of MIQn,0. Then, let the vector t ∈ Z

n
+ be as

defined in the proof of Theorem 2. One can check that the corresponding inequality
(3), which induces a facet of MIQ+

n,0, is nothing but the split inequality that is obtained

by replacing s with s − vT t . �	
At first sight, it may appear that the split inequalities can be generalised, as expressed

in the following lemma:

Lemma 3 For any vector v ∈ R
n and scalar s ∈ R, let

s− := sup
{
vT x : x ∈ Z

n
, vT x ≤ s

}

s+ := inf
{
vT x : x ∈ Z

n
, vT x ≥ s

}
.

Then, for any (u−, u+) satisfying s− ≤ u− ≤ u+ ≤ s+, the inequality

− (
u− + u+)

vT x +
n∑

i=1

v2
i yii + 2

∑
1≤i< j≤n

viv j yi j + u−u+ ≥ 0 (8)

is valid for both MIQn,0 and MIQ+
n,0.

Proof Similar to Proposition 12. �	
It turns out, however, that this does not yield any interesting inequalities:

Proposition 13 Every inequality of the form (8) is either a split inequality, or domi-
nated by split inequalities.

Proof Without loss of generality, we can assume that the vector v is scaled so that
v1 = 1. Then, if any of v2, . . . , vn are irrational, we have s+ = s− = s and the
inequality (8) reduces to a psd inequality. The result then follows from Theorem 4.

So suppose that v is rational. We can assume that it has been scaled so that all
coefficients are relatively prime integers. Then, we have s− = �s� and s+ = �s�. For
brevity, we write the inequality (8) in the ‘shorthand’ form vT Yv − (u− + u+)vT x +
u−u+ ≥ 0. Then, we distinguish two cases. If u− + u+ ≤ s− + s+, the inequality is a
convex combination of the split inequalities vT Yv − (s− + s+)vT x + s−s+ ≥ 0 and
vT Yv − (2s− −1)vT x + (s− −1)s− ≥ 0. If on the other hand u− +u+ > s− + s+, it
is a convex combination of the split inequalities vT Yv − (s− + s+)vT x + s−s+ ≥ 0
and vT Yv − (2s+ + 1)vT x + s+(s+ + 1) ≥ 0. �	

If, on the other hand, one imposes x ∈ Z
n
+ in the definition of s− and s+, one

can in principle obtain valid inequalities for MIQ+
n,0 that dominate split inequalities.

Inequalities of this kind, called gap inequalities, are studied in [12].

5.3 Inequalities from the Boolean quadric polytope

Now recall the definition of the Boolean quadric polytope from Sect. 2.3. The following
theorem states that BQPn is essentially nothing but a face of both MIQn,0 and MIQ+

n,0:
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Theorem 7 Suppose we intersect MIQn,0 (or MIQ+
n,0) with the hyperplanes defined

by the following n equations:

yii = xi (i = 1, . . . , n).

Then we obtain a face of MIQn,0 (or MIQ+
n,0) of dimension n + (n

2

)
. This face is an

affine image of the Boolean quadric polytope BQPn.

Proof First, note that, for all 1 ≤ i ≤ n, the inequality yii ≥ xi is valid for MIQn,0.
Indeed, it is a split inequality of the form (7), obtained by setting vi = 1, v j = 0 for
all j �= i , and s = −1. So, the intersection of MIQn,0 and the specified hyperplanes
is indeed a face of MIQn,0. Let H denote this face.

Now, note that an extreme point of MIQn,0 satisfies yii = xi , for some i , if and
only if it satisfies xi ∈ {0, 1}. Therefore, the extreme points of H are precisely the
members of Fn,0 that satisfy x ∈ {0, 1}n . So, there is a one-to-one correspondence
between extreme points of H and extreme points of BQPn . Moreover, every extreme
point (x∗, y∗) of BQPn can be mapped onto an extreme point of H simply by setting
y∗

i i = x∗
i for all i = 1, . . . , n. This mapping is affine and dimension-preserving.

The proof for MIQ+
n,0 is identical. �	

Theorem 7 has the following useful corollary:

Corollary 5 Suppose the inequality

n∑
i=1

ai xi +
∑

1≤i< j≤n

bi j yi j ≤ c

induces a facet of BQPn. Then there exists at least one ‘lifted’ inequality of the form

n∑
i=1

(ai − λi )xi +
n∑

i=1

λi yii +
∑

1≤i< j≤n

bi j yi j ≤ c ,

with λ ∈ Q
n, that induces a facet of MIQn,0, and similarly for MIQ+

n,0.

To illustrate Corollary 5, we apply it to the following inequality:

5∑
i=1

yi6 ≤ 2x6 + y12 + y23 + y34 + y45 + y15. (9)

One can easily check (either by hand or with the aid of a computer) the following
facts:

• The inequality (9) induces a facet of BQP6.
• It is valid also for MIQ+

6,0, and induces an unbounded facet of it. (To see that it
is unbounded, observe that, for any 1 ≤ i ≤ 5 and any positive integer t , we can
obtain a member of F+

6,0 lying on the facet by setting xi to t , yii to t2, and all other
variables to zero.)
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Fig. 2 A ‘non-standard’ split
when n = 2

• It is not valid for MIQ6,0, but the lifted version

5∑
i=1

yi6 ≤ 2x6 + y12 + y23 + y34 + y45 + y15 +
6∑

i=1

(yii − xii ) (10)

is valid for MIQ6,0, and induces a bounded facet of it.

We observed an interesting feature of the lifted inequality (10). There are 27 extreme
points of MIQ6,0 that satisfy it at equality. If we take the corresponding 27 points in
x-space, then their convex hull turns out to be an affine image of a famous polytope
in the theory of Delaunay polytopes (see [8]); namely, the 6-dimensional polytope of
Gosset [13]. (For reasons of space, we do not give a formal proof of this fact.) We
suspect that this is not a coincidence, and that there is some deep connection between
facets of MIQn,0 and Delaunay polytopes. This issue is left for future research.

5.4 Inequalities for MIQ+
n,0 from non-standard splits

To close this section, we point out that, when n ≥ 2, one can derive further facet-
inducing inequalities for MIQ+

n,0 using a ‘non-standard’ split disjunction.

Consider the two lines in R
2 defined by the equations x1+x2 = 3 and x1+2x2 = 4.

As illustrated in Fig. 2, these lines pass through several points in Z
2
+. Moreover, all

points in Z
2
+ are either above both lines (satisfying x1 + x2 ≥ 3 and x1 + 2x2 ≥ 4),

or below both lines (satisfying x1 + x2 ≤ 3 and x1 + 2x2 ≤ 4). This implies that all
points in F+

2,0 satisfy the non-linear inequality

(x1 + x2 − 3)(x1 + 2x2 − 4) ≥ 0.
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This in turn implies that the linear inequality

−7x1 − 9x2 + y11 + 3y12 + 2y22 ≥ 12

is valid for MIQ+
2,0. One can check (either by hand or with the aid of a computer) that

this inequality induces a facet of MIQ+
2,0.

One can easily derive other valid inequalities of a similar kind for MIQ+
2,0, or indeed

for MIQ+
n,0 with n > 2. We leave for future research the task of characterising the

non-standard split disjunctions that lead to inequalities inducing facets of MIQ+
n,0.

6 The mixed-integer case (n1 > 0 and n2 > 0)

Now we move on to the more general mixed case, in which both n1 and n2 are permitted
to be positive.

6.1 Canonical extension

One easy way to adapt results for the pure integer case to the mixed case is to use the
following simple observation. If the linear inequality

n1∑
i=1

ai xi +
∑

1≤i≤ j≤n1

bi j yi j ≤ c (11)

is valid for MIQn1,0, then it is also valid for MIQn1,n2 . Similarly, if it is valid for
MIQ+

n1,0
, then it is also valid for MIQ+

n1,n2
. Padberg [30] used a similar operation in

the context of the Boolean quadric polytope, calling it ‘canonical extension’. We also
used it in [6].

One can also use canonical extension to adapt results for the continuous case to the
mixed case. Namely, if the linear inequality

n2∑
i=1

ai xi +
∑

1≤i≤ j≤n2

bi j yi j ≤ c (12)

is valid for MIQ0,n2 , then the inequality

n∑
i=n1+1

ai xi +
∑

n1+1≤i≤ j≤n

bi j yi j ≤ c (13)

is valid for MIQn1,n2 .
Now, as in [6], we say that a face of a p-dimensional convex body has co-dimension

k if the face has dimension p − k. (For example, the co-dimension of a facet is 1, and
the co-dimension of a psd inequality for MIQ0,n2 or MIQ0,n2 is at least n + 1.)
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It turns out that canonical extension preserves co-dimension under mild conditions.
This is made precise in the following two propositions:

Proposition 14 Suppose that the linear inequality (11) induces a face of MIQn1,0
of co-dimension k, where 1 ≤ k ≤ n1. Then it also induces a face of MIQn1,n2 of
co-dimension k, for all n2 ≥ 1. Moreover, the analogous statement holds for MIQ+

n1,0
and MIQ+

n1,n2
.

Proposition 15 Suppose that the linear inequality (12) induces a face of MIQ0,n2

of co-dimension k, where 1 ≤ k ≤ n1. Then the inequality (13) induces a face of
MIQn1,n2 of co-dimension k, for all n1 ≥ 1. Moreover, the analogous statement holds
for MIQ+

0,n2
and MIQ+

n1,n2
.

For the sake of brevity, we omit detailed proofs of these two propositions. The
proofs are similar to that of Theorem 3 in [6], the only difference being that one has
to deal with extreme rays as well as extreme points, due to the fact that MIQn1,n2 and
MIQ+

n1,n2
are unbounded.

6.2 Non-negativity inequalities

The results of the previous subsection enable us to quickly settle the status of the
non-negativity inequalities:

Corollary 6 The inequalities xi ≥ 0 for all 1 ≤ i ≤ n, and the inequalities yi j ≥ 0
for all 1 ≤ i < j ≤ n, induce facets of MIQ+

n1,n2
, for all n1 ≥ 1 and n2 ≥ 1. The

inequalities of the form yii ≥ 0 never induce faces of maximal dimension.

Proof This follows from Theorem 3 and Propositions 11, 14 and 15. �	

6.3 Split inequalities

Next, we examine the status of the split inequalities (7) in the mixed case.
First, notice that the split disjunction (vT x ≤ s) ∨ (vT x ≥ s + 1), with integral v

and s, is valid for Fn1,n2 if and only if it does not involve any continuous variables, i.e.,
if and only if vi = 0 for i = n1 + 1, . . . , n. As a result, a split inequality is valid for
MIQn1,n2 if and only if it is the canonical extension of a split inequality for MIQn1,0.

The situation with MIQ+
n1,n2

is a bit more subtle. It is true that a split disjunction that
does not involve any continuous variables is valid for F+

n1,n2
, but this condition is no

longer necessary. For example, if xi is any continuous and non-negative variable, the
disjunction (xi ≤ −1)∨(xi ≥ 0) is (trivially) valid for F+

n1,n2
. We conjecture, however,

that split disjunctions that do not meet the condition can never lead to facet-defining
split inequalities.

In any case, Propositions 14 and 15 imply the following result:

Corollary 7 Consider a facet-defining inequality of MIQn1,0 or MIQ+
n1,0

as described
in Theorem 5 or 6. Its canonical extension induces a facet of MIQn1,n2 or MIQ+

n1,n2
for all n2 ≥ 1.
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6.4 Psd inequalities

Finally, we consider the psd inequalities (5). The following two propositions settle
most cases:

Proposition 16 Suppose that a psd inequality involves at least one continuous vari-
able, i.e., that vi �= 0 for some n1 < i ≤ n. Then it induces a face of MIQn1,n2 of

maximal dimension, and the dimension is
(n+1

2

) − 1.

Proof Let v1 be the first n1 components of v, and let v2 be the last n2 components.
Then v2 �= 0, and we assume without loss of generality that vn = v2

n2
�= 0.

Proposition 5 establishes that the dimension of MIQn1,n2−1 is n − 1 + (n
2

) =(n+1
2

) − 1. In particular, its proof demonstrates
(n+1

2

)
affinely independent extreme

points, each of the form (x, xxT ). Because vn �= 0, it is easy to extend each such
(x, xxT ) to an extreme point (x̄, x̄ x̄ T ) of MIQn1,n2 satisfying vT x̄ + s = 0 and hence
lying on the face. The resulting extreme points remain affinely independent. So the
dimension of the face is at least

(n+1
2

) − 1.
Now, we know from Proposition 9 that the face of MIQ0,n induced by the psd

inequality has dimension
(n+1

2

) − 1. Since MIQn1,n2 ⊆ MIQ0,n , the face of MIQn1,n2

cannot have larger dimension. �	
Proposition 17 If a psd inequality does not involve any continuous variables, i.e., if
vi = 0 for n1 < i ≤ n, then it does not induce a face of maximal dimension for either
MIQn1,n2 or MIQ+

n1,n2
.

Proof Under the stated condition, the psd inequality is the canonical extension of a
psd inequality for both MIQn1,0 and MIQ+

n1,0
. It then follows from Theorem 4 and

Propositions 14 and 15 that the original psd inequality is dominated by the canonical
extensions of split inequalities for MIQn1,0 and MIQ+

n1,0
. �	

The remaining case is covered in the following proposition.

Proposition 18 Suppose that a psd inequality involves at least one continuous vari-
able, i.e., that vi �= 0 for some n1 < i ≤ n. If, in addition, not all non-zero components
of v have the same sign, then the inequality induces a face of MIQ+

n1,n2
of maximal

dimension, and the dimension is
(n+1

2

) − 1. If all non-zero components of v have the
same sign, then the inequality may or may not induce a face of maximal dimension.

This can be proved by combining the proof of Proposition 16 with the ‘shifting’
operation described in the proof of Theorem 6. We omit further details for the sake of
brevity.

7 Complete linear descriptions

In this last main section of the paper, we discuss complete linear descriptions for
MIQn1,n2 and MIQ+

n1,n2
for small n.
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The continuous case is straightforward. Proposition 9 states that MIQ0,n is com-
pletely described by psd inequalities, for all n. On the other hand, MIQ+

0,n is com-
pletely described by psd and non-negativity inequalities if and only if n ≤ 3. (This
follows from Proposition 8, together with the fact, from Maxfield and Minc [24],
that the set of completely positive matrices is equal to the set of doubly non-negative
matrices if and only if n ≤ 4.) In particular, one sees that MIQ0,1 is also described
by the single convex quadratic inequality y11 ≥ x2

1 , and that MIQ+
0,1 is described

by the convex quadratic inequality y11 ≥ x2
1 and the non-negativity inequality

x1 ≥ 0.
The pure integer case is also straightforward when n = 1. From Fig. 1, one sees

that MIQ+
1,0 is described by the non-negativity inequality x1 ≥ 0, together with the

split inequalities y11 ≥ (2t + 1)x1 − t (t + 1) for all t ∈ Z+. A similar observation
was made in [27] for a related family of polytopes. One can also check that MIQ1,0 is
described by split inequalities of the same form, but for all t ∈ Z.

Now, we saw in Sect. 5.4 that the split and non-negativity inequalities are not suf-
ficient to describe MIQ+

2,0. A natural question is whether the split inequalities are
enough to describe MIQ2,0. We show that this is indeed true, but, as the proof is quite
involved, we first introduce some notation and two lemmas to simplify the proof.

We will represent a general valid inequality for MIQn,0 as A•Y +2bT x +γ ≥ 0 for
some symmetric matrix A, vector b, and scalar γ , where A • Y := trace(AY ). Since
validity of A • Y + 2bT x + γ ≥ 0 is equivalent to validity of its quadratic counterpart
xT Ax + 2bT x + γ ≥ 0 over Z

n , we will switch back and forth without comment as
convenient.

For any v, s, the psd inequality (5) can be written in the form A•Y +2bT x +γ ≥ 0
with A := vvT , b := sv, and γ := s2; the proof of Lemma 2 provides insight into
this representation. In particular, A is rank-1 psd in this case, and a partial converse
holds:

Lemma 4 Suppose A • Y + 2bT x + γ ≥ 0 is valid for MIQn,0. Then A is psd.

Proof Suppose A is not psd, and let w be a negative eigenvector of A. There exists a
nearby rational vector w′ such that (w′)T Aw′ < 0, and so there exists M > 0 with
u := Mw′ ∈ Z

n and uT Au < 0. Then for large integer k > 0, we have (ku)T A(ku)+
2bT (ku) + γ = k2 · uT Au + k · 2bT u + γ < 0. This proves A • Y + 2bT x + γ ≥ 0
is not valid for MIQn,0. �	

We will also use the following lemma, which provides conditions under which a
particular valid inequality is dominated.

Lemma 5 Suppose q(x) := xT Ax+2bT x+γ ≥ 0 andr(x) := xT Bx+2cT x+δ ≥ 0
are valid over Z

n. Suppose also that A is positive definite and r(x) = 0 holds whenever
q(x) = 0 and x ∈ Z

n. Then there exists ε > 0 such that q(x) − εr(x) ≥ 0 is valid
over x ∈ Z

n. In particular, q(x) is dominated by r(x) ≥ 0 and q(x) − εr(x) ≥ 0.

Proof Let ε̄ > 0 be such that A − ε̄B � 0. Then, because A − ε̄B is the Hessian
of q(x) − εr(x), there exists a radius r > 0 such that q(x) − εr(x) ≥ 0 is valid on
{x ∈ Z

n : ‖x‖ > r} for all ε ≤ ε̄. On the other hand, it is easy to see the existence
of ε̂ > 0 such q(x) − εr(x) ≥ 0 is valid on the finite set {x ∈ Z

n : ‖x‖ ≤ r} for all
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ε ≤ ε̂ because xT Ax + 2bT x + γ = 0 implies xT Bx + 2cT x + δ = 0. Now simply
take ε = min{ε̄, ε̂} > 0. �	

We are now ready to show that the split inequalities are enough to capture MIQ2,0.

Theorem 8 MIQ2,0 is completely described by the split inequalities.

Proof Consider any valid inequality A • Y + 2bT x + γ ≥ 0 for MIQ2,0. If A = 0,
then bT x + γ ≥ 0 is valid if and only if b = 0 and γ ≥ 0. So we have a nonnegative
multiple of the split inequality arising from v = 0 and s = 1.

So assume A �= 0. Define μ := inf{xT Ax + 2bT x + γ : x ∈ Z
n}, and note that

A•Y +2bT x +γ ≥ 0 is dominated by the valid inequality A•Y +2bT x +γ −μ ≥ 0.
Moreover, the corresponding infimum for this new inequality is 0. So we may reduce
to the case μ = 0. Lemma 4 implies A � 0. Since A is 2 × 2, there are only two
possibilities for the rank of A: either rank(A) = 1 or rank(A) = 2.

Suppose rank(A) = 1 and write A = aaT . Since xT Ax + 2bT x + γ is bounded
below on Z

n , it is bounded below on R
n . Hence, by the Frank–Wolfe theorem, xT Ax+

2bT x + γ attains its minimum on R
n with first-order conditions 0 = Ax + b =

(aT x)a + b. In particular, b = ρa for some ρ ∈ R. Our valid inequality can then be
written aT Y a + 2ρaT x + γ ≥ 0, and we show that this is precisely a “generalised”
split inequality (8) based on a pair (v, s). Specifically, take (v, s) = (a,−ρ) and define
s− and s+ as in Lemma 3. Now suppose s+ is closer to s than s− (the other case is
similar). Writing ε := s+ − s, we take (u−, u+) = (s − ε, s + ε) and have via (8) the
generalised split inequality

vT Yv − ((s − ε) + (s + ε))vT x + (s − ε)(s + ε) ≥ 0,

which simplifies to aT Y a + 2ρaT x + ρ2 − ε2 ≥ 0 since (v, s) = (a,−ρ). This
matches our valid inequality in all coefficients except possibly the constant term (γ
versus ρ2 −ε2). However, by construction, the split inequality has infimum 0 over Z

n .
So does our valid inequality. It follows that γ = ρ2 − ε2 and the two inequalities are
indeed the same. Proposition 13 now implies that A •Y +2bT x +γ ≥ 0 is dominated
by split inequalities.

Finally, suppose rank(A) = 2, which implies q(x) := xT Ax + 2bT x + γ has
ellipsoidal level sets. Define Z := {z ∈ Z

2 : q(z) = 0}, and because μ = 0 and q(x)

has compact level sets, we have that |Z | ≥ 1 and Z is contained in the boundary of an
ellipsoid. In particular, no z ∈ Z can be expressed as a proper convex combination of
other points in Z . So 1 ≤ |Z | ≤ 2, or the convex hull of Z is a polygon with |Z | edges.
Also, from Arkinstall [2], Lovász [22], Rabinowitz [32] we know that any polygon
with integer vertices and 5 or more edges must contain an integer point in its interior.
Thus, we have the following cases: (i) 1 ≤ |Z | ≤ 2; (ii) 3 ≤ |Z | ≤ 4.

Suppose 1 ≤ |Z | ≤ 2. Without loss of generality, by an affine unimodular trans-
formation, we may assume Z contains 0. If Z contains a second member (z1, z2),
set v = (−z2, z1); otherwise, set v ∈ Z

2 arbitrarily. Consider the split inequality
r(x) := vT x(vT x + 1) ≥ 0, and note that the zeros of the split inequality contain Z .
Lemma 5 then shows that q(x) is dominated.

Now suppose 3 ≤ |Z | ≤ 4. Since the convex hull of Z is a polygon with no
interior integer points, the papers [2,22,32] prove that—modulo a unimodular affine
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transformation, which does not alter the validity of A • Y + 2bT x + γ by Corollary
3—Z contains either the points Z p := {(0, 0), (p, 0), (0, 1)} for some integer p > 0 or
Z2 := {(0, 0), (2, 0), (0, 2)}. In fact, we claim that Z must contain Z p by supposing
Z2 ⊆ Z and deriving a contradiction. Since q(z) = 0 for all z ∈ Z2, one sees
immediately that γ = 0, b1 = −A11, and b2 = −A22. Hence,

q(x) = A11

(
x2

1 − 2x1

)
+ A22

(
x2

2 − 2x2

)
+ 2A21x1x2,

which implies in particular that q(1, 0) = −A11. Since A11 > 0 because rank(A) = 2,
this shows q(x) attains a negative value on Z

2, which is the desired contradiction. So
Z p ⊆ Z in which case we deduce similarly that

q(x) = A11

(
x2

1 − px1

)
+ A22

(
x2

2 − x2

)
+ 2A21x1x2.

Since A11 > 0 and q(1, 0) ≥ 0, we have A11(1− p) ≥ 0 ⇔ p = 1. Also, q(1, 1) ≥ 0
implies A21 ≥ 0, and q(−1, 1) ≥ 0 and q(1,−1) ≥ 0 imply A21 ≤ min{A11, A22}.
So we may write

q(x) = (A11 − A21)
(

x2
1 − x1

)
+ (A22 − A21)

(
x2

2 − x2

)

+A21

[(
x2

1 − x1

)
+

(
x2

2 − x2

)
+ 2x1x2

]

with A11 − A21 ≥ 0, A22 − A21 ≥ 0, and A21 ≥ 0. So q(x) is the nonnegative
combination of three quadratics, each of which clearly corresponds to a split inequality.
So A • Y + 2bT x + γ ≥ 0 is dominated by split inequalities. �	

We do not know if the split inequalities suffice to capture MIQn,0 for some n > 2.
On the other hand, the inequality (10) is not a split inequality, yet induces a facet of
MIQ6,0. This shows that the split inequalities do not completely describe MIQ6,0.

Finally, the mixed case appears even more difficult. We do not know whether psd
and split inequalities are enough to describe MIQ1,1, nor whether psd, split and non-
negativity inequalities are enough to describe MIQ+

1,1.

8 Concluding remarks

In this paper, we have proved various results for the convex sets associated with
unconstrained non-convex Mixed-Integer Quadratic Programs. It is our hope that the
valid inequalities that we have derived will be used as cutting planes within exact
algorithms for non-convex MIQPs, whether constrained or not. As mentioned in the
introduction, they could be used for problems with quadratic constraints as well.

There are many interesting open theoretical questions. We have already mentioned
the question of whether one can optimise a linear function over MIQ+

n,0 in polynomial
time for fixed n (Sect. 3.2), the problem of characterising the non-dominated inequali-
ties coming from ‘non-standard’ splits (Sect. 5.4), and the problem of finding complete
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linear descriptions of MIQn1,n2 and MIQ+
n1,n2

for certain small values of n1 and n2
(Sect. 7).

Another important question is whether the separation problem for the split inequal-
ities (7) can be solved in polynomial time. That is, whether one can efficiently find
a split inequality violated by a given pair (x∗, y∗), if one exists. Unfortunately, we
conjecture that this problem is strongly NP-hard. On the other hand, the separation
problem for the weaker psd inequalities (5) can be easily solved in polynomial time
by computing the minimum eigenvalue of the matrix

(
1 (x∗)T

x∗ X∗
)

,

where X∗ is the symmetric matrix corresponding to y∗. Perhaps an effective separation
heuristic for split inequalities could be devised based on this fact. (We remark that the
eigenvectors of this matrix were recently used in [34], but to derive disjunctive cuts
for mixed-integer quadratic problems, rather than split inequalities.)
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