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Abstract. We study a class of linear programming (LP) problems motivated by large-scale
machine learning applications. After reformulating the LP as a convex nonsmooth problem, we
apply Nesterov’s primal-dual excessive-gap technique. The iteration complexity of the excessive-gap
technique depends on a parameter θ that arises because we must bound the primal feasible set,
which is originally unbounded. We also dynamically update θ to speed up the convergence. The
application of our algorithm to two machine learning problems demonstrates several advantages of
the excessive-gap technique over existing methods.
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1. Introduction. We investigate a first-order smoothing technique to solve large-
scale instances of the following linear programming (LP) problem:

min
α,ξ

cTα+ wT ξ(P)

s. t. Aα− b ≤ ξ,

α, ξ ≥ 0,

where α ∈ �n and ξ ∈ �m are the decision vectors and A ∈ �m×n, b ∈ �m, c ∈ �n
+,

and w ∈ �m
+ are the data. The optimal value of (P) is bounded below by zero,

and thus an optimal solution exists. The variable ξ may be interpreted as an error,
allowing some of the constraints “Aα ≤ b” to be violated, and the objective term
wT ξ then serves to penalize such violations. Expressed differently, if ξ were fixed to
0, then the above formulation would be similar to an LP with c ≥ 0.

Problem (P) is motivated by several machine learning problems. One such exam-
ple is the LP-based ranking algorithm (Ataman [2] and Ataman, Street, and Zhang [3].
Another example is the 1-norm support vector machine (Zhu et al. [22], Mangasarian
[14]). In section 5, we will demonstrate how to cast such machine learning problems as
(P). We are also particularly interested in large-scale instances of (P) for two reasons:
(i) while small instances can be solved efficiently by current LP solvers, for problems
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where A is large and dense, using simplex or interior-point methods might not be
feasible because of memory limits; and (ii) the machine learning problems above are
often applied to large datasets, making A large. In applications that involve kernel
matrices, such as the popular radial basis function (RBF) kernels (Hsu, Chang, and
Lin [12]), A is also usually completely dense.

Several approaches can be used to solve (P). Standard approaches are the simplex
method or interior-point methods. As mentioned in the previous paragraph, however,
(P) is often too large in machine learning applications. For example, Ataman [2]
reported that a moderately sized ranking problem formulated as (P) caused CPLEX
to run out of memory on a standard PC. Mangasarian [14] formulated a class of LPs,
which includes (P) as a special case, and proposed an alternative method. He posed
the problem as the unconstrained minimization of a convex differentiable piecewise-
quadratic objective function and solved it using a generalized Newton method. As we
will see in section 5, however, this method may not be sufficiently robust in some cases.

Another approach is to treat (P) as the equivalent nonsmooth problem

min cTα+ wT (Aα− b)
+

(NS0)

s. t. α ≥ 0,

where (Aα− b)+ denotes the nonnegative part of the vector Aα− b, and then to solve
(NS0) using nonsmooth techniques such as the standard subgradient method. Com-
pared with the simplex method and interior-point methods, the subgradient method
requires much less memory (basically the memory to store A). It also has low com-
putational costs at each iteration (basically A times a vector). The main drawback
of the subgradient method is slow convergence: its worst-case iteration complexity is
O(1/ε2) [16], where ε is the error tolerance of a calculated solution.

In this paper, we use Nesterov’s first-order excessive-gap method [18, 17] to solve
(NS0). For bounded feasible sets, the excessive-gap method has worst-case itera-
tion complexity O(1/ε), which is an order of magnitude faster than the subgradient
method. At the same time, its computational cost per iteration and memory require-
ments are comparable to the subgradient method.

Researchers have successfully applied the excessive-gap and related methods to
many large-scale problems. Banerjee et al. [5] considered the problem of fitting a
large-scale covariance matrix to multivariate Gaussian data. Hoda et al. [11] and
Gilpin et al. [10] approximate Nash equilibria of large sequential two-player zero-sum
games. Becker, Bobin, and Candès [6] and Aybat and Iyengar [4] demonstrate that
the excessive-gap method is ideally suited for solving large-scale compressed sensing
reconstruction problems. Smoothing techniques also have applications in semidefinite
programming (Nesterov [19], d’Aspremont [8]) and general convex optimization (Lan,
Lu, and Monteiro [13]).

Nesterov’s first-order excessive-gap method applies to the following generic prob-
lem:

(1) min{f(x) : x ∈ Q},

where f is a continuous convex function with a certain structure and Q is a compact
convex set (see section 2). To apply the excessive-gap method to (NS0), we will need
the following assumption.

Assumption 1.1. Define B := {i ∈ {1, . . . , n} : ci = 0}. We assume αB is bounded
in (P), where αB is defined as the vector composed of entries of α that are indexed
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by B. Specifically, we assume knowledge of h ∈ R
|B|
++ such that αB ≤ h is valid for at

least one optimal solution of (P).
This assumption allows us to bound the primal feasible set as follows. First, the

assumption just mentioned bounds the subvector αB. Next, the remaining components
of α are naturally bounded by any fixed upper bound on the optimal value of (NS0).
In particular, let θ∗ be the optimal value of (NS0), α

∗ be an optimal solution, and
θ > 0 be any upper bound on θ∗. We have

cTα∗ ≤ cTα∗ + wT (Aα∗ − b)+ = θ∗ ≤ θ,

and so cTα ≤ θ is valid for the optimal set of (NS0). Therefore, (NS0) is equivalent
to the following problem over a compact convex set:

min
α≥0

cTα+ wT (Aα− b)
+

(NS)

s. t. cTα ≤ θ, αB ≤ h.

Based on (NS0) and (NS), we prove that the iteration complexity of Nesterov’s
excessive-gap method is a function of θ, and we show that the algorithm can be
improved by dynamically updating θ as it generates better bounds on θ∗.

Independently, [21] considered applying Nesterov’s technique to several support
vector machine (SVM) problems, including the 1-norm SVM that we will study in
section 5. However, it is not clear to us how they circumvented the unboundedness
issue of the primal feasible set since they provide no discussion of this issue. Moreover,
they use Nesterov’s primal-only smoothing method [18] whereas our algorithm is based
on the primal-dual excessive-gap technique [17]. Our treatment of specific ingredients
of the method is also different, as will be shown in section 3.

This paper is organized as follows. We summarize the major ingredients of the
excessive-gap technique in section 2 to facilitate later discussion. In section 3, we
show how to convert (P) into a problem of the form (1), and we specify the major
components of the excessive-gap technique, such as the choice of the so-called prox-
functions and derivations of various parameters. In section 4, we design a strategy
to dynamically update the upper bound θ and show how it speeds up the excessive-
gap technique. In section 5, we present two machine learning applications of the
excessive-gap technique. In particular, we compare the excessive-gap technique with
two existing methods, respectively, and demonstrate that our algorithm has several
advantages.

2. Nesterov’s excessive-gap technique. In this section, we review the major
ingredients of Nesterov’s excessive-gap technique: the excessive-gap condition and
convergence rate. We focus on the concepts and results that will be used in our study
and leave out technical details. First, we introduce some notation and definitions that
will be used throughout the paper.

2.1. Notation and terminology. Let E denote a finite-dimensional real vector
space, possibly with an index. This space is equipped with a norm ‖ ·‖, which has the
same index as the corresponding space. Let Â be a linear operator from E1 to E∗

2 ,
that is, Â : E1 → E∗

2 , where E∗
2 is the dual space of E2. Define the operator norm of

Â, induced by the norms ‖ · ‖1 and ‖ · ‖2, as

‖Â‖1,2 = max
‖x‖1=1

max
‖u‖2=1

〈Âx, u〉,
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where 〈·, ·〉 refers to the regular inner product. Note ‖ ·‖1 and ‖ ·‖2 do not necessarily
represent the standard l1-norm and l2-norm; the subscripts are indices only. The
operator norm has the following property:

‖Â‖1,2 = max
‖x‖1=1

‖Âx‖∗2 = max
‖u‖2=1

‖ÂTu‖∗1,

where ‖ · ‖∗ denotes the dual norm associated with ‖ · ‖ and is defined as

‖z‖∗ := max{〈z, x〉 : ‖x‖ ≤ 1}.
We use Âi to denote the ith row of Â and Âj the jth column of Â. Similarly, we
use ÂI (ÂJ ) to denote the rows (columns) of Â indexed by the set I (J ). For a
vector v ∈ �n, v−1 ∈ �n denotes the vector whose components are the inverses of the
components of v. We let Diag(v) represent the diagonal matrix with diagonal v. We
use e to represent a vector of all ones. The dimension of e may differ but should be
clear from the context.

2.2. Excessive-gap technique. Consider the following functions f(x) and φ(u):

f(x) = f̂(x) + max
u∈Q2

{〈Âx, u〉 − φ̂(u)},(2)

φ(u) = −φ̂(u) + min
x∈Q1

{〈Âx, u〉+ f̂(x)},(3)

where Q1 and Q2 are (simple) compact convex sets in finite-dimensional Euclidean

spaces E1 and E2, respectively; Â is a linear operator mapping E1 to E∗
2 ; and f̂(x)

and φ̂(u) are continuous convex functions on Q1 and Q2, respectively. Thus, f(x)
is convex and φ(u) is concave, but they are not necessarily differentiable. For any
x̄ ∈ Q1 and ū ∈ Q2 we have

(4) φ(ū) ≤ f(x̄)

because

φ(ū) = −φ̂(ū) + min
x∈Q1

{〈Âx, ū〉+ f̂(x)}

≤ −φ̂(ū) + 〈Âx̄, ū〉+ f̂(x̄)

≤ f̂(x̄) + max
u∈Q2

{〈Âx̄, u〉 − φ̂(u)}
= f(x̄).

Nesterov’s excessive-gap technique uses a primal-dual approach to solve the fol-
lowing optimization problems simultaneously:

min{f(x) : x ∈ Q1},(5)

max{φ(u) : u ∈ Q2}.(6)

Note that by Fenchel duality (Borwein and Lewis [7]), (6) is the dual problem of (5)
and there is no duality gap.

Because of the nondifferentiability, the primal-dual approach does not directly
deal with f(x) and φ(u). Instead it works with the following “smoothed” versions:

fμ2(x) = f̂(x) + max
u∈Q2

{〈Âx, u〉 − φ̂(u)− μ2d2(u)},(7)

φμ1(u) = −φ̂(u) + min
x∈Q1

{〈Âx, u〉+ f̂(x) + μ1d1(x)},(8)
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where μi is a positive smoothness parameter and di(·) is a prox-function on the set Qi,
which means di(·) is continuous and strongly convex onQi. A strongly convex function
d(·) has the following property for some σ > 0: d(x) ≥ d(x∗) + 1

2σ‖x − x∗‖2 for all
x ∈ Q, where x∗ = argminx∈Q d(x). The purpose of introducing these prox-functions
is to smooth f(x) and φ(u). The resultant fμ2(x) and φμ1 (u) are differentiable, and
their gradients are Lipschitz continuous. When μ1 and μ2 are small, fμ2 ≈ f and
φμ1 ≈ φ.

By definition we have fμ2(x) ≤ f(x) and φ(u) ≤ φμ1 (u). For sufficiently large
μ1 and μ2, one can show that there exist some x̄ ∈ Q1 and ū ∈ Q2 satisfying the
following excessive-gap condition (EGC):

fμ2(x̄) ≤ φμ1(ū).(EGC)

(EGC) is like a switched version of (4), which ensures that the primal-dual gap is
bounded above, as stated in the following lemma.

Lemma 2.1 (Nesterov [17]). Let x̄ ∈ Q1 and ū ∈ Q2 satisfy (EGC). Then 0 ≤
f(x̄)−φ(ū) ≤ μ1D1+μ2D2, where D1 := maxx∈Q1 d1(x) and D2 := maxu∈Q2 d2(u).

In addition to Lemma 2.1, the excessive-gap technique features three other im-
portant ingredients:

(i) a procedure that calculates an initial (x0, u0, μ0
1, μ

0
2) satisfying (EGC), namely,

fμ0
2
(x0) ≤ φμ0

1
(u0);

(ii) given (xk, uk, μk
1 , μ

k
2) satisfying (EGC), a procedure that generates (xk+1, uk+1,

μk+1
1 , μk+1

2 ) satisfying (EGC) as well;

(iii) μk+1
i ≤ μk

i , i = 1, 2, where one of the two inequalities is strict and μk
i → 0,

i = 1, 2.
Ingredients (i) and (ii) generate a sequence {(xk, uk, μk

1 , μ
k
2)} that satisfies (EGC)

for each k. Because of Lemma 2.1 and (iii), the primal-dual gap goes to zero as k
increases; that is,

(9) 0 ≤ f(xk)− φ(uk) ≤ μk
1D1 + μk

2D2 → 0.

As long as (EGC) is maintained, (9) will hold for all k.
Theorem 2.2 (Nesterov [17]). Given ε > 0, there is an algorithm based on the

excessive-gap technique that produces a pair (xN , uN ) ∈ Q1 ×Q2 such that

0 ≤ f(xN )− φ(uN ) ≤ ε

in

N =
4‖Â‖1,2

ε

√
D1D2

σ1σ2

iterations.
In each iteration of the algorithm, one needs to update (xk, uk, μk

1 , μ
k
2), a process

that requires solving several subproblems in the form of the inner max problem in
(7) or the inner min problem in (8). Therefore, the solutions of these max and min
problems should be easily computable. We omit the generic scheme here; we will
describe the specific algorithm with respect to our problem in section 3.3.

3. Applying the excessive-gap technique. In this section, we show how to
convert (NS) into the standard form required by the excessive-gap technique. After the
conversion, we specify all ingredients, including our choice of the prox-functions, the
calculation of parameters for the excessive-gap technique, and the iteration complexity
for solving (NS). In the last subsection, we detail the algorithm.
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3.1. Reformulation. We define two notations that will be used throughout this
section. Let �m denote the standard box of dimension m:

�m := {u ∈ �m : 0 ≤ u ≤ e}.
Let �n denote the standard simplex of dimension n:

�n := {x ∈ �n : x ≥ 0, 〈e, x〉 = 1} .
For notational convenience, we will drop the dimension subscript when the dimension
is clear from context.

We first reformulate the nonsmooth part of the objective function, 〈w, (Aα−b)+〉,
as a maximization problem. Since w is nonnegative, we have

〈w, (Aα − b)+〉 =
〈
e,Diag(w) (Aα− b)

+
〉

=

〈
e,
(
Diag(w)(Aα − b)

)+〉
= max

u∈�m

{〈Diag(w)(Aα − b), u〉}
= max

u∈�m

{〈Diag(w)Aα, u〉 − 〈Diag(w)b, u〉} .

Next, we transform the primal feasible set {α ∈ �n
+ : αB ≤ h, 〈c, α〉 ≤ θ} with

θ > 0 into a simpler set by changing variables. The purpose of the transformation is to
simplify the problem presentation, especially to facilitate the application of Nesterov’s
method. Recall that cB = 0 and thus 〈c, α〉 = 〈cB̄, αB̄〉, where B̄ := {1, . . . , n}\B.
Define a new variable x ∈ �n+1 as follows:

xB := Diag
(
h−1
)
αB,

xS := 1
θ

(
Diag (cB̄)αB̄
θ − 〈cB̄, αB̄〉

)
,

(10)

where S := B̄ ∪ {n + 1}. Because 0 ≤ αB ≤ h, we see that xB is inside a box with
dimension |B|. Because α ≥ 0 and 〈c, α〉 ≤ θ, xS resides in a simplex with dimension
|S| = n+ 1− |B|. So the primal feasible set becomes

{(xS , xB) ∈ �n+1 : xS ∈ �, xB ∈ �} =: FP .

The last step of the reformulation involves defining a new set of data Â ∈
�m×(n+1), b̂ ∈ �m, and ê ∈ �n+1 as follows:

ÂS :=
(
Diag(w)AB̄ Diag(c−1

B̄ ) 0
)
,(11)

ÂB :=
1

θ
Diag(w)AB Diag(h),(12)

b̂ := Diag(w)b,

êB := 0, êB̄ := e, ên+1 := 0.

With the above definition, one can easily verify that the objective function of (NS)
can be expressed in terms of x:

(13) 〈c, α〉+ 〈w, (Aα − b)+〉 = θ

[
〈ê, x〉+max

u∈�

{
〈Âx, u〉 − 1

θ
〈b̂, u〉

}]
=: θf(x; θ),

and thus (NS) is equivalent to the following problem:

min {f(x; θ) : x ∈ FP } .(SP)
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Based on the primal-dual structure of (2) and (3), we immediately have the dual
problem

max {φ(u; θ) : u ∈ �} ,(SD)

where

φ(u; θ) := −1

θ
〈b̂, u〉+ min

xS∈Δ,xB∈�

{
〈Âx, u〉+ 〈ê, x〉

}
.

The excessive-gap technique we described in section 2.2 can be used to solve (SP) and
(SD).

For any primal feasible solution x̄ obtained from the excessive-gap technique, it
is easy to recover a feasible solution ᾱ to (NS) by just reversing the transformation.
Note that by (13), the objective f(x̄; θ) needs to be scaled by θ in order to recover the
objective value of (NS). In fact, this property will influence the iteration complexity
of the excessive-gap technique. In particular, the primal error (the absolute difference
between the primal objective value and the optimal value) of (NS) is the primal error
of (SP) scaled by θ.

Lemma 3.1. Define p(α) := 〈c, α〉 + 〈w, (Aα− b)+〉, and let x∗ be an optimal
solution of (SP). Recall θ∗ denotes the optimal value of (NS). Suppose x̄ is feasible to
(SP) and ᾱ is the corresponding feasible solution to (NS). Then

(14) p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
.

Proof. ᾱ (α∗) can be obtained by x̄ (x∗) through the relationship (10). By (13),
p(ᾱ) = θf(x̄; θ) and p(α∗) = θ∗ = θf(x∗; θ), and the result follows.

3.2. Specifications. In this subsection, we discuss in detail each ingredient of
the excessive-gap technique. The choice of norms and prox-functions is critical. We
select the l1-norm and the entropy distance function as the prox-function for the
primal space, similar to what [18] did for the simplex:

(15) ‖x‖1 :=

n+1∑
i=1

|xi|, d1(x) := ln(|S|) + |B| · exp(−1) +
n+1∑
i=1

xi lnxi,

and so d1(·) is minimized at the prox-center

x◦
i =

{
1/|S| if i ∈ S,
exp(−1) if i ∈ B.

The constant term ln(|S|) + |B| · exp(−1) in d1(·) is present such that d1(·) evaluated
at x◦ is 0. Based on the selected prox-function, we calculate the parameter

D1 = max
x
{d1(x) : x ∈ FP } = ln(|S|) + |B| · exp(−1),

where d1(x) is maximized when xS lies in one corner point of the simplex and xB = 0

since
∑n+1

i=1 xi lnxi is nonnegative when x ∈ FP . The convexity parameter of d1(x) is

σ1 = 1
1+|B| because 〈d′′(x)h, h〉 =

∑n+1
i=1

(hi)
2

xi
and, from the Cauchy–Schwarz inequal-

ity,

‖h‖21 ≤
(∑

i∈S
xi +

∑
i∈B

xi

)
n+1∑
i=1

(hi)
2

xi
≤ (1 + |B|)〈d′′(x)h, h〉.
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For the dual space, we select the l2-norm and a “distance squared” quadratic function

(16) ‖u‖2 :=
√√√√ m∑

j=1

(uj)
2
, d2(u) :=

1

2

m∑
j=1

(
uj − 1

2

)2

.

It is easy to verify that D2 = maxu{d2(u) : u ∈ �m} = m
8 , σ2 = 1, and d2(·) achieves

its minimum at u◦ = 1
2e. As can be seen from Theorem 2.2, larger D1 and D2

correspond to a larger iteration bound N , and thus we select the above prox-function
and centers in order to achieve small D1 and D2. For example, u◦ = 1

2e because D1

is smallest by selecting u◦ as the center of the box.
The operator norm of Â is calculated as follows:

‖Â‖1,2 = max
u

{
‖ÂTu‖∗1 : ‖u‖2 = 1

}
= max

u

{
max

i∈{1,...,n+1}

{
〈Âi, u〉

}
: ‖u‖2 = 1

}

= max
i∈{1,...,n}

{
max
u

{
〈Âi, u〉 : ‖u‖2 = 1

}}

= max
i∈{1,...,n}

‖Âi‖2,

where the second equality follows because the dual norm of the l1-norm is the l∞-
norm, and the third equality follows from the fact that Â’s last column is zero, as
shown by (11).

With all the parameters computed, we are ready to state the iteration complexity
of solving (SP) and (SD).

Proposition 3.2. Using Nesterov’s excessive-gap technique, for any ε > 0, we
obtain a pair of solutions (xN , uN) to (SP) and (SD) such that

0 ≤ f(xN ; θ)− φ(uN ; θ) ≤ ε

in

(17) N := N(θ) :=
1

ε

(
max

i∈{1,...,n}
‖Âi‖2

)√
2 (1 + |B|) [ln(|S|) + |B| · exp(−1)] ·m

iterations.
Proof. The result is obtained by applying Theorem 2.2.
By (12), ÂB is dependent on 1/θ, and so the number of iterations of the excessive-

gap technique depends on θ. We thus write N(θ) as a function of θ to reflect this
dependence.

We comment that different combinations of norms and prox-functions other than
(15) and (16) may lead to different parameter values and thus different iteration
complexities. We considered several choices for the dual space, and the choice (16)
gives us the lowest iteration complexity among those considered. For example, one
could choose the l1-norm and the same prox-function as d1(x) for the dual space; the
resultant iteration complexity is O(

√
m) times larger than (17), which is much worse

than the current one if m is large.
In Proposition 3.2, the iteration complexity is stated with respect to (SP). Now

we state the iteration complexity with respect to (NS).
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Proposition 3.3. Using Nesterov’s excessive-gap technique, for any ε > 0, we
obtain a solution ᾱ to (NS) such that 0 ≤ p(ᾱ)− θ∗ ≤ ε in

N(θ) := θN(θ)

iterations, where N(θ) is given by (17).
Proof. By Proposition 3.2, in N(θ) iterations, we obtain a solution (x̄, ū) such

that the primal-dual gap is small enough:

0 ≤ f(x̄; θ)− φ(ū; θ) ≤ ε

θ
.

We then can construct ᾱ feasible to (NS). Thus, by (14), we have

0 ≤ p(ᾱ)− θ∗ = θ
(
f(x̄; θ)− f(x∗; θ)

)
≤ θ
(
f(x̄; θ)− φ(ū; θ)

)
≤ ε.

From this proposition, the iteration complexity of solving (NS) is a function of the
upper bound θ. This is not so surprising because the primal feasible set is originally
unbounded, and the hidden upper bound θ is discovered by exploiting the structure
of the objective function. Using (17), we see that N(θ) = θN(θ) is a nondecreasing
function in θ. More precisely, let i∗ := argmaxi∈{1,...,n} ‖Âi‖2, and it follows from the

definition of Â, (11) and (12), that N(θ) does not depend on θ when i∗ ∈ S and is
proportional to 1/θ when i∗ ∈ B. Thus we see N(θ) is an increasing function of θ
when i∗ ∈ S and does not depend on θ when i∗ ∈ B. In the former case, the smaller θ
is, the better. One could always apply some heuristics to get a good θ. In section 4,
we instead introduce a strategy that dynamically updates θ and consequently reduces
the iteration complexity for solving (NS) as the algorithm progresses.

Next we discuss the subproblems associated with our choice of prox-functions.
These subproblems will be solved repeatedly in the algorithm presented in section 3.3,
and thus it is important to have closed-form solutions for them. The subproblems are
the max and min problems presented within the following smoothed versions of our
primal and dual objective functions (recall (7) and (8)):

fμ2(x; θ) = 〈ê, x〉+ max
u∈�m

{
〈Âx, u〉 − 1

θ
〈b̂, u〉 − μ2d2(u)

}
,

φμ1 (u; θ) = −
1

θ
〈b̂, u〉+ min

xS∈Δ, xB∈�

{
〈Âx, u〉+ 〈ê, x〉+ μ1d1(x)

}
,

where d1(x) and d2(u) are given in (15) and (16).
Consider the min subproblem first. Its solution is sargmin(d1,− 1

μ1
(ÂTu + ê)),

where

sargmin(d1, s) := arg min
x∈Q1

{−〈s, x〉+ d1(x)}

= arg min
xS∈Δ,xB∈�

{
−〈s, x〉+

n+1∑
i=1

xi lnxi

}
.

The following lemma establishes a closed form for sargmin(d1, s).
Lemma 3.4. Given s, the solution sargmin(d1, s) is given by

[sargmin(d1, s)]i =

{
exp(si)

∑|S|
j=1 exp(sj)

, i ∈ S,
proj[0,1] (exp (si)) , i ∈ B,

where proj[0,1](y) projects y to the nearest point between 0 and 1.



A SMOOTHING METHOD FOR A CLASS OF LARGE-SCALE LPs 607

Proof. The objective function is separable in S and B. For optimizing this function
over the simplex, see Lemma 4 in [18]. For optimizing over the box, we compute the
point at which the first-order derivative vanishes and then project that point back to
the feasible region.

Now consider the max subproblem. In a similar manner, its solution is
sargmin(d2,

1
μ2
(Âx− b̂/θ)), where

sargmin(d2, s) := arg min
u∈Q2

{−〈s, u〉+ d2(u)} = argmin
u∈�

⎧⎨
⎩−〈s, u〉+

m∑
j=1

(
uj − 1

2

)2⎫⎬⎭ .

This problem also has a closed-form solution:
Lemma 3.5. Given s, the solution sargmin(d2, s) is given by

[sargmin(d2, s)]j = proj[0,1]
(
1
2 (1 + sj)

)
, j = 1, . . . ,m,

where proj[0,1](y) projects y to the nearest point between 0 and 1.
Proof. Observe that

−〈s, u〉+
m∑
j=1

(
uj − 1

2

)2
=

m∑
j=1

(
u2
j − (sj + 1)uj +

1
4

)
.

So the problem reduces to solving m one-dimensional quadratic problems whose so-
lutions are as stated.

3.3. Algorithm. The algorithmic scheme presented by [17] is generic, and the
problem-specific parameters for our problem have been calculated in sections 3.1 and
3.2. In this subsection, we explicitly state the scheme with respect to (SP) and (SD).
In this algorithm, there are three functions: (i) Initial initializes all the parameters
and the primal-dual solution (x0, u0) satisfying (EGC); (ii) Update1 is the primal
update; (iii) Update2 is the dual update. Update1 and Update2 are symmetric
but entail different subproblems.

Here is the algorithm Initial.

Algorithm 1. Initial.

Input: Data (m,n, Â, b̂, ê, θ)

Output: Initialized parameters (μ0
1, μ

0
2) and solutions (x0, u0) that satisfy (EGC)

1: D1 = ln(|S|) + |B| · exp(−1), D2 = m/8, σ1 = 1
1+|B| , σ2 = 1, ‖Â‖1,2 =

maxi∈{1,...,n} ‖Âi‖2
2: μ0

1 = 2 ‖Â‖1,2
√

D2

σ1σ2D1
, μ0

2 = ‖Â‖1,2
√

D1

σ1σ2D2

3: x̄ = sargmin(d1, 0)

4: u0 = sargmin
(
d2,

1
μ0
2
(Âx̄− b̂/θ)

)
5: x0 = sargmin

(
d1, ln(x̄) + e− μ0

2

‖Â‖2
1,2

(ATu0 + ê)

)
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Here is the primal update (when k is even).

Algorithm 2. Update1: primal update.
Input: Current solution (x, u) and parameters (μ1, μ2, τ, θ)

Output: (x+, u+, μ+
1 , μ

+
2 ) that satisfy (EGC)

1: x̄ = sargmin
(
d1,− 1

μ1
(ÂTu+ ê)

)
2: x̂ = (1 − τ)x+ τx̄

3: ū = sargmin
(
d2,

1
μ2
(Â x̂− b̂/θ)

)
4: x̃ = sargmin

(
d1, ln(x̄) + e− τ

(1−τ)μ1
(ÂT ū+ ê)

)
5: x+ = (1 − τ)x + τx̃

6: u+ = (1 − τ)u + τū

7: μ+
1 = (1− τ)μ1, μ

+
2 = μ2

Here is the dual update (when k is odd).

Algorithm 3. Update2: dual update.
Input: Current solution (x, u) and parameters (μ1, μ2, τ, θ)

Output: (x+, u+, μ+
1 , μ

+
2 ) that satisfy (EGC)

1: ū = sargmin
(
d2,

1
μ2
(Â x− b̂/θ)

)
2: û = (1 − τ)u + τū

3: x̄ = sargmin
(
d1,− 1

μ1
(ÂT û+ ê)

)
4: ũ = sargmin

(
d2,

τ
(1−τ)μ2

(Â x̄− b̂/θ) + ū− 1
2e
)

5: x+ = (1 − τ)x + τx̄

6: u+ = (1 − τ)u + τũ

7: μ+
2 = (1− τ)μ2, μ

+
1 = μ1

The entire Smooth algorithm is as follows.

Algorithm 4. Smooth.

Input: (i) Data (m,n, Â, b̂, ê, θ,N(θ)); (ii) Subroutines sargmin(d1, ·) and
sargmin(d2, ·)

Output: (xN(θ), uN(θ))

1: (x0, u0, μ0
1, μ

0
2) = Initial (m,n, Â, b̂, ê, θ)

2: for k = 0, 1, . . . , N(θ) − 1 do

3: τ = 2
k+3

4: if k is even then

5: (xk+1, uk+1, μk+1
1 , μk+1

2 ) = Update1(xk, uk, μk
1 , μ

k
2 , τ, θ)

6: else

7: (xk+1, uk+1, μk+1
1 , μk+1

2 ) = Update2(xk, uk, μk
1 , μ

k
2 , τ, θ)
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We have two comments regarding the Smooth algorithm. First, according to
Lemmas 3.4 and 3.5, the subproblems have closed-form solutions and can be solved
quickly. The most time-consuming operations are thus the matrix-vector multipli-
cations Âx̄ and ÂT ū. Second, θ is treated as a fixed parameter for Update1 and
Update2. In the next section, we will discuss a simple procedure that dynamically
updates θ, and the algorithm will be valid even with changing values of θ.

4. Speeding up the convergence. Recall θ > 0 is an upper bound on the
optimal value θ∗ of (NS). As shown in Proposition 3.3 and its subsequent discus-
sion, the iteration complexity for obtaining an ε-solution of (NS) is directly related
to θ/ε, when the parameter ‖Â‖1,2 does not depend on θ. This happens when

argmaxi∈{1,...,n} ‖Âi‖ ∈ S and is the case we consider in this section. As an in-
put parameter, the smaller θ is, the better the iteration complexity, and the best
possible θ is the optimal value θ∗. We will of course obtain new information on θ∗ as
Algorithm 4 progresses; in particular, an improved primal objective value will give a
better upper bound on θ∗ than θ. To take advantage of this information, we consider
updating θ dynamically within Algorithm 4.

Suppose we have a better bound θ+ ∈ [θ∗, θ) available after running Algorithm 4
for K iterations, where K < N(θ) = θN(θ). Recall N(θ), as defined in (17), depends
on the error tolerance ε. With θ+ on hand, it may be worthwhile to restart the
algorithm and input θ+ for the new run, if the number of iterations required by
the new run plus the number of iterations already run is smaller than the iteration
estimate under θ, that is, if K + θ+N(θ+) < θN(θ) holds.

Instead of restarting the algorithm, however, we update θ dynamically. In fact, we
will show that it is possible to improve the iteration complexity to θ+N(θ)—without
restarting the algorithm—provided that the condition (EGC) is carefully maintained
when updating the parameter θ to θ+. To achieve this result, let θ > θ∗ be the current
upper bound on the optimal value, and let k be the iteration counter. The following
lemma shows, under mild conditions, the existence of θ+ ∈ (θ∗, θ) and k such that
(xk, uk, μk

1 , μ
k
2) satisfies (EGC) with respect to θ+.

Lemma 4.1. Within Algorithm 4, suppose (xk, uk, μk
1, μ

k
2) satisfies (EGC) strictly

with respect to θ; that is, fμk
2
(xk; θ) < φμk

1
(uk; θ). Suppose also that f(xk; θ) < 1.

Then there exists θ+ ∈ (θ∗, θ) such that (xk, uk, μk
1 , μ

k
2) also satisfies (EGC) for θ+:

(18) fμk
2
(xk; θ+) ≤ φμk

1
(uk; θ+).

Proof. Define θk := θf(xk; θ). Based on the relationship (14), we know θk ≥ θ∗,
i.e., θk is a valid upper bound on θ∗. Then f(xk; θ) < 1 implies θk ∈ [θ∗, θ). If
fμk

2
(xk; θk) ≤ φμk

1
(uk; θk) holds, simply set θ+ := θk. Otherwise, g(τ) := fμk

2
(xk; τ)−

φμk
1
(uk; τ) is a continuous function of τ , and we have g(θk) > 0 and g(θ) < 0. So

there exists θ+ ∈ (θk, θ) such that g(θ+) ≤ 0. In other words, (18) holds.
We remark that, intuitively, if the error tolerance ε is small enough, the condition

f(xk; θ) < 1 in the lemma eventually holds for large enough k since f(x∗; θ) = θ∗/θ <
1.

From now on, we use pk to represent the primal value p(αk) for notational con-
venience. By (9), we have

f(xk; θ)− φ(uk; θ) ≤ μk
1D1 + μk

2D2 =: Uk, k = 1, 2, . . . ,

where the bounding sequence
{
Uk
}∞
k=1

depends on θ as {μk
1} and {μk

2} depend on θ.

According to (14), the primal error pk − θ∗ at iteration k is bounded above by θUk
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because

(19) pk−θ∗ = θ
(
f(xk; θ)− f(x∗; θ)

) ≤ θ
(
f(xk; θ)− φ(uk; θ)

) ≤ θUk, k = 1, 2, . . . .

On the other hand, the assumption of Lemma 2.1 is satisfied because (EGC) holds
for θ+, as shown by Lemma 4.1. Thus applying Lemma 2.1 we have

(20) f(xk; θ+)− φ(uk; θ+) ≤ Uk.

Therefore, we obtain

(21) pk − θ∗ ≤ θ+
(
f(xk; θ+)− φ(uk; θ+)

) ≤ θ+Uk,

where the first inequality follows from (14) and the second inequality follows from (20).
So, instead of θUk, the improved upper bound θ+Uk is shown to hold at iteration
k. Since the excessive-gap technique guarantees that (EGC) is maintained in the
next iteration as long as it holds at the current iteration, immediately switching θ
to θ+ allows us to bound the primal error from the current iteration onwards by the
sequence {θ+U l}∞l=k. The above analysis leads to the following proposition.

Proposition 4.2. If, during the course of Algorithm 4 at iteration k, a new
upper bound θ+ ∈ [θ∗, θ) satisfying (18) is employed for Algorithm 4, then the bound

for primal error can be improved from ε to θ+

θ ε < ε, where ε denotes the original bound
for primal error at iteration k.

Proof. It follows immediately from (19) and (21).
We have a few comments.
(i) It is worth emphasizing that Uk depends on θ and does not change while

updating θ to θ+ and thus the improvement of the bounds is completely due
to the improved θ+.

(ii) The primal-dual solutions generated in subsequent iterations are different
than those that would have been generated with the parameter θ because the
parameter θ+ affects the subroutines Update1 and Update2.

(iii) We have demonstrated the existence of θ+ in Lemma 4.1, but there appears to
be no closed-form formula for it. One simple procedure to obtain θ+ is shown
in Algorithm 5. Lines 2 and 3 of Algorithm 5 do not affect other parts of the
Smooth algorithm and can be put into the procedure conveniently. Thus
Update3 can be performed periodically, say every 50 iterations, to improve
the bound on the number of iterations.

Algorithm 5. Update3: bound update.
Input: θ

Output: θ+ satisfies (EGC)

1: if fμ2(x
k; θ) ≤ φμ1(u

k; θ) then
2: θ+ = θf(xk; θ)

3: while fμ2(x
k; θ+) > φμ1(u

k; θ+) do

4: θ+ = 1/2(θ+ + θ)

(iv) To maintain the excessive-gap condition, one can easily see that θ+ should
be chosen in a neighborhood of θ, and so the reduction of the number of
iterations by updating θ may not be big. However, the procedure of updating
θ can be performed repeatedly. As the algorithm converges, the updated
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Fig. 1. Comparison of running the Smooth algorithm under cases (i)–(iii). The left subplot
shows the change of the primal error p(α)−θ∗ over time; the right subplot shows how the primal-dual
gap changes over time and compares it with the theoretical upper bounds.

parameter value becomes a better and better approximation of θ∗, and thus
the cumulative improvements might be significant.

(v) After several updates to the upper bound, say, from the intial θ to θ+ to
θ++, one can see that the complexity bound updates from θN(θ) to θ+N(θ)
to θ++N(θ). Hence, a lower bound for the best iteration complexity of our
method is θ∗N(θ), where θ is the initial upper bound and θ∗ is the optimal
value.

We close this section with an example that illustrates the effects of dynamically
updating θ. The example is an instance from the first application that will be discussed
in section 5.1 and is created with the dataset dermatology from Asuncion and Newman
[1]. The data matrix A in (P) has dimension 6760 × 358. We did three runs of the
Smooth algorithm with the following variations:

(i) Initial input of trivial θ = 〈w, (−b)+〉, and the Smooth algorithm is run
without updating θ;

(ii) initial input of trivial θ = 〈w, (−b)+〉, and the Smooth algorithm is run with
the dynamic update of θ;

(iii) initial input of θ = θ∗, where the optimal value θ∗ has been calculated using a
standard LP solver, and there is no update on θ because the bound is already
optimal.

While case (iii) is not realistic because θ∗ is the idealized best upper bound, which is
gotten by presolving the LP, it serves as a best-case comparison for cases (i) and (ii).

Figure 1 shows the results in log-log scale. The first subplot shows how the primal
error pk−θ∗ changes over time. One can see that dynamically updating θ reduces the
error significantly and its performance is almost as good as the ideal case (iii). We
also comment that, in this particular example, θ∗ � 〈w, (−b)+〉 and thus the starting
value of the error for case (iii) is far smaller than for (i) and (ii). Note also that (i)
and (ii) are identical until the iteration when θ is first updated. The second subplot
demonstrates how the primal-dual gap θ(f(xk; θ)−φ(uk; θ)) changes over time for the
three cases. It also plots the upper bound sequence θUk to show how θ affects the
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primal-dual gap. Note that for this example, the upper bound associated with case
(ii) changes over time because θ is being updated repeatedly.

5. Applications and computational experiments. In this section, we study
the application of Algorithm 4 for solving two machine learning problems: (i) an
LP-based ranking method [3, 2]; (ii) 1-norm SVMs (see, for example, [14] for the for-
mulation of the 1-norm SVM and more references). In the following two subsections,
we first briefly describe the two applications and reformulate them as (P). We then
conduct computational experiments to compare Algorithm 4 with existing algorithms
for the respective applications.

5.1. LP-based ranking method. The LP-based ranking method proposed in
[2] is designed to train a scoring function that ranks all positive points higher than
all negative points (from data that are assumed to have binary output). This ranking
method is reported to perform better than SVM-based ranking algorithms.

Let (xl, yl) be an instance in the training setX � l. The class label is yl ∈ {1,−1}.
Let X+, X− represent the set of points with positive and negative labels, respectively.
Let K(·, ·) denote a chosen kernel function, for example, the RBF kernel function. At
its core, the ranking method is the following optimization problem:

min
∑
l∈X

αl + C
∑

i∈X+, j∈X−
wi,jξi,j(LPR)

s. t.
∑
l∈X

yl [K(xi, xl)−K(xj , xl)]αl ≥ 1− ξi,j ∀ i ∈ X+, j ∈ X−,

α ≥ 0, ξ ≥ 0,

where α ∈ �|X| and ξ ∈ �|X+|×|X−| are the decision vectors and all else are data. It
is assumed that C > 0 and wi,j ≥ 0 for all i ∈ X+, j ∈ X−.

To put (LPR) in the form of (P), we define

Ai×j,l := −yl [K(xi, xl)−K(xj , xl)] ∀ i× j ∈ X+ ×X−, l ∈ X,

m := |X+| × |X−|,
n := |X | = |X+|+ |X−|,

such that A ∈ �m×n. Now (LPR) is readily modeled as (P) with data

c = e ∈ �n, w = Ce ∈ �m, b = −e ∈ �m.

Notice that m grows quadratically as the number of data points grows, and thus A
becomes large scale even for medium-sized datasets. In addition, since every entry of
A is the difference of two kernel function evaluations, A is usually fully dense.

In [2], the subgradient method is proposed for (LPR) because the method is
memory efficient and thus is able to solve large-scale instances. In our computational
study, we compare Algorithm 4 with the subgradient method implemented in [2],
which is essentially the incremental subgradient method (Nedic and Bertsekas [15]).
We collected 14 datasets from the UCI Machine Learning repository (Asuncion and
Newman [1]) and prepare them in the same way as in [2]. Table 1 describes the
processed data A. We point out that among the problems in Table 1, cancer and
diabetes cannot be solved by a commercial LP solver, like CPLEX (via either primal
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Table 1

Statistics of A: dimension, percentage of nonzeros, and storage size in MATLAB format (in-
stances are ordered increasingly by the number of nonzeros).

Instance m n Nonzeros (%) Size (MB)
wine 6240 178 11% 0.2
iris 5000 150 100% 5.4
glass 5365 214 100% 8.3
ntyroid 5550 215 98% 7.3
sonar 10767 208 100% 16.4
derma 6760 358 93% 6.6
heart 18000 270 100% 32.9
ecoli 14768 336 100% 36.3
spectf 24638 351 93% 20.0
ion 28350 351 100% 72.7
liver 29000 345 100% 60.6
boston 21984 506 100% 50.2
cancer 75684 569 100% 314.6
diabetes 134000 768 96% 409.1

or dual LP formulation), on a machine with 4-GB RAM without perhaps some special
handling of the memory.

One benefit of the excessive-gap technique is the availability of the primal-dual
gap, which can serve as a good stopping criterion. On the contrary, it is not easy to
obtain a primal-dual gap for the subgradient method.1 So, in order to compare the
two methods without a common stopping criterion, we perform the computational
experiments in the following way. First, we solve each instance via Algorithm 4 with
error tolerance ε = 1 and obtain the best objective value found by the excessive-gap
technique. Second, we run the subgradient method until it finds at least as good an
objective value as the excessive-gap technique, or until it reaches the time limit. We set
a time limit of 18,000 seconds for both methods. All computations were performed on
a Pentium D running at 3.2 GHz under the Linux operating system with 4-GB RAM.

Table 2 presents the CPU times and the best objective values found when the
algorithms terminate. Except for the two largest instances, we have the optimal values
of the ranking problems available for gauging the quality of the solutions, as listed
under the column θ∗. The subgradient method was able to find as good a solution as
the excessive-gap technique in 5 out of the 14 instances within the time limit and is
faster in 3 out of those 5 instances. For the remaining 9 instances, the excessive-gap
technique either is faster than the subgradient method in achieving the same quality
solution or obtains better solutions in the same amount of time.

We also plot the primal objective value errors of both methods versus the CPU
times for one instance, glass , in Figure 2. We comment that Figure 2 reflects the
typical behavior of the two methods. The subgradient method finds good solutions
rapidly, but its convergence is slow; the excessive-gap technique’s initial objective
value is usually not as good but converges faster, as predicted by theory. This obser-
vation suggests that the subgradient method might be a better choice if obtaining a
good solution in a short time is important. On the other hand, if the accuracy of the
optimization problem is critical, the excessive-gap technique is the better choice for
large-scale problems.

1Nesterov [20] proposes a primal-dual subgradient scheme, and we have implemented it for com-
parison. However, empirically we found the estimate (upper bound) of the primal-dual gap of the
subgradient method (see (3.3) in [20]) to be pessimistic and usually much larger than the gap of the
excessive-gap technique when both methods achieve similar primal values.
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Table 2

Comparison of Algorithm 4 (Smooth) and the subgradient method (Subg.) when applied to
14 linear ranking problems. θ∗ is the optimal value of the ranking problem, but it is not available
for the two largest instances. Times are in seconds and rounded to the nearest integers. Here t
represents that the time limit (18000 sec.) was exceeded.

Time (in sec.) Best Obj.

Dataset Smooth Subg. θ∗ Smooth Subg.

wine 111 39 77.82 78.82 78.76
iris 1104 7001 3317.72 3318.72 3318.72
glass 1296 t 2850.45 2851.45 2852.00
ntyroid 1232 4153 1694.65 1695.65 1695.65
sonar 2136 1055 191.85 192.85 192.85
derma 119 7 28.71 29.67 29.36
heart 5687 t 1240.92 1241.92 1249.52
ecoli t t 8421.05 8422.60 8453.03
spectf 11203 t 1580.99 1587.17 1634.22
ion t t 2578.49 2583.15 2634.61
liver t t 11339.9 11370.30 11641.30
boston t t 889.88 890.94 899.03
cancer t t — 17989.09 27520.79
diabetes t t — 14327.73 28070.29

Fig. 2. Error versus time (log-log scale): comparison of the excessive-gap technique and the
subgradient method.

5.2. 1-norm support vector machines. SVMs are popular techniques for
classification, and 1-norm SVMs are known to be effective in reducing input space
features. Existing solution approaches for the 1-norm SVM include solving them as
LPs and using a generalized Newton method or its variants (Fung and Mangasarian
[9], Mangasarian [14]). We show in this subsection that Algorithm 4 can also be
applied to solve 1-norm SVMs. First, we introduce the standard form of the 1-norm
SVM and reformulate it as (P). Second, we compare Algorithm 4 with the generalized
Newton method proposed in [14] for solving linear 1-norm SVM and nonlinear kernel
1-norm SVM problems. From now on, we will refer to the method of [14] as Newton
for short.
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A standard 1-norm SVM is the following optimization problem:

min
(x,γ,ξ)

‖x‖1 + C‖ξ‖1(1-norm SVM)

s. t. D(Ãx− eγ) + ξ ≥ e,(22)

ξ ≥ 0,

where Ã ∈ �m×n represents m points in �n to be separated by a hyperplane

(23) aT x = γ.

D ∈ �m×m is a diagonal matrix with element Dii ∈ {−1, 1} representing the label for
the ith data point, and C > 0 is a trade-off parameter.

We claim that the variables (x, γ, ξ) are implicitly bounded. In fact, since the
problem is a minimization problem, there existsM > 0 such that ‖x∗‖1+C‖ξ∗‖1 < M ,
where (ξ∗, x∗) is an optimal solution to (1-norm SVM). Thus both x∗ and ξ∗ are
bounded. At optimality, (22) can be rewritten as

Deγ∗ ≤ DÃx∗ + ξ∗ − e,

and it follows from the boundedness of (x∗, ξ∗) that the right-hand side of the above
inequality is bounded. Therefore, there exists a scalar h > 0 such that Deγ∗ ≤ h e,
which implies that γ∗ ∈ [−h, h] because De’s components are either 1 or −1. To
actually compute h, note that the absolute value of each component of x∗ and ξ∗ is
also bounded by M , and thus one can compute an upper (if Dii > 0) or lower (if
Dii < 0) estimate of the ith component of DÃx∗ + ξ∗ − e as follows:

β(i) =

{
(Ãi)

+(M e) + (M − 1) if Dii = 1,

−(−Ãi)
+(M e) + 1 if Dii = −1 ∀ i = 1, . . . ,m,

where Ãi is ith row of Ã and M can be easily estimated. Now we can calculate
h = maxi=1,...,m{|β(i)|}.

To reformulate (1-norm SVM) as (P), we first express the variables x and γ as
the difference of two nonnegative variables, that is, x = x+ − x−, γ = γ+ − γ−.
Because of the boundedness of γ, we may enforce γ+, γ− ∈ [0, h]. Define the matrix
A := (De,−De,−DÃ,DÃ) and α := (γ+; γ−; x+; x−) ≥ 0, such that (22) can be
equivalently expressed as Aα+ e ≤ ξ. Then (1-norm SVM) is equivalent to

min
(α,ξ)

cTα+ C eT ξ(1-norm SVM′)

s. t. Aα+ e ≤ ξ,

α, ξ ≥ 0,

where c is a vector of ones except that the first two entries are zero. Note that

Assumption 1.1 is satisfied since αB = ( γ
+

γ− ) ≤ h e with B = {1, 2}. Therefore,

Algorithm 4 is applicable to (1-norm SVM′).
In the following, we compare Algorithm 4 with Newton [14] for solving two types

of 1-norm SVMs: the linear 1-norm SVM and the nonlinear kernel 1-norm SVM. The
major difference is that the former seeks a separating hyperplane such as (23) while
the latter solves for a nonlinear separating surface. According to [14], the nonlinear
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Table 3

Dimensions of Ã and K(Ã, ÃT ).

Ã K(Ã, ÃT )
Dataset m n 1st Set, m 2nd Set, m
a6a 10000 122 5000 8000
covtype 10000 54 5000 8000
ijcnn1 10000 22 5000 8000
mushrooms 8124 112 5000 8000
usps 7291 256 5000 7291
w5a 9888 300 5000 8000

kernel SVM can be modeled readily by (1-norm SVM′) with a simple replacement of
the data Ã as follows:

Ã ←− K(Ã, ÃT )D,

where K(·, ·) is a kernel function. We discuss the details of the computational exper-
iment in the following paragraphs.

We selected six classification datasets from LIBSVM data2 and used them to
create both Ã and K(Ã, ÃT ). For the linear 1-norm SVM problem, we randomly
sampled from each dataset 10000 or the maximum number of data points, whichever
was smaller, to form Ã. For the nonlinear kernel 1-norm SVM problem, we created
two sets of K(Ã, ÃT ) with different sizes. In particular, we randomly sampled 5000
data points to create the first set of kernel matrices. We then randomly sampled
8000 or the maximum number of data points, whichever was smaller, to form the
second set of kernel matrices. We choose the RBF kernel and followed the procedure
as prescribed in [12] to prepare K(Ã, ÃT ). The dataset and the sizes of the data
matrices are presented in Table 3. Note that the kernel matrices are square matrices
and thus we only show the sizes of their first dimensions.

In SVMs, C is a user-specified parameter that often takes a set of different values
in tuning for the best parameter setting. In our experiment, we tested C = 1 and
C = 0.01 for both the linear SVM and nonlinear kernel SVM.

The stopping criterion for our excessive-gap technique is that the relative primal-
dual gap r = p−d

max{1,1/2(|p|+|d|)} should be smaller than 0.01, where p and d represent

the primal and dual objective values, respectively. For Newton, an unconstrained
optimization is solved, and its gradient is zero at optimality. Thus we set the stopping
criterion for Newton to be when the gradient has norm smaller than ε = 1e− 5.3 We
also set a time limit of 18000 seconds for all runs.

Both Algorithm 4 and Newton are implemented in MATLAB. For the Newton
method, we adopted the code from the author’s web site.4 All computations were
performed on the same machine mentioned in the previous subsection.

We summarize the computational results for the linear 1-norm SVM in Tables 4
and 5, corresponding to C = 1 and C = 0.01, respectively. We compare the excessive-
gap technique and the Newton method in terms of best objective values, CPU times,
and optimality. Note that the measures of optimality are different for the two methods
and so cannot be compared directly. The excessive-gap technique was able to solve all

2Available at http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/datasets/.
3We observe in our computational experiments that if the gradient is not sufficiently small, the

resulting solution of the Newton method is infeasible. Therefore, we set a small ε.
4http://www.cs.wisc.edu/dmi/svm/lpsvm/.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.cs.wisc.edu/dmi/svm/lpsvm/
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Table 4

Linear 1-norm SVM with C = 1: comparison of Algorithm 4 (Smooth) and the Newton method
(Newton) in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 3566.9 87283.5 1627.4 t 1.0e−2 7.5e+1
covtype 5778.1 5916.7 869.0 t 1.0e−2 6.7e−2
ijcnn1 1741.2 1746.7 51.3 1.6 1.0e−2 1.0e−5
mushrooms 16.2 18.7 1117.0 605.4 1.0e−2 2.0e−6
usps 127.5 37177.5 3595.6 t 1.0e−2 2.1e+2
w5a 324.7 333.2 3509.6 2 1.0e−2 1.0e−5

Table 5

Linear 1-norm SVM with C = 0.01: comparison of Algorithm 4 (Smooth) and the Newton
method (Newton) in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 43.1 28.5 11.5 t 9.0e−03 2.0e+1
covtype 79.5 15.0 8.1 3757 1.0e−02 1.0e−6
ijcnn1 19.7 0.8 3.3 0.3 9.0e−03 2.0e−6
mushrooms 8.5 17.7 9.7 0.5 9.0e−03 2.0e−6
usps 9.6 88.5 150.7 t 1.0e−02 1.1e+2
w5a 5.7 100.4 6.3 0.1 1.0e−02 1.0e−5

Table 6

Nonlinear kernel 1-norm SVM with C = 1, first set of data: comparison of Algorithm 4 and
the Newton method in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 1791.2 1791.3 15521.6 3863.6 1.0e−2 0.0e+0
covtype 2844.7 62739 10925.6 t 1.0e−2 6.7e−1
ijcnn1 963.1 962 t 170.8 1.6e−2 0.0e+0
mushrooms 378.4 376.6 t 4698.5 1.8e−2 0.0e+0
usps 117.5 17053.3 11974.7 t 1.0e−2 1.3e+0
w5a 319.2 314 10454.4 1422.4 1.0e−2 0.0e−0

instances except for one (usps) to within the error tolerance in the given time. The
Newton method, however, fails to reduce the gradient to within the error tolerance in
three out of six instances when C = 1, and in two out of six instances when C = 0.01.
On the other hand, the Newton method is usually fast when it does converge. Overall,
we see that the excessive-gap technique is efficient and robust compared with the
Newton method in solving the linear 1-norm SVM problem. In each table, t signifies
that the time limit (18000 sec.) was exceeded.

The results for the first set of nonlinear kernel 1-norm SVM problems are sum-
marized in Tables 6 and 7, corresponding to C = 1 and C = 0.01, respectively. The
kernel matrices for this set of problems all have dimension 5000× 5000. When C = 1,
both methods ran out of time on two instances each, but Newton returned much
worse objective values when it ran out of time. The Newton method is faster than
the excessive-gap technique on problems solved by both methods to within the error
tolerances. For C = 0.01, the excessive-gap technique solved all problems within the
given time while the Newton method ran out of time on four out of the six instances.

The computational results for the second set of nonlinear kernel 1-norm SVM are
presented in Tables 8 and 9, corresponding to C = 1 and C = 0.01, respectively. From
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Table 7

Nonlinear kernel 1-norm SVM with C = 0.01, first set of data: comparison of Algorithm 4 and
the Newton method in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 23.8 2171.6 6110.5 t 1.0e−2 3.1e−1
covtype 45.7 3499.2 2090.7 t 1.0e−2 6.1e−1
ijcnn1 9.8 9.6 10343.6 118.4 1.0e−2 0.0e+0
mushrooms 35.5 1471.2 5571.6 t 1.0e−2 1.1e−1
usps 13.1 2841.6 2180.6 t 1.0e−2 6.9e−1
w5a 3.2 3.1 t 2915.6 2.0e−2 0.0e+0

Table 8

Nonlinear kernel 1-norm SVM with C = 1, second set of data: comparison of Algorithm 4 and
the Newton method in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 5943.2 2980.2 t 12341.2 4.7e−1 9.0e−6
covtype 1991.3 22851.5 t t 5.7e−2 8.4e+1
ijcnn1 3005.8 1542 t 172.2 3.3e−1 1.0e−5
mushrooms 470.1 433.6 t t 1.5e−1 5.9e−5
usps 166.9 7081.2 t t 4.3e−2 2.9e+2
w5a 786.8 542.5 t t 2.7e−1 1.1e−5

Table 9

Nonlinear kernel 1-norm SVM with C = 0.01, second set of data: comparison of Algorithm 4
and the Newton method in terms of best objective values, CPU times, and measures of optimality.

Objectives Times Optimality
Data Name Smooth Newton Smooth Newton Gap Gradient
a6a 38.3 1008.5 t t 1.5e−2 2.1e+1
covtype 23.9 2292.5 14100.2 t 1.0e−2 5.3e+1
ijcnn1 16.0 15.4 t 758.4 2.8e−2 1.0e−5
mushrooms 44.0 1291 5018.8 t 1.0e−2 3.5e+1
usps 16.3 1544 6773.7 t 1.0e−2 2.4e+2
w5a 5.8 5.6 t 5462.1 2.7e−2 6.0e−6

Table 3, we know that the sizes of these problems are larger than the corresponding
linear problems and the first set of nonlinear kernel problems, and thus they are more
difficult to solve. When C = 1, the excessive-gap technique was able to solve only one
out of six instances to within the error tolerance in the given amount of time and the
Newton method was able to solve two out of six. When C = 0.01, the excessive-gap
technique was able to solve four out of six, while the Newton method was able to solve
two out of six. In terms of optimality, we find that the optimality gap delivered by
the excessive-gap technique is more consistent (particularly when C = 0.01), whereas
the Newton method often fails to converge, as indicated by large gradient values.

For both the linear and nonlinear kernel problems, we observe that the excessive-
gap technique is faster with smaller C values, a result that is consistent with the
theoretical result in Proposition 3.3 because a larger C value corresponds to a larger θ
value. Our computational experiments also suggest that the excessive-gap technique
is a favorable choice to solve the 1-norm SVM problem when the parameter C is
relatively small. The Newton method is fast when it does converge but is not as
robust as the excessive-gap technique.
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6. Conclusion. In this paper, we have developed a first-order excessive-gap
technique for solving (P) and the equivalent problem (NS). We show that the iteration
complexity of this technique depends on the parameter θ, which arises when bounding
the feasible set. We estimate θ as an upper bound on θ∗, the optimal value of (NS).
Since a smaller θ means a better iteration complexity, we have designed a strategy
that dynamically updates the value of θ as the algorithm obtains more information
about θ∗, resulting in faster convergence. This idea could be extended to other convex
nonsmooth problems with unbounded feasible sets.

Our method is designed for large-scale instances of (P), and we have applied it to
two problems in machine learning: the LP problem and the 1-norm SVMs. We demon-
strate the effectiveness of our method by comparing it with two existing methods: the
subgradient method for solving the ranking problem and the Newton method for solv-
ing the 1-norm SVM, respectively. Our computational experience indicates that under
many circumstances the excessive-gap technique is a more attractive method because
of its balanced efficiency and reliability.
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