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A TWO-VARIABLE APPROACH TO THE
TWO-TRUST-REGION SUBPROBLEM∗
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Abstract. The trust-region subproblem minimizes a general quadratic function over an ellipsoid
and can be solved in polynomial time using a semidefinite-programming (SDP) relaxation. Inter-
secting the feasible set with a second ellipsoid results in the two-trust-region subproblem (TTRS).
Even though TTRS can also be solved in polynomial time, existing algorithms do not use SDP.
In this paper, we investigate the use of SDP for TTRS. Starting from the basic SDP relaxation of
TTRS, which admits a gap, recent research has tightened the basic relaxation using valid second-
order-cone inequalities. Even still, closing the gap requires more. For the special case of TTRS
in dimension n = 2, we fully characterize the remaining valid inequalities, which can be viewed as
strengthened versions of the second-order-cone inequalities just mentioned. We also demonstrate
that these valid inequalities can be used computationally even when n > 2 to solve TTRS instances
that were previously unsolved using SDP-based techniques.

Key words. trust-region subproblem, semidefinite programming, nonconvex quadratic
programming

AMS subject classifications. 90C20, 90C22, 90C25, 90C26, 90C30

DOI. 10.1137/130945880

1. Introduction. This paper studies the two-trust-region subproblem, called
TTRS, which is the minimization of a general quadratic function over the intersection
of two full-dimensional ellipsoids:

v∗ := min
x∈R2

xTCx+ 2 cTx(TTRS)

s. t. (x− ai)
TAi(x− ai) ≤ 1, i = 1, 2.

The data are n × n symmetric matrices C,Ai and vectors c, ai ∈ Rn. Moreover,
each Ai is positive definite so that each set Ei := {x : (x − ai)

TAi(x − ai) ≤ 1}
is a full-dimensional ellipsoid with center ai. Let F := E1 ∩ E2 denote the feasible
region of (TTRS). If C is positive semidefinite, then TTRS is solvable in polynomial
time using second-order cone programming. So we assume that C is not positive
semidefinite. TTRS was originally introduced by Celis, Dennis, and Tapia [10] and
hence is sometimes also called the CDT problem.

TTRS is a generalization of the classical trust-region subproblem, called TRS, that
minimizes xTCx+2 cTx over a single ellipsoid (x−a1)

TA1(x−a1) ≤ 1, which can be
assumed to be the unit ball ‖x‖ ≤ 1 without loss of generality. TRS serves as the basis
of trust-region methods for nonlinear optimization [11] and, even though nonconvex,
can be solved efficiently in theory and practice [13, 17, 19]. In particular, the papers
[12, 23] consider the polynomial-time complexity of constructing an ε-optimal solution
of TRS. Moreover, the optimal value of TRS equals the optimal value of the following
polynomial-time solvable semidefinite program (SDP) [19]

(1) min

{
C •X + 2 cTx : A1 •X − 2 aT1 A1x+ aT1 A1a1 ≤ 1,

(
1 xT

x X

)
� 0

}
,
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662 BOSHI YANG AND SAMUEL BURER

where the notation M • X := trace(MTX) denotes the inner product of symmetric
matrices. For additional background on TRS, we refer the reader to [19, section 1.1].

In addition to TTRS, several other generalizations of TRS have been studied;
see [19] for an early discussion. For example, [22] investigates the addition of a
single linear inequality to TRS, which is shown to have an exact convex relaxation
gotten by adding a second-order-cone constraint to (1). The paper [24] discusses an
extension having two parallel, nonintersecting linear constraints, which can be solved
in polynomial time by subdividing the problem into cases. Extending [24], the papers
[8, 9] show that adding any number of linear constraints to TRS—as long as the
constraints do not intersect in the ellipsoid—can be solved in polynomial time by
adding extra linear and second-order-cone constraints to (1). Two recent papers have
studied the intersection of TRS with a general polyhedron P . First, [15] provides a
sufficient condition on the data of the problem, including P , under which a simple
extension of (1) is tight. Second, [6] shows that the problem with P can be solved in
polynomial time as long as the number of faces of P within the ellipsoid is polynomial.
The approach of [6] is combinatorial in nature by subdividing the problem into cases
and, in particular, does not make use of convex relaxation.

TTRS has itself received considerable attention. Optimality conditions are stud-
ied in [18], which also discusses much of the related literature from the 1990s. A recent
paper looking at global and local optimality conditions through the lens of copositiv-
ity is [7]. The papers [1, 4] study conditions when the basic SDP relaxation of TTRS,
i.e., the relaxation that adds the second constraint A2 •X − 2 aT2 A2x + aT2 A2a2 ≤ 1
to (1), is tight. On the other hand, [24] develops a trajectory-following procedure
that solves TTRS generally. This procedure for TTRS is not proved to be polyno-
mial but appears to be practically quite efficient. The authors of [24] also questioned
whether there might exist exact polynomial-time formulations of TTRS. The paper
[8] shed some light on this question by providing valid second-order-cone constraints
tightening the basic SDP relaxation of TTRS, but even these relaxations are still not
tight. In section 2, we review the known relaxations of TTRS that are based on the
variables (x,X).

Most recently, [5] has demonstrated that TTRS can be solved in polynomialtime
using an algorithm of [3] to determine whether two or more quadratic forms share
a common zero; see also [14]. While this establishes the polynomial complexity of
TTRS, we note that the algorithm employed in [5] does not use convex relaxation
(similarly to [6] above). We believe it is still interesting to seek the convex relaxation
that solves TTRS exactly. For example, the convex relaxation could provide insight
into problems for which TTRS appears as a substructure, even when the algorithm
of [5] may not be applicable. We are encouraged by the results of [5], which indicate
that the goal of finding the tight convex relaxation is a reasonable one.

Hence, in this paper, our goal is to investigate which additional valid constraints
in (x,X) are necessary to calculate v∗ exactly. Our main theoretical contribution
is a full specification of the additional constraints needed when n = 2. Section 2
and Table 1 therein provide the description of the precise inequalities required, which
are strengthened (or “lifted”) versions of the inequalities previously described in [8].
Sections 3 and 4 contain the technical details and proofs. The tools that we develop
help us classify the local and global behavior of all quadratics over the intersection of
two ellipsoids in R2.

While our theoretical result is limited in dimension, we believe our results pro-
vide significant insight into the nature of TTRS and its solution by convex relax-
ation methods. Indeed, in section 5, we show how to separate the type of valid
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TWO-VARIABLE APPROACH TO TTRS 663

inequalities discovered in this paper for general n, which allows us to solve computa-
tionally instances of TTRS that were previously unsolved using SDP-based techniques.

1.1. Notation, terminology, and a simplifying assumption. We use stan-
dard notation for Euclidean spaces of vectors and matrices. The set Rn denotes
column vectors of size n, and Sn denotes all symmetric n × n matrices. The inner
product of M,N ∈ Sn is M • N := trace(MTN). The subset Sn

+ ⊆ Sn consists of
positive semidefinite matrices, that is, symmetric matrices with all nonnegative eigen-
values. The notation Closure(·) denotes the closure operation, and Conv(·) denotes
the convex hull. For a convex cone K, Ext(K) is the set of extreme rays of K.

In this paper, we will deal with quadratic functions of the general form f(x) =
xTRx + 2 rTx + ρ. Without loss of generality, R is symmetric. However, we will
sometimes write f using a nonsymmetric representation, e.g., f(x) = (β − αTx)
(δ − γTx) = βδ − βγTx− δαTx + xTαγTx. This is simply for convenience and does
not change the fact that the Hessian of the quadratic is assumed symmetric. Given f ,
we will also sometimes find it convenient to refer to the Hessian of f without specifying
R. In these cases, we simply write Hess(f).

The geometry of the feasible region F will play a significant role in our analysis,
and so we define several sets describing different portions of F = E1∩E2. We assume
that F is full dimensional in Rn and that E1 � E2 and E2 � E1. In particular, we
do not consider cases with F being empty, a singleton, or equal to E1 or E2. Let
int(Ei) := {x ∈ Ei : (x − ai)

TAi(x − ai) < 1} be the interior of Ei and bd(Ei) :=
{x ∈ Ei : (x− ai)

TAi(x− ai) = 1} be its boundary for i = 1, 2. We also use int(F ) to
denote the nonempty interior of F , and bd(F ) to denote the boundary. Finally, define
vert(F ) := bd(E1)∩bd(E2) to be the points on the boundaries of both ellipsoids; these
are the vertices .

For the sake of simplicity, throughout this paper we assume that x ∈ vert(F )
implies A1x−a1 and A2x−a2 are linearly independent. In other words, the constraint
gradients are independent at x. Note that, when n = 2 and F is full dimensional,
E1 � E2 and E2 � E1 (as assumed above), the set vert(F ) is finite with cardinality
1, 2, 3, or 4. This simplifying assumption rules out the case that the cardinality of
vert(F ) is odd. A slightly more careful presentation is required if the assumption is
not satisfied, but the major conclusions of the paper still hold.

2. Relaxations of TTRS. In this section, we review existing SDP relaxations
in the variables (x,X) for TTRS and discuss how to tighten the relaxations using
quadratic functions that are nonnegative over the feasible region F . The main point is
Theorem 4.3, which specifies a subset of valid quadratics that close the SDP relaxation
gap completely. Technical details and the proofs are given in sections 3–4.

2.1. Existing relaxations. Because (TTRS) is nonconvex, a reasonable ap-
proach is to relax it as a SDP that can be solved in polynomial time [8, 21, 24]:

v(SDP) := min C •X + 2 cTx(SDP)

s. t. Ai •X − 2 aTi Aix+ aTi Aiai ≤ 1, i = 1, 2,

(x,X) ∈ PSD,

where

PSD :=

{
(x,X) :

(
1 xT

x X

)
� 0

}
.
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664 BOSHI YANG AND SAMUEL BURER

We call this the basic SDP relaxation. Note that by the Schur complement theorem,
(x,X) ∈ PSD if and only if X � xxT . Also, when

rank

(
1 xT

x X

)
= 1,

then X = xxT and v(SDP) = v∗. However, it is well known that the optimal value of
(SDP) is in general strictly less than the optimal value of (TTRS), i.e., v(SDP) < v∗.

The paper [8] proposes a method to strengthen (SDP). Let A
1/2
2 be the positive

definite square root of A2, and rewrite the second ellipsoidal constraint as the second-

order-cone constraint ‖A1/2
2 (x − a2)‖ ≤ 1. In addition, let αTx ≤ β be any valid

inequality that supports the first ellipsoid E1. Then the following quadratic second-
order-cone inequality is valid for F :

‖A1/2
2 (β x− αTx · x− β a2 + αTx · a2)‖ = ‖A1/2

2 (β − αTx)(x − a2)‖
= (β − αTx)‖A1/2

2 (x − a2)‖
≤ β − αTx.

Moreover, this inequality may be linearized via X and added to the basic SDP relax-
ation:

(2) ‖A1/2
2 (β x−Xα− β a2 + αTx · a2)‖ ≤ β − αTx.

These inequalities are called SOCRLT (second-order-cone reformulation linearization
technique) constraints in [8] since their derivation is closely tied to the regular RLT
(reformulation linearization technique [20]) constraints gotten by multiplying two valid
linear constraints β − αTx ≥ 0 and δ − γTx ≥ 0 and then linearizing to get βδ −
β · γTx − δ · αTx + αTXγ ≥ 0. Letting SOC denote the set of (x,X) satisfying all
possible SOCRLT constraints, [8] proposes to solve

v(SOC) := min C •X + 2 cTx(SOC)

s. t. Ai •X − 2 aTi Aix+ aTi Aiai ≤ 1, i = 1, 2,

(x,X) ∈ PSD∩SOC .

Although infinite in number, the SOCRLT constraints can be separated in polynomial
time and hence v(SOC) can be efficiently calculated. Nevertheless, [8] shows by
example that v(SDP) < v(SOC) < v∗ in general.

The SOCRLT constraints are defined by multiplying a supporting inequality
αTx ≤ β of E1 by the second-order-cone representation of E2. The same relax-
ation value v(SOC) results if the roles of E1 and E2 are switched [8]. Moreover, [8]
argues that the entire collection of SOCRLT constraints is equivalent to all possible
regular RLT constraints, i.e., those gotten by multiplying a supporting β − αTx ≥ 0
of E1 with a supporting δ − γTx ≥ 0 of E2. In this sense, the SOCRLT constraints
are simply a different representation of the RLT constraints.

2.2. Exact relaxations. So the question remains: what additional valid con-
straints are required beyond those in (SDP) and (SOC) to close the relaxation gap?

Using the approach of [22], we claim that closing the relaxation gap is equivalent
to describing the following set, which corresponds to all quadratic functions that are
nonnegative over F :

K :=
{
(R, r, ρ) ∈ Sn × Rn × R : xTRx+ 2rTx+ ρ ≥ 0 ∀ x ∈ F

}
.
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TWO-VARIABLE APPROACH TO TTRS 665

K is a closed, convex cone [22]. Several classes of elements in K are readily apparent.
For example, (−Ai, Aiai, 1 − aTi Aiai) ∈ K corresponds to the ellipsoidal constraint
(x − ai)

TAi(x − ai) ≤ 1, and (αγT ,− 1
2 (βγ + δα), βγ) ∈ K corresponds to the RLT

quadratic (β − αTx)(δ − γTx) ≥ 0. Consider the following optimization problem:

v(K) := min C •X + 2 cTx

s. t. R •X + 2 rTx+ ρ ≥ 0 ∀ (R, r, ρ) ∈ K.

Proposition 2.1. v(K) = v∗.

Proof. Clearly v(K) ≤ v∗ because the optimization problem is a relaxation by
dropping the constraint X = xxT . In addition, since (C, c,−v∗) ∈ K by definition,
the constraint C •X + 2 cTx− v∗ ≥ 0 guarantees v(K) ≥ v∗, as desired.

So closing the gap amounts to enforcing the constraints R •X+2 rTx+ ρ ≥ 0 for
all elements in K.

Of course, the definition of K is quite generic, and it would be helpful to char-
acterize, for example, the extreme rays of K or a few constraints that capture whole
portions of K. Indeed, the two ellipsoidal constraints Ai •X − 2 aTi Aix+ aTi Aiai ≤ 1
are fundamental, and the SOCRLT constraints capture all the RLT constraints as
discussed at the end of the previous subsection. In addition, each (x,X) feasible for
(SDP) satisfies R •X + 2 rTx + ρ ≥ 0 for all (R, r, ρ) ∈ K with R � 0. This can be
seen in two steps. First, each feasible (x,X) implies x ∈ F since

(x− ai)
TAi(x− ai) = Ai •xxT − 2 aTi Aix+ aTi Aiai ≤ Ai •X− 2 aTi Aix+ aTi Aiai ≤ 1,

where the second inequality follows because Ai is positive definite and (x,X) ∈ PSD.
Second, because R � 0, (x,X) ∈ PSD, and x ∈ F ,

R •X + 2 rTx+ ρ ≥ R • xxT + 2 rTx+ ρ ≥ 0.

To fully characterize elements in K, we would like to define and investigate a
proper subcone G of K that is guaranteed to contain Ext(K). In this way, G gives rise
to an SDP relaxation whose optimal value equals v∗:

v∗ = v(G) := min C •X + 2 cTx

s. t. R •X + 2 rTx+ ρ ≥ 0 ∀ (R, r, ρ) ∈ G.
The main technical approach is to show that G has a special property as described in
Proposition 2.2 below.

We first introduce some definitions. For (R, r, ρ), we write f = (R, r, ρ) and define
the function f(x) := xTRx + 2rTx + ρ acting on the vector variable x ∈ Rn. When
f ∈ K, we say that f is valid for F . For f, g ∈ K, if f − g is also valid, i.e., if
f(x) ≥ g(x) for all x ∈ F , then we write f � g and say that g minorizes f over F .
We note that minorization is clearly transitive, i.e., f � g and g � h imply f � h.

Proposition 2.2. Let G ⊆ K be a cone, not necessarily convex. If, for ev-
ery f ∈ K, there exists some g ∈ G such that f � g, then Ext(K) ⊆ G, and so
Closure(Conv(G)) = K.

Proof. We need to show every f ∈ Ext(K) is an element of G. By assumption,
we know f � g for some g ∈ G. If f ‖ g, i.e., there exists α ≥ 0 such that f = αg, we
are done. On the other hand, when f ∦ g, the equation f = (f − g) + g shows that
f is not extreme in K, a contradiction. The equation Closure(Conv(G)) = K follows
because G contains all the extreme rays of K, which is closed.
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666 BOSHI YANG AND SAMUEL BURER

Table 1

Our choice of valid quadratic functions generating G.

Valid quadratic Conditions Nickname

gEi
i ∈ {1, 2} ellipsoid

f Hess(f) ∈ S2
+ PSD

TyE1
TyE2

y ∈ vert(F ) vertex RLT

TyE1
TzE2

+ λL2
yz y �= z, λ < 0 minimal lifted RLT

From this point forward in sections 2–4, we consider the case when n = 2. We
will show computationally in section 5 that the insights for dimension n = 2 can be
used more generally for n > 2.

2.3. Choice of valid inequalities. We state our choice of G here in order to
familiarize the reader with some of its features, although the insights that lead to this
choice will be developed in sections 3–4. In particular, see Theorem 4.3 in section 4.

Before listing the generators of G, we define several functions. First, define

gEi(x) := 1− (x− ai)
TAi(x− ai), i = 1, 2,

TyEi(x) := 1− (y − ai)
TAi(x− ai) ∀ feasible y ∈ bd(Ei), i = 1, 2.

In words, gEi(x) ≥ 0 defines the ellipsoid Ei. Also, TyEi(x) = 0 defines the tangent
line to Ei at y, and the inequality TyEi(x) ≥ 0 supports Ei at y. For any two distinct
points y, z ∈ R2, we also let Lyz be a linear function such that Lyz(x) = 0 defines
the unique line passing through y and z. Up to multiplication by a constant, the
representation of Lyz is unique, and whenever we write Lyz, the reader may safely
assume that y 
= z.

Abusing notation, we also let TyEi and Lyz denote the sets {x : TyEi(x) = 0}
and {x : Lyz(x) = 0}, respectively. That is, TyEi denotes the function defining the
tangent line and the tangent line itself, and similarly for Lyz.

We require one additional concept. Our choice of G will contain valid quadratics
of the form f + λg, where g is itself valid and λ ∈ R. Suppose that both f + λ1g and
f + λ2g are valid such that λ1 < λ2. Then clearly f + λ1g � f + λ2g, i.e., f + λ1g
minorizes f + λ2g, because the difference (λ2 − λ1)g is valid. It may happen that
f + λ1g is further minorized by f + λ0g with λ0 < λ1. This leads to the concept of λ
being minimal in f + λg, which we establish in the following proposition.

Proposition 2.3. Let f, g be quadratics with g ∈ K. Suppose f + λ̄g is valid for
some λ̄ ∈ R. Then there exists λmin ∈ R such that f + λg is valid if and only if
λ ≥ λmin.

Proof. For all x ∈ F , define

λmin(x) :=

{ −g(x)f(x)−1 if f(x) 
= 0,
−∞ if f(x) = 0.

That is, for each x separately, λmin(x) measures the smallest value of λ such that
f(x) + λg(x) ≥ 0. This means in particular that λmin(x) ≤ λ̄ since f + λ̄g ∈ K by
assumption. Define λmin := supx∈F λmin(x). It is then clear that f + λg is valid if
and only if λ ≥ λmin.

The generators for G are listed in Table 1. There are four classes of generators,
each corresponding to a type of valid quadratic function. We give each class a nick-
name for ease of discussion. The first three classes are already known and have been
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TWO-VARIABLE APPROACH TO TTRS 667

incorporated into existing relaxations as discussed in section 2.1, while the last class
is new in this paper.

The first class consists of the two ellipsoid quadratics gEi(x) ≥ 0 for i ∈ {1, 2},
and the second class consists of all valid quadratics f(x) = xTRx + 2 rTx + ρ ≥ 0
such that Hess(f) = 2R is positive semidefinite. Together, these ellipsoids and PSD
quadratics give rise to the basic SDP relaxation (SDP) as discussed after Proposition
2.1. The third class consists of the RLT quadratics TyE1(x)TyE2(x) ≥ 0, where y is
a member of the vertex set vert(F ). Since the cardinality of vert(F ) is at most four
when n = 2, there are at most four such vertex RLT constraints.

The last class contains quadratics that are derived from valid RLT quadratics of
the type TyE1(x)TzE2(x) ≥ 0 with y 
= z, i.e., the tangents TyE1 and TzE2 supporting
different points on different ellipsoids. However, here the RLT quadratic is minorized
by the valid quadratic TyE1TzE2 + λL2

yz, where λ is minimal and hence λ ≤ 0. In
fact we will prove later that λ < 0. We call these lifted RLT quadratics in analogy
with the lifting, or strengthening, of valid inequalities in, for example, the area of
linear integer programming. Figure 1 depicts a lifted RLT quadratic. In the left,
2-dimensional picture, we have graphed F and marked vert(F ). Also depicted are the
tangent lines TyE1 and TzE2 , as well as the line Lyz connecting y and z. In the right,
3-dimensional picture, the value of the lifted RLT quadratic is graphed in the vertical
dimension over the the boundary bd(F ) of F . Note that the quadratic attains the
value 0 at the points y and z as well as one of the vertices. This shows that the lifted
RLT minorizes the regular RLT quadratic, which only attains 0 at y and z.

0.2 0.4 0.6 0.8 1 1.2
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.2 0.4 0.6 0.8 1
−0.5

0

0.5

0

0.5

1

1.5

2

Fig. 1. A lifted RLT quadratic.

With the specification of G given in Table 1, we introduce the following (informally
specified) SDP relaxation

v(G) := min C •X + 2 cTx(3)

s. t. Ai •X − 2 aTi Aix+ aTi Aiai ≤ 1, i = 1, 2,

(x,X) ∈ PSD,

(x,X) satisfies all vertex RLT constraints,

(x,X) satisfies all lifted RLT constraints,
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where the various constraints are gotten by linearizing the valid quadratics. Assuming
G satisfies Proposition 2.2 (as we prove in Theorem 4.3 in section 4), we have the
following corollary.

Corollary 2.4. For n = 2, v(G) = v∗.

Proof. As discussed above, the first and second class of quadratics in G are cap-
tured by the constraints Ai •X− 2 aTi Aix+aTi Aiai ≤ 1 and (x,X) ∈ PSD. The third
and fourth classes are incorporated directly into the SDP relaxation.

We discuss the practical separation of the lifted RLT constraints (even when
n > 2) in section 5.

As discussed in section 2.1, the SOCRLT constraints can be viewed as another
representation of all RLT constraints. The vertex and lifted RLT constraints in Table
1 imply all RLT constraints, and so the SOCRLT constraints are implied as well.
Hence, it is unnecessary to state the SOCRLT constraints in this setting.

3. Local analysis of quadratrics. We now develop some technical tools that
investigate the behavior of general quadratics f on the boundary of F . In this section,
we do not assume f is in K, i.e., that f is valid. In section 4, the tools and techniques
of this subsection will play a vital role when we fully classify valid f .

3.1. The break concept. Fix i ∈ {1, 2}, and let a feasible y ∈ bd(Ei) be
given. Consider any locally diffeomorphic parameterization x(t) of bd(Ei) such that
y = x(ty). That is, x locally takes open intervals in R to open submanifolds of bd(Ei)
smoothly and invertibly. Given a general quadratic f(x) = xTRx+2 rTx+ρ and any
integer k ≥ 0, we define (f ◦x)(k)(ty) to be the kth derivative of the composition f ◦x
at the point ty. By convention, when k = 0, the derivative (f ◦ x)(0)(ty) is simply
the function value f(y). We also define the break of f at y along bd(Ei) to be the
smallest k such that (f ◦ x)(k)(ty) is nonzero, i.e.,

br(y, bd(Ei), f) := min{k : (f ◦ x)(k)(ty) 
= 0}.
Note that the break equals ∞ if all derivatives are 0, e.g., when f = gEi. In the rest of
this section, we state and prove various facts about br(y, Ei, f). To assist the reader’s
understanding, specific E1 and E2 are used in the facts below—instead of generic Ei

and Ej with i, j ∈ {1, 2}—but this simplification does not affect the generality of our
statements.

First, it is important to note that br(y, Ei, f) is independent of the locally diffeo-
morphic parameterization.

Proposition 3.1. Given feasible y ∈ bd(E1) and quadratic f , let x(t) and x̂(s)
be any two locally diffeomorphic parameterizations of bd(E1) such that y = x(ty) =
x̂(sy). Then

min{k : (f ◦ x)(k)(ty) 
= 0} = min{k : (f ◦ x̂)(k)(sy) 
= 0}.
Equivalently, br(y, E1, f) is independent of the parameterization of bd(E1).

Proof. We may write the parameterizations x and x̂ locally as diffeomorphisms

x : T → W, t �→ x(t),

x̂ : S → W, s �→ x̂(s),

where the open domains T � ty and S � ts are subsets of R and the range W is a
subset of bd(E1). Let x̂

−1 be the (local) inverse of x̂. Then

(f ◦ x)(t) = (f ◦ x̂ ◦ x̂−1 ◦ x)(t) = (f ◦ x̂)(x̂−1(x(t))).
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TWO-VARIABLE APPROACH TO TTRS 669

Letting g := x̂−1 ◦ x, we write (f ◦ x)(t) = (f ◦ x̂)(g(t)). By Faà di Bruno’s formula,
a generalization of the chain rule, at t = ty,

(f ◦ x)(k)(ty) =
k∑

i=1

(f ◦ x̂)(i)(sy) ·Bki(ty),

where the functions Bki are polynomials in the derivatives of g. This shows that

(f ◦ x̂)(i)(sy) = 0 ∀ i = 1, . . . , k =⇒ (f ◦ x)(i)(ty) = 0 ∀ i = 1, . . . , k.

So min{k : (f ◦ x)(k)(ty) 
= 0} ≥ min{k : (f ◦ x̂)(k)(sy) 
= 0}. By symmetry of x and
x̂, the reverse inequality must also hold, which completes the proof.

As a corollary, the break does not change under affine transformation.

Corollary 3.2. Let A : R2 → R2 be an invertible, affine transformation. Given
feasible y ∈ bd(E1) and quadratic f , define ŷ := A(y), Ê1 := A(E1), and f̂ := f◦A−1.

Then br(y, E1, f) = br(ŷ, Ê1, f̂).

Proof. Suppose x is a locally diffeomorphic parameterization of bd(E1) and y =
x(ty). Then x̂ := A◦ x is a locally diffeomorphic parameterization of bd(Ê1) and ŷ =

x̂(ty). By the preceding proposition, br(y, E1, f) and br(ŷ, Ê1, f̂) may be calculated

by examining the derivatives of (f ◦ x)(t) and (f̂ ◦ x̂)(t) at t = ty, respectively. In
addition, for all t in the domain of x, it holds that

(f̂ ◦ x̂)(t) = (f ◦ A−1 ◦ A ◦ x)(t) = (f ◦ x)(t),
i.e., f̂ ◦ x̂ and f ◦ x are the same function. It follows that br(ŷ, Ê1, f̂) =
br(y, E1, f).

The following proposition describes how breaks behave under sums and products
of quadratics.

Proposition 3.3. Given feasible y ∈ bd(E1) and quadratics f and g, define
a := br(y, E1, f) and b := br(y, E1, g). It holds that

(i) for any λ, μ ∈ R, br(y, E1, λf + μg) ≥ min{a, b} with equality if a 
= b
and λμ 
= 0;

(ii) if f and g are linear, then br(y, E1, fg) = a+ b.

Proof. To prove (i), we define h := λf+μg and apply the definition of br(y, E1, h).
Without loss of generality, assume min{a, b} = a. Note that, for all k ≥ 0,
(h ◦ x)(k)(ty) = λ(f ◦ x)(k)(ty) + μ(g ◦ x)(k)(ty). Hence,

k < a =⇒ (h ◦ x)(k)(ty) = λ · 0 + μ · 0 = 0.

Hence, br(y, E1, h) ≥ a, as claimed. If, in addition, a < b and μ 
= 0, then

k = a =⇒ (h ◦ x)(k)(ty) = λ · 0 + μ · (f ◦ x)(k)(ty) 
= 0,

which proves br(y, E1, h) = a.
To prove (ii), we apply the product rule to derive that, for all k ≥ 0,

((fg) ◦ x)(k)(ty) =
k∑

j=0

(
k

j

)
· (f ◦ x)(k−j)(ty) · (g ◦ x)(j)(ty).

When k < a + b, for all j ≤ k, it must hold that k − j < a or j < b. Hence, every
term in the above summand is zero by assumption. When k = a+ b, the only nonzero
summand corresponds to j = b and equals

(
k
b

) · (f ◦ x)(a)(ty) · (g ◦ x)(b)(ty) 
= 0. We
have thus shown that br(y, E1, fg) = a+ b.
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670 BOSHI YANG AND SAMUEL BURER

Table 2

Breaks for feasible y ∈ bd(E1), z ∈ bd(E2) such that y �= z for various quadratics f .

f br(y, E1, f) br(y, E2, f) when y ∈ vert(F ) br(z,E2, f)

gE1
∞ ≥ 1 (not needed)

T 2
yE1

4 2 (not needed)

TyE1
TyE2

3 3 (not needed)

TyE1
Lyz 3 (not needed) 1

TyE1
TzE2

2 (not needed) 2

L2
yz 2 2 2

The break concept will be significant because, as we will see in what follows,
feasible zeros y ∈ bd(Ei) of f , which are also local minimizers of f over F , often
have relatively high breaks, e.g., br(y, Ei, f) may equal 2, 3, 4, or even ∞. When
this occurs, we can use the zero derivatives indicated by the break as a tool for
classifying all quadratic functions possessing that particular break at y. For example,
if y ∈ bd(E1) with br(y, E1, f) = 3 and y = x(ty), then the three equations f(y) =
(f ◦ x)(1)(ty) = (f ◦ x)(2)(ty) = 0 give three linear equations that f = (R, r, ρ) must
satisfy.

3.2. Breaks for specific quadratics. In section 4, we will require a simple
and effective way to check, given two valid quadratics f and g, whether some positive
multiple of g minorizes f . As it will turn out, the technique will depend heavily on
the zeros and breaks of f and g. Hence, in this subsection we precalculate the breaks
for some specific quadratics as reference for later use; see Table 2.

We first look at the breaks of some linear functions, which are the building blocks
of most of the quadratics in Table 2.

Lemma 3.4. Let feasible y ∈ bd(E1) and z, w ∈ R2 with TyE1(z) 
= 0, Lzw(y) 
= 0
be given. Then br(y, E1, TyE1) = 2, br(y, E1, Lyz) = 1, and br(y, E1, Lzw) = 0.

Proof. By Proposition 3.1 and Corollary 3.2, we may assume without loss of
generality that E1 is the unit ball {x : ‖x‖ ≤ 1}. Let x(t) := (cos t, sin t)T be the
standard parameterization of bd(E1), and suppose ty satisfies y = x(ty). Also let
TyE1(x) and Lyz(x) be represented as 1− yTx and l0 − lTx.

We use the specific form of TyE1 to calculate the derivatives (TyE1 ◦ x)(k)(t)
explicitly:

(TyE1 ◦ x)(0)(t) = 1− cos ty cos t− sin ty sin t,

(TyE1 ◦ x)(1)(t) = cos ty sin t− sin ty cos t,

(TyE1 ◦ x)(2)(t) = cos ty cos t+ sin ty sin t.

Evaluated at ty, we have (TyE1◦x)(0)(ty) = (TyE1◦x)(1)(ty) = 0 and (TyE1◦x)(2)(ty) =
1 
= 0. So br(y, E1, TyE1) = 2. For Lyz,

(Lyz ◦ x)(0)(t) = l0 − l1 cos t− l2 sin t,

(Lyz ◦ x)(1)(t) = l1 sin t− l2 cos t.

Evaluated at ty, we have (Lyz ◦ x)(0)(t) = l0 − l1y1 − l2y2 = Lyz(y) = 0. Since
Lyz ∦ TyE1 , (Lyz ◦ x)(1)(t) = l1y2 − l2y1 
= 0. So br(y, E1, Lyz) = 1. Finally, as
(Lzw ◦ x)(0)(ty) = Lzw(y) 
= 0, br(y, E1, Lzw) = 0.
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Intuitively, Lemma 3.4 tells us that a tangent line has break 2 at its support
point, while a secant line has break 1. A line that does not pass through y at all has
break 0.

Since all but one of the quadratics in Table 2 are products of linear functions,
Lemma 3.4 and Proposition 3.3(ii) provide an easy formula to calculate the breaks for
those quadratics. For example, suppose y ∈ vert(F ), z ∈ bd(E2)∩F , and f = TyE1Lyz

are given. Then

br(y, E1, f) = br(y, E1, TyE1) + br(y, E1, Lyz) = 2 + 1 = 3,

br(z, E2, f) = br(z, E2, TyE1) + br(z, E2, Lyz) = 0 + 1 = 1.

Last, since ellipsoidal constraints are not products of linear functions, we handle
their breaks separately in the following lemma.

Lemma 3.5. Let feasible y ∈ bd(E1) be given. Then br(y, E1, gE1) = ∞. If in
addition, y ∈ vert(F ), then br(y, E2, gE1) ≥ 1.

Proof. br(y, E1, gE1) is clearly ∞ as gE1 is zero and constant along E1
1 . If y ∈

vert(F ), then gE1(y) = 0, so br(y, E2, gE1) ≥ 1.

3.3. Quadratics for specific breaks. While the previous subsection provides
the breaks of some specific quadratics, in this subsection we look for quadratics that
satisfy specific breaks. As we mentioned in section 3.1, the higher the breaks a
quadratic f = (R, r, ρ) has, the more constrained the entries of (R, r, ρ) become.
Based on specified breaks, we can often classify the form of f with the help of Table
2. When we ultimately characterize all valid f ∈ K in section 4, we will divide the
proof into different cases with respect to different breaks. The results contained in
this subsection help us deduce the forms of the quadratics in each case.

We assume throughout this subsection that f is defined by f(x) = xTRx+2 rTx+
ρ for (R, r, ρ) ∈ S2 ×R2 ×R. We also define the zeros of f in F (or “null” points) by

N := N(f) := {x ∈ F : f(x) = 0}.

We do not assume that f is valid.
Lemma 3.6 and Propositions 3.7 and 3.8 below consider the case when f has a

zero at a vertex with relatively high breaks.

Lemma 3.6. Let f and y ∈ vert(F ) be given. Let z ∈ R2 be arbitrary such that
TyE1(z) 
= 0 and TyE2(z) 
= 0. If br(y, E1, f) ≥ 2 and br(y, E2, f) ≥ 2, then there
exists α1, α2, α3 ∈ R such that

(4) f = α1T
2
yE1

+ α2TyE1TyE2 + α3L
2
yz.

Proof. The zero equation f(y) = 0 implies

(5) y21R11 + 2 y1y2R21 + y22R22 + 2 y1r1 + 2 y2r2 + ρ = 0.

Using the definition of breaks, the inequalities br(y, E1, f) ≥ 2 and br(y, E2, f) ≥ 2
imply

0 = (f ◦ x)′(ty) = ∇f(y)Tx′(ty),

0 = (f ◦ x̄)′(t̄y) = ∇f(y)T x̄′(t̄y),
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where x′(ty) and x̄′(t̄y) are tangent vectors at y along bd(E1) and bd(E2). Since
y ∈ vert(F ), the simplifying assumption of section 1.1 implies that x′(ty) and x̄′(t̄y)
are linearly independent. So ∇f(y) = 0, i.e.,

y1R11 + y2R21 + r1 = 0,(6)

y1R21 + y2R22 + r2 = 0.(7)

Considering (R, r, ρ) to be unknown, (5)–(7) thus provide three homogeneous equa-
tions in (R, r, ρ). Moreover, these three equations can easily be seen to be linearly
independent. Since R is symmetric, there are a total of six unknowns. So the space
of solutions in (R, r, ρ) satisfying (5)–(7) has dimension three.

Table 2 provides three solutions (R, r, ρ) as suggested in the decomposition (4) of
f . Specifically, each of the three component functions T 2

yE1
, TyE1TyE2 , and L2

yz has
a break at least 2 at y with respect to both bd(E1) and bd(E2). It remains to show
that the three solutions are independent.

Suppose (4) satisfies f = 0, and define the affine function M := α1TyE1 +α2TyE2 .
Then f = TyE1M + α3L

2
yz = 0. Since TyE1 
= 0, it is clear that α3 = 0 and then

M = 0. Since TyE1 and TyE2 are clearly independent, α1 = α2 = 0 as well.

Proposition 3.7. Let f 
= 0 and distinct y, z, w ∈ N ∩bd(F ) be given. Suppose
y ∈ vert(F ). If br(y, E1, f) ≥ 2 and br(y, E2, f) ≥ 2, then f = ᾱLyzLzw for some
ᾱ ∈ R. As a consequence, f is not valid.

Proof. Apply Lemma 3.6 to write f as (4). As TyE1(z) 
= 0 and

0 = 0− 0 = f(z)− α3L
2
yz(z) = TyE1(z) (α1TyE1(z) + α2TyE2(z)) ,

we have (α1TyE1 +α2TyE2)(z) = 0. Note that α1TyE1 +α2TyE2 corresponds to a line
passing through y and z. So there exists α̃ ∈ R such that α1TyE1 + α2TyE2 = α̃Lyz.
Now

f = α̃TyE1Lyz + α3L
2
yz = Lyz(α̃TyE1 + α3Lyz).

Using Lyz(w) 
= 0 and a similar argument as just applied, there exists ᾱ ∈ R such
that α̃TyE1 + α3Lyz = ᾱLyw. Then f = ᾱLyzLyw, and f 
= 0 implies that ᾱ 
= 0.
Since the lines Lyz and Lyw geometrically divide F into three parts and f cannot
have the same sign on all three parts, f is not valid.

Proposition 3.8. Let f 
= 0 and y ∈ vert(F ) be given. If br(y, E1, f) ≥ 3 and
br(y, E2, f) ≥ 2, then there exist α1, α2 ∈ R such that f = α1T

2
yE1

+ α2TyE1TyE2 .
In addition, if there exists z ∈ N ∩ bd(F ) with z 
= y, then f = α̂TyE1Lyz for some
α̂ ∈ R, and as a consequence, f is not valid.

Proof. Apply Lemma 3.6 to write f as (4). Note that br(y, E1, T
2
yE1

) = 4,

br(y, E1, TyE1TyE2) = 3, and br(y, E1, L
2
yz) = 2 by Table 2. Proposition 3.3(i)

thus implies α3 = 0. Rewriting f as TyE1(α1TyE1 + α2TyE2), we can use the same
technique as in the proof of Proposition 3.7 to prove the second statement of the
proposition.

Next, Lemma 3.9 and Proposition 3.10 allow us to characterize quadratics with
specific breaks at zeros on both ellipsoids.

Lemma 3.9. Let f and feasible y ∈ bd(E1)∩N and feasible z ∈ bd(E2)∩N with
y 
= z be given. Then there exist β1, β2, β3, β4 such that

(8) f = β1 TyE1 TzE2 + β2 L
2
yz + β3 TzE2 Lyz + β4 TyE1 Lyz.
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Proof. We take the same approach as the proof of Lemma 3.6, but in this case,
the equations f(y) = f(z) = 0 are just two independent equations that limit the
dimension of solutions f to 4. The four functions TyE1 TzE2 , L2

yz, TzE2 Lyz, and
TyE1 Lyz are clearly solutions, so (8) holds as long as the four are independent.

So suppose that f as presented in (8) satisfies f = 0, and define the affine function
M := β2Lyz + β3TzE2 + β4TyE1. Then f = Lyz M + β1TyE1 TzE2 . It is clear that
Lyz M and β1 TyE1 TzE2 are linearly dependent if and only if M = 0 and β1 = 0.
Thus, 0 = M(y) = β3TzE2(y), which implies β3 = 0 since TzE2(y) 
= 0. Similarly
β4 = 0, and so finally β2 = 0 as well.

Proposition 3.10. Let f and feasible y ∈ bd(E1)∩N and feasible z ∈ bd(E2)∩N
with y 
= z be given. If br(y, E1, f) ≥ 2 and br(z, E2, f) ≥ 2, then there exist β1, β2

such that f = β1 TyE1 TzE2 + β2 L
2
yz.

Proof. Apply Lemma 3.9 to write f as (8). From Table 2, br(z, E2, TyE1 Lyz)
= 1, br(z, E2, TyE1 TzE2) = br(z, E2, L

2
yz) = 2, and br(z, E2, TzE2 Lyz) = 3. As

br(z, E2, f) ≥ 2, it holds that β4 = 0 by Lemma 3.3(i). By symmetry, β3 = 0 as
desired.

4. Global analysis of valid quadratics. As discussed in section 2, Proposition
2.2 is the key result required for our choice of G. In this section, we argue in Theorem
4.3 that Proposition 2.2 does indeed hold, i.e., we show that every quadratic function
f ∈ K can be minorized by some g ∈ G.

The following lemma gives conditions under which a valid f ∈ K can be perturbed
to a valid f + λ g for some λ < 0, where g is also valid. In other words, f can be
minorized by −λg. The key insight is to compare the zeros and breaks of f and g.

Lemma 4.1. Let f, g ∈ K, and suppose Hess(f) 
∈ S2
+ and N(f) ⊆ N(g) with

|N(f)| finite. In particular, N(f) ⊆ bd(F ). Suppose that br(y, Ei, f) ≤ br(y, Ei,
g) also holds for all y ∈ bd(Ei) ∩ F ∩N(f), i = 1, 2. Then f + λ g is valid for some
λ < 0.

Proof. Since the Hessian of f is not positive semidefinite, there exists a small
λ1 < 0 such that Hess(f + λ1g) 
∈ S2

+. We will require λ1 ≤ λ < 0, in which case
f + λg will attain its global minimum over F in the boundary bd(F ).

Next let y ∈ bd(Ei) ∩ F ∩N(f). Suppose r = br(y, Ei, f) ≤ br(y, Ei, g). In the
intersection of F , bd(Ei), and a sufficiently small open neighborhood O(y) ⊆ R2 of
y, we have the Taylor approximations

(f ◦ x)(t) = 1
r! · (f ◦ x)(r)(ty) · (t− ty)

r +O((t− ty)
r+1),

(g ◦ x)(t) = 1
r! · (g ◦ x)(r)(ty) · (t− ty)

r +O((t− ty)
r+1),

where x(t) is any parameterization of bd(Ei), y = x(ty), and O((t− ty)
r+1) expresses

terms of t− ty with degree at least r+1. Since (f ◦ x)(r)(ty) 
= 0, there exists a small
λy < 0 such that ((f + λyg) ◦ x)(r)(ty) is nonzero with the same sign as (f ◦ x)(r)(ty).
Therefore, f(z) + λyg(z) ≥ 0 for all z ∈ F ∩ bd(Ei) ∩ O(y), because (f + λyg) ◦ x
and f ◦ x have the same local behavior around ty. In words, f + λyg is locally valid
around y. We will also require λy ≤ λ < 0.

Now consider f + λg over the complement Q := bd(F ) \ ∪y∈N(f)O(y). Because
{O(y)} is a finite collection of open sets containing the zeros of f , Q is compact and
minx∈Q f(x) is positive. Hence, there exists λQ < 0 such that f + λQg is valid over
Q. We will also require λQ ≤ λ < 0.
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674 BOSHI YANG AND SAMUEL BURER

Based on the previous three paragraphs, we take λ to be the maximum of λ1,
λQ, and λy for all y ∈ N(f). This proves the existence of λ < 0 such that f + λg is
valid.

For a valid f ∈ K with Hess(f) 
∈ S2
+, nonvertex zeros, i.e., zeros in bd(F ) \

vert(F ), have different break properties compared to vertex zeros. In particular, the
following result shows that nonvertex zeros have even breaks.

Lemma 4.2. Let f ∈ K with Hess(f) 
∈ S2
+, and suppose y ∈ N(f) and y ∈

bd(E1) \ vert(F ). Then br(y, E1, f) is even, and in particular, br(y, E1, f) ≥ 2.

Proof. Let x(t) be the parameterization of bd(E1) such that y = x(ty). Since f
is valid, f(y) = 0, and y /∈ vert(F ), the 1-dimensional function (f ◦ x)(t) has a local
minimum at ty in an open neighborhood containing ty. Using standard calculus, this
implies br(y, E1, f) is even, and thus, no less than 2.

We are finally ready to state our main theorem that Proposition 2.2 holds for our
choice of G.

Theorem 4.3. Every f ∈ K satisfies f � g for some g ∈ G, where G is given by
Table 1.

Proof. If Hess(f) ∈ S2
+, then the theorem holds true as f � f and f ∈ G. So

assume Hess(f) /∈ S2
+, in which case N := N(f) ⊆ bd(F ). We define

maxbr(f) := max{br(ŷ, Ei, f) : ŷ ∈ bd(Ei) ∩ F, i = 1, 2},
possibly −∞ (if |N | = 0) or ∞. That is, max br(f) is the maximum break of f at
its zeros measured along the corresponding ellipsoid boundaries. Choose any y ∈ Ei

such that maxbr(f) = br(y, Ei, f). Without loss of generality, we assume i = 1. Then
define

max 2 br(f) := max{br(ẑ, E2, f) : ẑ ∈ bd(E2) ∩ F},
possibly −∞ (if E2 has no zeros) or ∞. That is, max 2 br(f) is the maximum break of
f measured with respect to the ellipsoid at which max br(f) is not obtained. Also let
z ∈ E2 satisfy max 2 br(f) = br(z, E2, f). Note that max 2 br(f) ≤ maxbr(f). The
proof of the theorem considers cases based on |N |, max br(f), and max 2 br(f).

First suppose max 2 br(f) ≤ 1. The contrapositive of Lemma 4.2 implies that
z ∈ vert(F ), which in turn implies N ⊆ bd(E1). If |N | = ∞, then f ∈ G as a
nonnegative multiple of gE1 ∈ G. If |N | < ∞ (including N = ∅), applying Lemma 4.1
with the breaks of gE1 in Table 2, we see that f is minorized by λgE1 ∈ G for some
λ > 0, as desired.

So we may assume max br(f) ≥ max 2 br(f) ≥ 2. We consider two cases: (i)
z 
= y; (ii) z = y. For (i), Proposition 3.10 implies f = β1TyE1TzE2 + β2L

2
yz for some

β1, β2 ∈ R. If β1 = 0, then β2 ≥ 0 because f ∈ K, but this contradicts our assumption
that Hess(f) /∈ S2

+. So β1 
= 0, and in fact, β1 > 0, otherwise, f would be invalid
along the line Lyz. Hence, after scaling to β1 = 1, f is minorized by a lifted-RLT
member of G.

For case (ii), y = z ∈ vert(F ), and we consider two subcases: (a) max br(f) ≥ 3,
and (b) maxbr(f) = 2. For subcase (a), Proposition 3.8 implies that f = α1T

2
yE1

+
α2TyE1TyE2 for some α1, α2 ∈ R. If either α1 or α2 is zero, then f ∈ K implies that
the other parameter is nonnegative. Since we assume Hess(f) /∈ S2

+, the only possible
case is that α1 = 0 < α2, so f is generated by a vertex RLT quadratic in G. If both α1

and α2 are nonzero, then by the first part of Proposition 3.3 and the break information
of T 2

yE1
and TyE1TyE2 shown in Table 2, br(y, E1, f) = 3 and br(y, E2, f) = 2. Since

the second part of Proposition 3.8 implies that f is not valid unless |N | = 1, f then
can be minorized by a positive multiple of T 2

yE1
by appealing to Lemma 4.1.
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TWO-VARIABLE APPROACH TO TTRS 675

Finally, for subcase (b), the contrapositive of Proposition 3.7 implies that |N | ≤ 2.
Then by Lemma 4.1, f can be minorized by a positive multiple of L2

yz, which completes
the proof.

5. The separation problem and computational results. The goal of this
section is to demonstrate how to use the lifted-RLT constraints of Table 1 in practice.
Since there are an infinite number of such constraints, the separation problem is key.
We first discuss separation of lifted-RLT constraints when n = 2 and then extend the
technique to n > 2. We end the section with some computational tests.

Given a point (x̄, X̄), which satisfies some lifted-RLT constraints, we envision
separation—finding a lifted-RLT constraint violating (x̄, X̄)—as consisting of two
steps. First choose y ∈ bd(E1) and z ∈ bd(E2). Then calculate the minimal λmin < 0
such that TyE1TzE2 +λminL

2
yz is valid. We begin by discussing the calculation of λmin.

5.1. For n = 2, calculating λmin given (y, z). For n = 2 and given y ∈
bd(E1) and z ∈ bd(E2), we argue that λmin can be calculated with high precision.

Recall the definitions of TyE1 , TzE2 , and Lyz given at the beginning of section
2.3, and for any λ < 0, define

qλ := TyE1TzE2 + λL2
yz.

Note that Hess(qλ) /∈ S2
+, so that the global minimizers of qλ over F are contained in

bd(F ). Since bd(F ) ⊆ bd(E1) ∪ bd(E2), it follows that qλ is valid over F if and only
if it is simultaneously valid over both bd(E1)∩F and bd(E2)∩F . We next will argue
that the validity of bd(Ei) ∩ F for each i = 1, 2 can be determined easily, so that
checking validity of qλ over F is easy. As a consequence, a simple bisection procedure
over λ can be used to calculate λmin.

We discuss only validity over bd(E1) ∩ F since the second case is similar. Also,
for simplification but without loss of generality, we assume E1 equals the unit ball
B := {x ∈ R2 : xTx ≤ 1}. The following lemma provides the key insight for our
approach. Note that, when applying the lemma below, w will play a role different
than z, although w could be equal to z.

Lemma 5.1. Suppose y, w ∈ bd(B) with y 
= w. Then TyB(x)TwB(x) = L2
yw(x)

for all x ∈ bd(B) when n = 2.

Proof. In this case, TyB(x) = 1 − yTx and TwB(x) = 1 − wTx. Also L2
yw(x) =

(uT (x − y))2, where u is a unit vector that is perpendicular to w − y. We take
u = (y + w)/‖y + w‖, and by an orthogonal rotation, we assume without loss of
generality that y = (1, 0)T . Assuming xTx = 1 and using yT y = wTw = 1, we have

L2
yw(x) = (uT (x− y))2 =

((y + w)T (x − y))2

‖y + w‖2 =
((1 + w1)(x1 − 1) + w2x2)

2

2(1 + w1)

=
1

2
(1 + w1)(x1 − 1)2 + w2(x1 − 1)x2 +

(1− w2
1)(1− x2

1)

2(1 + w1)

= (1− x1)

(
1

2
(1 + w1)(1 − x1)− w2x2 +

1

2
(1− w1)(1 + x1)

)

= (1− x1)(1− w1x1 − w2x2) = (1− yTx)(1 − wTx)

= TyB(x)TwB(x).

By construction, the line Lyz passes through y ∈ bd(B) and z ∈ bd(E2). Geo-
metrically, Lyz must also intersect bd(B) in a second point, say w ∈ bd(B) (w may
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676 BOSHI YANG AND SAMUEL BURER

equal z when z ∈ vert(F )). In addition, Lyz = Lyw. Then Lemma 5.1 shows that

x ∈ bd(B) =⇒ qλ(x) = TyB(x)TzE2(x) + λL2
yz(x)

= TyB(x)TzE2(x) + λL2
yw(x)

= TyB(x)TzE2(x) + λTyB(x)TwB(x)

= TyB(x) ·
(
TzE2(x) + λTwB(x)

)
.

In words, qλ restricted to bd(B) can be expressed as the product of two linear func-
tions, TyB and lλ := TzE2 + λTwB. Since TyB is valid over bd(B) ∩ F and zero only
at a single point, qλ is valid over bd(B) ∩ F if and only if lλ is valid over bd(B) ∩ F ,
that is, if and only if

v(S1
λ) := min lλ(x)(S1

λ)

s. t. xTx = 1, x ∈ E2

is nonnegative. So we have reduced the validity of qλ to the validity of lλ over
bd(B) ∩ F .

We claim that, in turn, the validity of lλ holds if and only if the optimal value of

v(S2
λ) := min 1− xTx(S2

λ)

s. t. lλ(x) ≤ 0, x ∈ E2

is nonnegative.

Proposition 5.2. For all λ ≤ 0, v(S1
λ) ≥ 0 if and only if v(S2

λ) ≥ 0.

Proof. (⇐ contrapositive) If v(S1
λ) < 0, then there exists x ∈ bd(B) ∩ E2 such

that lλ(x) < 0. We consider two cases: x ∈ int(E2), and x ∈ bd(E2). In the first case,
we can perturb x to x̂ such that x̂T x̂ > 1, x̂ ∈ int(E2), and lλ(x̂) < 0. This implies
v(S2) < 0. In the second case, x ∈ vert(F ). We can then perturb x to x̂ such that
x̂ ∈ bd(B), x̂ ∈ int(E2), and lλ(x̂) < 0. Then the first case applies to x̂.

(⇒) Define the convex feasible set of (S2
λ) to be R2

λ := {x : lλ(x) ≤ 0} ∩ E2. If
R2

λ ⊆ B, then v(S2
λ) ≥ 0. So suppose R2

λ � B and consider two subcases: (i) R2
λ

crosses bd(B); (ii) R2
λ is completely outside of int(B). For subcase (i), R2

λ must be full
dimensional. So we clearly have points satisfying x ∈ bd(B), lλ(x) < 0, and x ∈ E2.
However, this is inconsistent with the assumption v(S1

λ) ≥ 0.
For subcase (ii), we consider three mutually exclusive and collectively exhaustive

alternatives: (a) λ < 0 and TwB(z) = 0; (b) λ < 0 and TwB(z) > 0; and (c) λ = 0.
If (a), then z ∈ vert(F ) and w = z. Note {x : lλ(x) = 0} ⊆ {x : TzE2(x)TwB(x) ≥
0} = TCz(F ) ∪ −TCz(F ), where TCz(F ) is the tangent cone of F at z. Then λ < 0
implies that lλ intersects int(F ), a contradiction. If (b), then lλ evaluated at z equals
TzE2(z) + λTwB(z) = λTwB(z) < 0. Then we can perturb z to ẑ such that ẑ ∈ int(F )
and lλ(z) < 0, again a contradiction. So in fact (c) is the only true alternative, in
which case lλ = TzE2 , R

2
λ = {z}, and v(S2

λ) ≥ 0.

Note that calculating v(S2
λ) is a TRS with one linear constraint, which has been

proved tractable in [22].
To illustrate Proposition 5.2 and the calculation of λmin, we consider a geometric

example in Figure 2. Let R1
λ and R2

λ be the feasible regions of (S1
λ) and (S2

λ), which
are bold and shaded, respectively. In the leftmost picture, λ = −0.3, and v(S1

λ) > 0
because R1

λ lies entirely on the nonnegative side of lλ, while v(S2
λ) > 0 because
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R2
λ ⊆ int(B). As λ decreases, lλ rotates clockwise around point p, and first intersects

R1
λ at point q, as shown in the middle picture (in which λ = −0.37). For this λ, (S1

λ)
and (S2

λ) have the same minimizer q and minimum value 0, and moreover λ = λmin.
If λ continues to decrease past λmin, then q lies on the negative side of lλ, and thus
v(S1

λ) < 0 as shown in the rightmost picture with λ = −0.46. Also, since R2
λ \ B 
= ∅,

it holds that v(S2
λ) < 0.

BE 2

Tz

Tw

l − 0. 3L y z

y

z

w

q

p

l − 0. 37 l − 0. 46

Fig. 2. An example to illustrate Proposition 5.2.

5.2. For any n, choosing (y, z). Now we propose a heuristic way to choose
y ∈ bd(E1) and z ∈ bd(E2) upon which to base the lifted-RLT constraint of the
previous subsection. Our idea is based on looking for a violated SOCRLT constraint
as described in [8]. Note that, by the discussion at the end of section 2.1, if there exists
a violated SOCRLT, then there exists a violated RLT constraint, in which case there
also exists a violated lifted-RLT constraint. On the other hand, the converse does
not hold, and accordingly we only propose this procedure when a violated SOCRLT
is found.

Suppose that (x̄, X̄) is our current solution. Based on (x̄, X̄) we solve the
SOCRLT separation problem as discussed in section 5 of [8]. If a violated SOCRLT
is found, we use the solution of the separation problem to choose y. In particular, the
separation problem always yields a distinguished y ∈ bd(E1), which is the “support
point” of the SOCRLT constraint. Moreover, adding the violated SOCRLT to the
current relaxation and resolving guarantees that the new SOCRLT subsequently be-
comes active, which in turn yields a z ∈ bd(E2). In terms of the discussion in section
2 and the SOCRLT constraint (2), the formula for z is

z :=
β x̂− X̂α

β − αT x̂
,

where (x̂, X̂) is optimal after the new SOCRLT constraint has been added. Please
note that the SOCRLT constraints are used only for generating (y, z) and are never
added to the current relaxation.

5.3. When n > 2. We next discuss a generalization of the lifted-RLT con-
straints for general n. Let y ∈ bd(E1)∩F and z ∈ bd(E2)∩F with y 
= z be given. To
generalize the function L2

yz(x) in dimension 2, our idea is to consider functions of the

type Myz(x) := (x− z)TH(x− z), where H satisfies H � 0 and (y− z)TH(y− z) = 0.
This ensures that Myz(x) ≥ 0 and Myz(y) = Myz(z) = 0 in analogy with L2

yz(x).
Then with y, z, and M chosen, we search for the most negative λmin < 0 such that

(9) TyE1TzE2 + λminMyz ≥ 0
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is valid for F . We are unsure whether this class of lifted-RLT constraints closes the
relaxation gap for general n, but we propose the following heuristic to generate such
cuts in practice.

For a given current solution (x̄, X̄), we choose (y, z) exactly as described in section
5.2, which works for general n. Then we search for a matrix H such that 2H will
serve as the Hessian of Myz. To guide our choice of H , we first examine the linearized
form of (9):

[
βδ − βγTx− δαTx+ αTXγ

]
+ λmin

[
H •X − 2yTHx+ yTHy

] ≥ 0,

where TyE1(x) := β − αTx and TzE2(x) := δ − γTx. Given this form and keeping
in mind that λmin < 0 is yet to be determined—it will depend on H—a reasonable
choice for H is one that maximizes H • X̄ − 2yTHx̄ + yTHy. This will increase the
chance that the linearized form is ultimately violated when plugging in (x̄, X̄) and
λmin, i.e., that we will be able to find a good cut. So we solve

max
H

H • X̄ − 2yTHx̄+ yTHy

s. t. H(y − z) = 0,

trace(H) = 1,

H � 0.

Because H � 0, the constraint H(y − z) = 0 is equivalent to (y − z)TH(y − z) = 0.
Also, the normalization constraint trace(H) = 1 simply bounds the feasible region.

Given y, z, and H , it remains to calculate λmin. Unfortunately, for general n,
we do not know how to calculate λmin exactly, but we can calculate an upper bound
λmin ≤ λupper < 0 as follows. Without loss of generality, we assume that E1 equals the
unit ball B, and recall that when n = 2, Lemma 5.1 allows us to rewrite L2

yz = TyBTwB
in the restricted domain bd(B). When n > 2, simple examples show that the analog
of Lemma 5.1 does not hold. However, we try a similar idea by looking for α ≥ 1
such that Myz(x) ≤ αTyB(x)TwB(x) for all x ∈ bd(B), where w ∈ bd(B) lies on the
line connecting y and z (just as in section 5.1). Note that Myz(w) = 0. In fact,
the smallest such αmin can be calculated by bisection on α using the solution of the
following (equality constrained) TRS problem:

min αTyB(x)TwB(x) −Myz(x)

s. t. x ∈ bd(B).

The basic decision in the bisection routine is as follows: if the optimal value is negative,
then we decrease α; otherwise, we increase α. After αmin is determined, we then follow
the ideas given in section 5.1 to calculate a minimum λ < 0 which guarantees that
TyB(TzE2 + λTwB) ≥ 0 is valid on F . Finally, we define λupper := λ/αmin so that

0 ≤ TyB(TzE2 + λTwB)
= TyBTzE2 + λTyBTwB
= TyBTzE2 + λupperαminTyBTwB
≤ TyBTzE2 + λupperMyz,

showing that TyBTzE2 + λupperMyz is valid on F .
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Table 3

Numerical results on TTRS instances from [8].

% solved by % solved by adding additional % solved by % still
n basic SDP SOC-RLT cuts adding heuristic lifted-RLT unsolved

to basic SDP1 cuts to basic SDP
5 92.2 4.0 2.0 1.8
10 24.6 68.3 2.2 4.9
20 4.1 85.3 4.0 6.6

5.4. Computational tests. For n = 2, consider the following instance of TTRS
with concentric ellipsoids centered at 0:

v∗ := min
x∈Rn

xTCx+ 2 cTx

s. t. xTx ≤ 1,

xTA2 x ≤ 1,

where

C =

(−3/5
√
6/4√

6/4 −2/5

)
, c = −1

2

(√
6/2
1

)
, A2 =

1

2

(
3 0
0 1

)
.

Since C is not positive semidefinite, we know that an optimal solution must occur on
the boundary. By carefully tracing the boundary of the feasible region, we can verify
that x∗ = (1, 1)T /

√
2 is a global optimal solution with optimal value v∗ ≈ −1.4608.

Numerical results show that the optimal value of the relaxation with only SOCRLT
constraints is −1.5, a gap of 2.74%. However, if we construct a lifted-RLT constraint
based on y = (0, 1)T and z = (

√
6/2, 0)T , we can calculate λmin ≈ 0.2986. In fact,

with some care, one can see that λmin is determined by x∗ being the third zero of the
lifted-RLT quadratic along with y and z. In this case, we have the following precise
formula for λmin:

λmin =
20 + 5(

√
6− 2

√
3− 2

√
2)

18 + 4(
√
6− 2

√
3− 2

√
2)

≈ 0.2986.

After adding the lifted-RLT constraint, we get the exact optimal value v∗ with X∗ ≈
x∗(x∗)T .

For n = 2, we also tested our approach on the example in section 5.2 of [8]. The
relaxation gap is closed after six lifted-RLT cuts in the sense that the optimal solution
(1, xT ;x,X) has numerical rank 1.

For n > 2, we also solve the instances generated in [8], where 1,000 instances
of (TTRS) were generated for each of n = 5, 10, 20. All tests were peformed on a
Macintosh OS X desktop with 3.2 GHz Quad-core Intel Core i5 processor and 8 GB
1600 MHz DDR3 SDRAM using YALMIP [16], Matlab, and Mosek [2]. For the three
different values of n, [8] found that 41, 70, and 104 instances could not be solved by
adding SOCRLT constraints to the basic SDP relaxation. (In [8], an instance was
regarded as solved if the relative gap between the relaxation value and the feasible
value gotten by extracting x is less than 10−4.) Applying our heuristic lifted-RLT
constraints to the 215 previously unsolved instances, we can solve 82—about 38%—of
them; see Table 3. However, the CPU time increases dramatically when separating
the lifted-RLT cuts. For example, on a particular n = 20 instance, it takes 4.2 seconds

1This column is slightly different from [8] because we use a different SDP solver in the experiment.
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to solve with only the SOCRLT constraints, while the same instance with lifted-RLT
cuts requires 91.9 seconds. In general, our lifted-RLT process takes more than ten
times longer on average than solving with only SOCRLT constraints.
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