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Abstract This paper studies a statistical problem called instrumental variable quan-
tile regression (IVQR). We model IVQR as a convex quadratic program with
complementarity constraints and—although this type of program is generally NP-
hard—we develop a branch-and-bound algorithm to solve it globally. We also derive
bounds on key variables in the problem, which are valid asymptotically for increasing
sample size. We compare our method with two well known global solvers, one of
which requires the computed bounds. On random instances, our algorithm performs
well in terms of both speed and robustness.
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1 Introduction

Least-squares linear regression [23] estimates the conditional expectation of a random
variable b ∈ R as a function of random covariates a1 ∈ R

n1 and a random error term
ε ∈ R by modeling

b = a1Tx∗
1 + ε with E[ε | a1 = a1] = 0,
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where x∗
1 ∈ R

n1 is a vector of coefficients, E[· | ·] denotes conditional expecta-
tion, and a1 is any specific realization of a1. Note that we use bold letters to denote
random variables and regular letters to denote realizations. Based on m realizations
(bi , a1i ) ∈ R

1+n1 of (b, a1) encoded as a matrix (b, A1) ∈ R
m×(1+n1), an estimate x̂1

of x∗
1 is obtained by minimizing the sum of squared residuals in the sample (b, A1).

Specifically, x̂1 := argminx1 ‖b − A1x1‖22. The final calculated residuals b − A1 x̂1
can be viewed as m realizations of the error term ε.

It is well-known that least-squares regression is sensitive to outliers in data samples.
On the other hand, quantile regression [6,17] can be used as an alternative that is less
sensitive to outliers. Although we can consider any quantile index u ∈ (0, 1), we
restrict our attention for the sake of simplicity to the median-case where u = 1/2:

b = a1Tx∗
1 + ε with P(ε ≤ 0 | a1 = a1) = 1

2
,

where P(· | ·) denotes conditional probability. The goal here is to find x∗
1 so that, for

any new realization (b̄, ā1) of (b, a1), the probability that āT1 x
∗
1 exceeds b̄ is exactly

1/2. Given the sample (b, A1), let us define a loss function for the i-th observation in
terms of the quantile index u = 1/2:

ρ1/2(bi − aT1i x1) = 1

2
· max

{
bi − aT1i x1, 0

}
+

(
1 − 1

2

)
· max

{
aT1i x1 − bi , 0

}

= 1

2

∣∣∣bi − aT1i x1
∣∣∣ .

Then the associated estimation problem of the median-case quantile regres-
sion corresponds to calculating x̂1 ∈ Argminx1

∑m
i=1 ρ1/2(bi − aT1i x1), where∑m

i=1 ρ1/2(bi − aT1i x1) is the overall loss or estimation error.
Let us briefly discuss the intuition of the above minimization problem by consider-

ing a simpler problem: minζ∈R
∑m

i=1 ρ1/2(bi − ζ ). One can show that the symmetry
of the piecewise linear function ρ1/2(·) ensures that, for an optimal solution ζ ∗, it must
hold that |{i : bi > ζ ∗}| = |{i : bi < ζ ∗}|, i.e., the number of positive errors equals the
number of negative errors. Hence, ζ ∗ is the median of sample b, i.e., ζ ∗ = med(bi ).
This analysis applies more generally to the quantile regression estimation of the previ-
ous paragraph, so that the estimate x̂1 ensures an equal number of positive and negative
errors; see the details in [17,24].

After dropping a constant factor 1/2 in the objective function, we have

x̂1 ∈ Argmin
x1

‖b − A1x1‖1 ←→
minx1,x+

3 ,x−
3
eTx+

3 + eTx−
3

s. t. x+
3 − x−

3 = b − A1x1
x+
3 , x−

3 ≥ 0.

This is a linear program (LP) in which the variables x+
3 , x−

3 ∈ R
m are auxiliary

variables, and e ∈ R
m is the vector of all ones. (Note that we reserve the notation x2

for below.)
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When there is sampling bias, i.e., sampling exhibits P(ε ≤ 0 | a1 = a1) 	= 1
2 ,

the estimate x̂1 provided by quantile regression may be inaccurate. In such cases, the
presence of additional covariates a2 ∈ R

n2 , called instruments, can often be exploited
to correct the bias [7,15], i.e., sampling with both a1 and a2 properly exhibits P(ε ≤
0 | a1 = a1, a2 = a2) = 1

2 . While this could serve as the basis for a model b =
a1Tx∗

1 + a2Tx∗
2 + ε, the hope is to minimize the effect of a2 so that the model depends

clearly on the endogenous covariates a1, not the instruments a2. For example, the most
desirable case would have x∗

2 = 0.
Hence, in instrumental variable quantile regression (IVQR), we define the estimator

x̂1 of x∗
1 such that the instruments a2 do not help in the conditional quantile. In other

words, we (ideally) choose x̂1 such that

0 ∈ Argmin
x2

‖b − A1 x̂1 − A2x2‖1

where x2 ∈ R
n2 is a variable and (b, A1, A2) ∈ R

m×(1+n1+n2) is the sample data. Note
that such a desirable x̂1 may not exist; see the next paragraph. The corresponding LP
is

minx2,x+
3 ,x−

3
eTx+

3 + eTx−
3

s. t. x+
3 − x−

3 + A2x2 = b − A1 x̂1
x+
3 , x−

3 ≥ 0
(1)

Note that x̂1 is not a variable in (1). Rather, given an estimate x̂1 of x∗
1 , the purpose of

(1) is to verify that x̂2 = 0 leads to minimal model error. So the overall IVQR problem
is to find a value x̂1 having this desired property. This is a type of inverse optimization
problem because we desire that part of the optimal solution have a pre-specified value
(namely, x̂2 = 0). Following the statistical requirements of IVQR (see, for instance,
[4,7]), we force the relation m > n2 ≥ n1 in this paper.

In actuality, there may not exist an x̂1 providing an optimal x̂2 = 0 as just described.
So instead we will choose x̂1 such that that x̂2 optimizes (1) with minimum Euclidean
norm. We will show in Sect. 2.1 that the resulting problem is a convex quadratic
program with complementarity constraints (CQPCC), which is generally NP-hard to
solve.

The IVQR problemwas introduced in [7], where the authors carried out a statistical
analysis of the estimation of x∗

1 and provided asymptotic normality and standard-
error calculations. For n1 = 1, the authors presented a simple, effective enumeration
procedure for calculating the estimate. However, they also pointed out that, for larger
n1, their enumeration procedure would suffer from the curse of dimensionality. This
provides another perspective on the difficulty of solving the CQPCCmentioned in the
previous paragraph.

Our paper is organized as follows. In Sect. 1.1, we briefly review the relevant lit-
erature, especially inverse optimization, partial inverse optimization, linear programs
with complementarity constraints, and techniques for non-convex quadratic programs,
and in Sect. 1.2, we establish the notation we use in the paper. Then in Sect. 2, we
discuss the IVQR problem in detail. Section 2.1 formulates IVQR as a CQPCC and
proposes a tractable relaxation by dropping the complementarity constraints. In Sect.
2.2, we derive valid bounds on key variables in IVQR, which hold asymptotically for
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increasing sample size in both light- and heavy-tailed models. The bounds will be used
by one of the two global optimization solvers in Sect. 4 but are also of independent
interest.

In Sect. 3, we propose a convex-QP-based B&B algorithm to solve IVQR globally.
Our B&B algorithm works by enforcing the complementarity constraints via linear
constraints in nodes of the tree. We detail the scheme and structure of the B&B algo-
rithm in Sect. 3.1 and describe important implementation issues in Sect. 3.2. Section
4 empirically compares our algorithm with two optimization solvers—Couenne (ver-
sion 0.4) and CPLEX (version 12.4)—on three types of randomly generated instances.
In particular, CPLEX solves a mixed-integer model of the CQPCC using the bounds
derived in Sect. 2.2. We conclude that our algorithm is quite efficient and robust.
Section 5 gives some final thoughts.

1.1 Related literature

As mentioned above, the IVQR problem is a type of inverse optimization problem
[1,31] because ideally we would like the optimal solution x̂2 of (1) to be zero. Since
the other variables x+

3 , x−
3 in (1) do not have desired values, IVQR is in fact a type

of partial inverse optimization problem, which is similar to a regular inverse problem
except that only certain parts of the desired optimal solution are specified. Research
on partial inverse optimization problems has been active in recent decades; see [5,
12,18,27–30]. In particular, Heuberger [14] was one of the first to investigate partial
inverse optimization problems. In many cases, partial inverse optimization is NP-hard.
For example, solving partial inverse linear programming typically involves explicitly
handling the complementarity conditions of the primal-dual optimality conditions.

In Sect. 2.1, we will show that IVQR can be formulated as a convex QP with
complementarity constraints (CQPCC). Even linear programs with complementar-
ity constraints (LPCCs) are known to be NP-hard since, for example, they can be
used to formulate NP-hard nonconvex quadratic optimization problems [26]; see also
[2,16,19,21,22]. It is well known that LPCCs can be formulated as mixed-integer pro-
grams when the nonnegative variables involved in the complementarity constraints are
explicitly bounded.

In Sect. 4, we will employ a similar technique to reformulate IVQR as a convex
quadratic mixed-integer program, which can be solved by CPLEX (version 12.4).
Complementarity constraints can also be handled using general techniques for bilinear
problems although we do not do so in this paper; see [11,25] for example.

Our IVQR problem can be solved by the recent algorithm of Bai et al. [3], which is a
global algorithm for solving general CQPCCs. Their algorithm consists of two stages
where the first stage solves a mixed-integer quadratic program with pre-set arbitrary
upper bounds on the complementarity variables and the second relaxes the bounds
with a logical Bender’s decomposition approach. However, we have found by testing
code supplied by the authors that this general-purpose algorithm was not competitive
with the special-purpose algorithm that we will present in this paper.

Another related work is by Liu and Zhang [20] in which the authors present an
algorithm to find global minimizers of general CQPCCs. The main idea of the algo-
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rithm is to use an embeded extreme point method to search for a higher-quality locally
optimal solution starting with every feasible solution obtained by a branch-and-bound
algorithm. The efficiency of the algorithm is based on the hope that the locally optimal
solutions can provide better global upper bounds.

1.2 Notation

R
n refers to n-dimensional Euclidean space represented as column vectors, andRm×n

is the set of real m × n matrices. The special vector e ∈ R
n consists of all ones.

For v ∈ R
n , both vi and [v]i refer to the i-th component of v. For v,w ∈ R

n , the
Hadamard product of v and w is denoted by v ◦ w := (v1w1, . . . , vnwn)

T. For a
matrix A, we denote by the row vector Ai the i-th row of A. For a scalar p ≥ 1, the
p-norm of v ∈ R

n is defined as ‖v‖p := (
∑n

i=1 |vi |p)1/p. The ∞-norm is defined as
‖v‖∞ := maxni=1 |vi |. For a givenminimization problem, the notationArgmin denotes
the set of optimal solutions. If the optimal solution set is known to be a singleton,
i.e., there is a unique optimal solution, we write argmin instead. Our probability
and statistics notation is standard. Throughout this paper, bold letters denote random
variables. P(·) and E[·] denote probability and expectation, respectively, and P(·|·)
and E[·|·] are the conditional variants. For an event E , we also write 1{E} for the
indicator function for E .

2 The IVQR problem and its details

In this section, we formulate the IVQR problem as a convex quadratic program with
complementarity constraints (CQPCC) and state a natural CQP (convex quadratic
program) relaxation that will serve as the root node in our B&B algorithm discussed
in Sect. 3. We also derive asymptotic bounds on critical variables in the CQPCC that
hold with high probability as the sample size increases. The bounds will in particular
be required by one of the other global solvers in Sect. 4.

2.1 A CQPCC representation of the IVQR problem

Recall problem (1), which expresses our goal that x̂2 = 0 lead to minimal model error
given the estimate x̂1 of x∗

1 . Its dual is

maxy (b − A1 x̂1)Ty
s. t. AT

2 y = 0
−e ≤ y ≤ e

(2)

Note that AT
2 y = 0 reflects that (1) optimizes only with respect to x2, while x̂1 is

considered fixed. The full optimality conditions for (1) and (2), including complemen-
tary slackness, are
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x+
3 − x−

3 + A2x2 = b − A1 x̂1

x+
3 , x−

3 ≥ 0 (3)

AT
2 y = 0 (4)

− e ≤ y ≤ e (5)

x+
3 ◦ (e − y) = x−

3 ◦ (y + e) = 0 (6)

Now consider the full IVQR problem in which x1 is a variable. The optimality
conditions just stated allow us to cast the IVQR problem as the task of finding a
feasible value of x1 satisfying the following system, where x2, x

+
3 , x−

3 , and y are also
variables:

x+
3 − x−

3 + A1x1 + A2x2 = b (7)

(3)–(6)

x2 = 0.

In comparison to the preceding optimality conditions, equation (7) highlights that x1 is
a variable, and the equation x2 = 0 expresses our goal that zero is the optimal solution
of (1). As mentioned in the Introduction, however, the constraint x2 = 0 may be too
stringent, and so we relax it to the weaker goal of finding a solution (x1, x2, x

+
3 , x−

3 , y)
such that x2 has minimum Euclidean norm:

minx1,x2,x+
3 ,x−

3 ,y ‖x2‖22
s. t. (3)–(7).

(8)

This is our CQPCC formulation of the IVQR problem. In particular, the objective
taken together with (3)–(5) and (7) form a CQP, and (6) enforces the complementarity
constraints. For completeness, we prove that (8) is feasible.

Proposition 1 The IVQR problem (8) is feasible.

Proof Consider the primal problem (1) with x̂1 fixed. As x
+
3 and x−

3 are nonnegative,
their difference x+

3 −x−
3 is equivalent to a vector of free variables.Hence, (1) is feasible.

Furthermore, as x+
3 , and x−

3 are nonnegative, the objective function eTx+
3 + eTx−

3 of
(1) is bounded below, and hence (1) has an optimal solution. Then so does the dual
(2) by strong duality. Those primal and dual optimal solutions, in addition, satisfy
complementary slackness, exhibiting a feasible solution of (8). �


We present an alternative formulation (9) of (8), which will be the basis of the rest
of the paper since it will prove convenient for the development in Sect. 3. We first add
slack variables to (8) to convert all inequalities (except nonnegativity) into equations:

minx1,x2,x+
3 ,x−

3 ,y,s+,s− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 y = 0, y + s+ = e, −e + s− = y, s+, s− ≥ 0

x+
3 ◦ s+ = x−

3 ◦ s− = 0
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where s+, s− ∈ R
m . Then we eliminate y:

minx1,x2,x+
3 ,x−

3 ,s+,s− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 (e − s+) = 0, e − s+ = −e + s−, s+, s− ≥ 0

x+
3 ◦ s+ = x−

3 ◦ s− = 0.

(9)

Due to the presence of the complementarity constraints, (9) is very likely difficult
to solve since even linear programs with complementarity constraints (LPCCs) are
NP-hard [21]. We will propose in Sect. 3, however, that (9) can be solved practically
by a B&B algorithm, which employs polynomial-time CQP relaxations. For example,
if we simply eliminate the complementarities, the resulting relaxation is tractable:

minx1,x2,x+
3 ,x−

3 ,s+,s− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 (e − s+) = 0, e − s+ = −e + s−, s+, s− ≥ 0.

(10)

This relaxation will indeed serve as the root relaxation in Sect. 3, and all node
relaxations will be derived from it. It can be easily solved by numerous solvers. Note
that (10) is bounded below by 0, and similarly, every node relaxation is bounded, too.
Thus the B&B algorithm works even though we do not have upper bounds on the
complementarity variables x+

3 and x−
3 . However, one of the other algorithms, with

which we will compare, requires a priori upper bounds on the variables x+
3 and x−

3 .
Therefore, we will propose asymptotic statistical bounds in the following section.

2.2 Variable bounds

The B&B algorithm that we will present in Sect. 3 can solve (9) directly, even though
the feasible set is unbounded.However, as discussed above, one of the other algorithms,
with which we will compare, requires a priori bounds on the variables x+

3 and x−
3 of

(9). So in this subsection, we derive bounds for these variables. The derived bounds
are also of interest from the statistical point of view.

Since the difference x+
3 − x−

3 is closely related to the error ε of the model, it
suffices to bound ε. However, one can expect that ε is unbounded in general, and
so some additional assumptions are required to bound ε with high probability as the
sample size m grows larger. We will focus on two specific, representative examples—
one in which ε has light tails and one in which the tails of ε are heavy—and we prove
explicit bounds on ε that hold with high probability for large m. These bounds will
subsequently be incorporated into (9) and used in Sect. 4 by one of the solvers.

Suppose that data (b, A) with ε := b − Ax∗ is a random sample following the
quantile-regression model

b = aTx∗ + ε with P(ε ≤ 0 | a = a) = 1
2 .
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This is exactly the model considered in this paper except that the subscript 1 appearing
on a, a, and A has been dropped for notational convenience. We start by stating two
lemmas that will facilitate the details of Example 1 (light tails) and Example 2 (heavy
tails) below. The proofs are included in the Appendix.

Lemma 1 For a random sample (b, A) ∈ R
m×(1+n) with ε := b − Ax∗ and a given

constant C > 1, the probability P (‖ε‖∞ > C‖b‖∞) is bounded above by both

P

(
C

C + 1
<

‖ε‖∞
‖Ax∗‖∞

<
C

C − 1

)

and

m
m

max
i=1

P

(
|εi | > C

m
max
k=1

{|εk | · 1{εkaTk x∗ ≥ 0}}
)

.

where 1 is the indicator function.

Lemma 2 For any normal random variable Z ∼ N (0, σ 2) and any θ ≥ 1, it holds
that

1

2θ
· ε(θ) ≤ P(Z > θσ) ≤ 1

θ
· ε(θ), where ε(θ) := 1√

2π
exp(−θ2/2).

In addition, consider q identically distributed copies Z1, . . . , Zq of Z, where q is
large enough so that log(q) ≥ 1 and q/(8π log(q)) ≥ √

q. If θ = √
log(q), then

P

(
max
1≤p≤q

Z p ≤ θσ

)
≤ exp(−q1/4).

We are now ready to give the light- and heavy-tailed examples that suggest rea-
sonable asymptotic bounds on the error. In particular, both Examples 1 and 2 show
that the bound C ‖b‖∞ is asymptotically valid for ε in theory when C > 1. However,
in practice, C = 5 will be appropriate (with high probability for large m) for many
situations of interest. It can work effectively even for small m; see details in Sect. 4.3.
So we can enforce x+

3 ≤ 5 ‖b‖∞e and x−
3 ≤ 5 ‖b‖∞e in the formulation (9) of IVQR.

For ease of discussion in Examples 1 and 2, we set C = 5. Again, the same analysis
can be applied to any value C > 1.

Example 1 (Light tails) For the case ε ∼ N (0, σ 2), let (b, A) ∈ R
m×(1+n) be a

random sample with ε := b − Ax∗. Then the inequality ‖ε‖ ≤ 5‖b‖∞ holds almost
surely as m → ∞.

To explain Example 1, set C = 5. Lemma 1 implies P(‖ε‖∞ > 5‖b‖∞) ≤
mmaxmi=1 pi , where

pi := P

(
|εi | > 5max

k

{
|εk | · 1{εkaTk x∗ ≥ 0}

})
.
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We claim that each product m · pi → 0 as m → ∞. In particular, we will show that,
independently of i ,

pi ≤ exp
(− m

72

) + 2
( 3
m

)2 + exp
(
− (m

3

)1/4) (11)

so that

P(‖ε‖∞ > 5‖b‖∞) ≤ m
(
exp

(− m
72

) + 2
( 3
m

)2 + exp
(
− (m

3

)1/4))

= exp
(
log(m) − m

72

) + 18
m + exp

(
log(m) − (m

3

)1/4)

→ 0.

This shows that one can asymptotically expect the error to be at most 5‖b‖∞.
To prove the inequality (11), fix the index i ; say i = m without loss of generality. If

more than q := �m
3 � of the terms εkaTk x

∗ are nonnegative (including the first q terms
without loss of generality) and |εm | ≤ 5max1≤k≤q |εk |, then

|εm | ≤ 5
q

max
k=1

|εk |

= 5
q

max
k=1

{
|εk | · 1

{
εka

T
k x

∗ ≥ 0
}}

≤ 5
m

max
k=1

{
|εk | · 1

{
εka

T
k x

∗ ≥ 0
}}

.

Logically, this ensures the contrapositive implication

|εm | > 5
m

max
k=1

{
|εk | · 1

{
εka

T
k x

∗ ≥ 0
}}

�⇒
m∑

k=1

1
{
εka

T
k x

∗ ≥ 0
}

≤ q or |εm | > 5
q

max
k=1

|εk |.

So pm ≤ α + β, where

α := P

(
m∑

k=1

1
{
εka

T
k x

∗ ≥ 0
}

≤ q

)

β := P

(
|εm | > 5

q
max
k=1

|εk |
)

.

We next bound α and β separately.
Because each εk ∼ N (0, σ 2) conditional on ak with P(εk ≥ 0 | a = ak) =

P(εk ≤ 0 | a = ak) = 1
2 , we have P(εkaTk x

∗ ≥ 0 | a = ak) = 1
2 . Then, interpreting

both εk and ak as random, this means P(εkaTk x
∗ ≥ 0) = 1

2 . Therefore each Yk :=
1{εkaTk x∗ ≥ 0}− 1

2 is a bounded randomvariablewithmean 0. ByAzuma’s inequality,

123



480 G. Xu, S. Burer

we have

α = P

(
m∑

k=1

Yk ≤ q − m

2

)
≤ P

(
m∑

k=1

Yk ≤ −m

6

)
≤ exp

(− m
72

)
.

Finally, to bound β, set t = 2
√
log(q). Logically,

|εm | > 5
q

max
k=1

|εk | �⇒ |εm | > tσ or 5
q

max
k=1

|εk | ≤ tσ.

So β ≤ γ + δ, where

γ := P (|ε1| > tσ)

δ := P

(
5

q
max
k=1

|εk | ≤ tσ

)
.

To bound γ , we use Lemma 2 with θ = t to show that, for m large enough,

γ = P(|ε1| > tσ) = 2P(ε1 > tσ)

≤ 2

t
· 1√

2π
exp(−t2/2) = 1√

log(q)
· 1√

2π
exp(−2 log(q))

≤ q−2 ≤ 2
( 3
m

)2
.

To bound δ, we apply Lemma 2 with θ = 1
5

√
log(q) to conclude δ ≤ exp(−q1/4) ≤

exp(−(m3 )1/4).
In total, we have pi ≤ α + β ≤ α + γ + δ ≤ exp(− m

72 ) + 2( 3
m )2 + exp(−(m3 )1/4),

which is (11).

Example 2 (heavy tails) Consider the case when E[|aTx∗|q ] ≤ K for some integer
q > 0 and scalar K > 0 and ε satisfies P(|ε| < t) ≤ 1 − t−k , where k + 1 < q.
Let (b, A) ∈ R

m×(1+n) be a random sample with ε := b − Ax∗. Then the inequality
‖ε‖ ≤ 5‖b‖∞ holds almost surely as m → ∞.

From Hölder’s inequality, we see

E
[‖Ax∗‖∞

] = E
[
{(‖Ax∗‖∞)q}1/q

]

≤ (
E

[
(‖Ax∗‖∞)q

])1/q

≤
(
E

[
m∑
i=1

|aTi x∗|q
])1/q

=
(

m∑
i=1

E
[
|aTi x∗|q

])1/q

≤ m1/q K 1/q
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Hence, by Markov’s inequality,

P
(
‖Ax∗‖∞ > m1/(k+1)K 1/q

)
≤ E[‖Ax∗‖∞]

m1/(k+1)K 1/q
≤ m1/q K 1/q

m1/(k+1)K 1/q
= m1/q

m1/(k+1)
,

which goes to 0 as m → ∞ because k + 1 < q. Moreover,

P(‖ε‖∞ < t) = �m
i=1P(|εi | < t) ≤ (1 − t−k)m,

which, substituting t = Cm1/(k+1)K 1/q , implies

P
(
‖ε‖∞ < Cm1/(k+1)K 1/q

)
≤

(
1 − (Cm1/(k+1)K 1/q)−k

)m

=
(
1 − C−km−k/(k+1)K−k/q

)m
.

Note that the last quantity goes to 0 as m → ∞ because k/(k + 1) < 0. By Lemma 1
and taking C = 5,

P(‖ε‖∞ > 5‖b‖∞) ≤ P
(

5
5+1 ≤ ‖ε‖∞

‖Ax‖∞ ≤ 5
5−1

)

≤ P
( ‖ε‖∞

‖Ax‖∞ ≤ 5
)

= P (‖ε‖∞ ≤ 5‖Ax‖∞)

≤ P(‖Ax∗‖∞ > m1/(k+1)K 1/q) + P(‖ε‖∞ ≤ 5m1/(k+1)K 1/q)

→ 0 + 0 = 0.

An important remark is in order here. For any particular instancewewill test in Sect.
4, imposing the bound 5‖b‖∞ might cut off some or all optimal solutions in practice.
This is because the bound on the error ε is asymptotic as m → ∞. In practice, we
have found, however, that 5‖b‖∞ does not often cut off any optimal solutions. We will
discuss this in a bit more detail in Sect. 4.3.

3 A CQP-based branch and bound algorithm

In Sect. 2.1, we mentioned that the CQP relaxation (10)—and ones derived from
it—would be used within a branch-and-bound (B&B) algorithm to solve IVQR via
the reformulation (9). In this section we present the algorithm in detail and discuss
important implementation issues. For the moment, we do not refer to the bounds
derived in Sect. 2.2 since our own algorithm does not require them; we only need the
bounds for CPLEX in Sect. 4.3.

3.1 The scheme and structure of the algorithm

OurB&Balgorithm aims to enforcemore andmore of the complementarity constraints
in (9) further and further down in a dynamically constructed tree. Complementarities
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are enforced using added linear equalities. For example, a single complementarity
[x+

3 ]i [s+]i = 0 is enforced in one branch by [x+
3 ]i = 0 and in a second branch

by [s+]i = 0. This is analogous to branching on a 0–1 binary variable z in integer
programming, where one branch forces z = 0 and another z = 1.

To describe the B&B algorithm formally, for each node of the tree, let F+
x and F+

s
be two disjoint subsets of the index set {1, . . . ,m}, and separately let F−

x and F−
s be

two disjoint subsets of the same. Also define G+ := {1, 2, . . . ,m}\(F+
x ∪ F+

s ) and
G− := {1, 2, . . . ,m}\(F−

x ∪F−
s ). The nodewill enforce complementarities associated

with F+
x ∪ F+

s and F−
x ∪ F−

s by solving the following CQP relaxation:

minx1,x2,x+
3 ,x−

3 ,s+,s− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 (e − s+) = 0, e − s+ = −e + s−, s+, s− ≥ 0

[x+
3 ]i = 0 ∀ i ∈ F+

x , [s+]i = 0 ∀ i ∈ F+
s

[x−
3 ] j = 0 ∀ j ∈ F−

x , [s−] j = 0 ∀ j ∈ F−
s .

(12)

This problem is the basic (or root) relaxation (10) with added linear inequalities that
enforce the complementarities [x+

3 ]i [s+]i = 0 for all i ∈ F+
x ∪ F+

s and [x−
3 ] j [s−] j =

0 for all j ∈ F−
x ∪ F−

s . On the other hand, any complementarities corresponding to
G+ or G− are relaxed compared to (9). Note that, while the feasible set of problem
(12) is unbounded in the variables x+

3 and x−
3 , the objective function is bounded below

since it is nonnegative. Hence, (12) is always solvable or infeasible.
Now we discuss how to create new nodes in the tree, i.e., how to branch on a

given node that is associated with sets F+
x , F+

s , F−
x , F−

s ,G+,G−. First, select some
i ∈ G+ or j ∈ G− corresponding to a complementarity that has yet to be enforced.
Then two child nodes are created as follows: one with F+

x ← F+
x ∪ {i} and one with

F+
s ← F+

s ∪ {i} if an i was selected, or one with F−
x ← F−

x ∪ { j} and one with
F−
s ← F−

s ∪ { j} if a j was selected. G+ and G− are also updated for the children as:
G+ ← G+\{i} if i was selected, or G− ← G−\{ j} if j was selected. This form of
branching leads to two special cases worth pointing out: (i) the root node corresponds
to F+

x = F+
s = F−

x = F−
s = ∅ with no complementarities enforced; (ii) leaf nodes

correspond to G+ = G− = ∅ with all complementarities enforced.
The next important concept of the B&B algorithm is fathoming, that is, removing a

node from further consideration and, in particular, not branching on it.Wemay fathom
a node if we are certain that the relaxation associated with that node does not contain
any solutions for (9) that are better than what we have already encountered during
the course of the algorithm. Let GUB (“global upper bound”) denote the best feasible
value of (9) encountered so far, including possibly gotten at the current node, e.g.,
when the optimal solution to the relaxation (12) is actually feasible for (9). Then we
can fathom if the optimal value of (12) is greater than or equal to GUB. This fathoming
rule includes a special casewhen (12) is infeasible, inwhich case the relaxation optimal
value can be considered +∞.

Another equally important concept for our B&B algorithm is how we evaluate
the nodes in the tree. Evaluating a node involves solving the CQP relaxation (12)
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corresponding to the node and then fathoming the node (if possible) or branching on
the node (if fathoming is not possible and if it is not a leaf node).

With these basic concepts introduced, we now have a whole picture of our B&B
algorithm. Starting with the root node, the algorithm evaluates, adds, and fathoms
nodes from the tree at each iteration. The algorithm finishes when all nodes generated
by the algorithmhave been evaluated and fathomed. The finalGUBvalue is the optimal
value, and the solution associated with GUB is an optimal solution.

3.2 Implementation issues

In this subsection, we will describe some important implementation issues for our
B&B algorithm.

One of the most crucial issues is the method chosen to solve the CQP relaxation
(12) at each node of the tree. As mentioned in Sect. 2.1, we use CPLEX 12.4 in our
codes. In particular, we solve the relaxations using the dual simplex CQP pivoting
method based on the following two considerations. First, preliminary results indicated
that the dual pivoting method was more numerically stable and accurate compared to
other methods, including the primal simplex CQP pivoting method and the interior-
point (barrier) method. Secondly, the dual pivoting method is particularly useful for
re-optimizing a problemwhen primal constraints are added, which is the case between
parent and child nodes in our algorithm.

Another important issue is how to choose the complementarity on which to branch
when child nodes are created. (Please refer to the conceptual discussion in the prior sub-
section.)We apply amaximum-violation approach, which is similar to most-fractional
branching in integer programming. Suppose that we have just solved the CQP relax-
ation (12) at a node and have an associated optimal solution (x̂1, x̂2, x̂

+
3 , x̂−

3 , ŝ+, ŝ−).
We then compute

i ∈ Argmax
k

{[
x̂+
3

]
k

[
ŝ+]

k

}
and j ∈ Argmax

l

{[
x̂−
3

]
l

[
ŝ−]

l

}

and choose i if [x̂+
3 ]i [ŝ+]i is larger than [x̂−

3 ] j [ŝ−] j and otherwise choose j .
We also give a bit more detail about handling the optimal solution (x̂1, x̂2, x̂

+
3 ,

x̂−
3 , ŝ+, ŝ−) of the relaxation (12) at each node. (In our experience, CPLEX is quite
stable and can always deliver an optimal solution or determine that (12) is infeasible.)
First, the solution is checked for feasibility in the original problem (9) up to a relative
tolerance of 10−6. If so, we update GUB, and the node is fathomed. On the other hand,
if the solution is infeasible at this tolerance, then it means that some complementarity
is violated, and we must branch.

In addition,we use a relative optimality tolerance for fathoming a node by its relaxed
objective value. Given ε > 0, the optimal value LB (“lower bound”) of the relaxation,
and the current GUB, the node is fathomed if (GUB−LB)/max{1,GUB} < ε. Note
that GUB is nonnegative in our setting, and we take ε = 10−6 in our implementation.

We adopt a heuristic method to generate an initial GUB for our B&B algorithm.
From Proposition 1, we know that (1) is feasible and bounded below by 0 and thus
has optimal solutions for each fixed x1. Hence, we first solve the unconstrained linear
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least squares problem:

x̂1 = argmin
x1

‖A1x1 − b‖2.

Then, we solve (1) with x̂1 to get an optimal x̂2. We note that x̂1 and x̂2 are part of a
feasible solution of the IVQR problem. Then our initial GUB is set to ‖x̂2‖22.

We also provide warm-start initial solutions for each child node on the branch-and-
bound tree. We store the relaxed optimal solutions of the parent nodes that serve as the
warm-start initial solutions of their child nodes. Although the storing takes additional
memory, the algorithm benefits from decreasing the computation time for each nodes
with the providing initial solutions. Our preliminary testing results indicate that it is
worth considering the compromise in our algorithm.

We can also add implied complementarity constraints to the nodes in the B&B
tree. Consider a node in which [s+]i = 0 is enforced. Since the linear constraints of
(12) imply [s+]i + [s−]i = 2, we have [s−]i = 2, which in turn implies [x−

3 ]i = 0.
Similarly, when a node enforces [s−] j = 0, we see [x+

3 ] j = 0. Thus, the CQP in (12)
can be strengthened as follows:

minx1,x2,x+
3 ,x−

3 ,s+,s− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 (e − s+) = 0, e − s+ = −e + s−, s+, s− ≥ 0

[x+
3 ]i = 0 ∀ i ∈ F+

x , [s+]i = [x−
3 ]i = 0 ∀ i ∈ F+

s
[x−

3 ] j = 0 ∀ j ∈ F−
x , [s−] j = [x+

3 ] j = 0 ∀ j ∈ F−
s .

3.2.1 Node selection strategies

Next, let us introduce two alternative strategies to select the next node to evaluate
during the course of our B&B algorithm. The two strategies are called the best-bound
search and the bi-priority search. The best-bound search, which is a well known
strategy, will be employed for testing small-size instances in Sect. 4, while the bi-
priority search, a strategy that we developed for the IVQR problem, will be employed
for testing medium-size and large-size instances.

We discuss best-bound first. Before selecting the next node to evaluate, we sort the
remaining nodes in the tree by their LBs (lower bounds), which are just the optimal
values of the relaxations of their parent nodes. Then the next node is chosen to be the
one with the lowest LB. The best-bound search tends to reduce the number of nodes
evaluated during the overall course of the algorithm and can improve the LBs in the
tree quickly. The downside, however, is that—at any given time—the size of the tree
can be very large if the current GUB is far from optimal, e.g., see [13]. Then memory
usage can be a concern, and tasks such as sorting the tree can take a long time. We
experienced precisely this behavior in early implementations of our algorithm, which
degraded the speed and performance of our implementation significantly.

To address the downsides of the best-bound strategy, we developed what we call
bi-priority search, and it is intended for larger problems for which the tree can become
quite big.Wedescribe the procedure as follows.At any timeduringourB&Balgorithm,
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we maintain the nodes of the tree in two separate lists: a high-priority list and a low-
priority one. For a pre-specified, fixed value v̂, if a node has LB≤ v̂, then it is amember
of the high-priority list; otherwise, it goes in the low-priority list. Then, as long as the
high-priority list is nonempty, we employ depth-first search to choose the most recent
node appended to the high-priority list. On the other hand, if the higher-priority list
is empty, we use best-bound search to make our next choice from the low-priority
list.

The point of bi-priority search is to focus the algorithm’s attention using depth-first
search in parts of the tree where a good GUB could possibly be discovered. These are
the nodes with LB ≤ v̂ in the high-priority list. If a good GUB is indeed found, then
it is likely that many of the nodes in the low-priority list will be fathomed. Clearly
this strategy depends on an intelligent choice of v̂. For the IVQR problem (9), the
optimal values are typically very close to 0. Knowing that this is a feature of the class
of IVQR problems in general, we choose v̂ = 0 specifically to help solve any given
instance.

Note that our bi-priority search is different from a common two-phase method
in which a B&B algorithm first uses depth-first search to find a feasible solution
quickly and then uses best-bound search afterwards to improve the LB [13]; see more
sophisticated two-phase methods in [9,10]. It is also different from the hybrid method
[13] in which a B&B algorithm employs depth-first search from the current node until
a node with LB > γ , where γ is a pre-specified threshold, and then uses a different
method, e.g., best-bound search, to select the next node, and then keeps repeating the
same two steps.

4 Computational experiments

In this section, we first discuss the procedure to generate test instances and describe
three types of instances. Then, for the computational study, we test our B&B algo-
rithm, referred to as QPBB, against two well known solvers on the three types of
instances.We implemented our algorithm inMATLABversion 8.5.0.197613 (R2015a)
and employed CPLEX 12.4 to solve the subproblems which are convex QPs. The
CPLEX solver was called through its MATLAB interface. All computational exper-
iments were performed on an Intel Core i7-3770 CPU running at 3.40GHz with 8
threads (over 4 cores) under the Linux operating system. We note that—when the
compared algorithms report optimal solutions on an instance—we have found experi-
mentally that the optimal values agree up to a relative accuracy of 10−6. In otherwords,
when an algorithm claims to have solved an instance optimally, it is independently
verified by the other algorithms up to six significant figures.

4.1 Generation and description of instances

Test instances of the IVQR problem are randomly generated by specifying the follow-
ing parameters: sample size (m), number of endogenous covariates (n1), and number
of instruments (n2). As discussed in Sect. 1, we have the relation m > n2 ≥ n1.
Thus, we first consider the case that m > n2 = n1. Let U(0, 1) and N (0, 1) denote
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Table 1 Details of the three types of test instances

Instance type # Instances (m, n1, n2) # Complementarities

Small-IVQR 500 (50, 5, 5) 100

Medium-IVQR 300 (100, 5, 5) 200

Large-IVQR 100 (150, 5, 5) 300

the standard uniform and normal distributions, respectively. Then our steps to gen-
erate random data (b, A1, A2) ∈ R

m × R
m×n1 × R

m×n2 for a single instance are
shown in Algorithm 1. This procedure guarantees P(ε ≤ 0 | a1 = a1) 	= 1

2 but
P(ε ≤ 0 | a1 = a1, a2 = a2) = 1

2 . We refer the reader to [7] for details of the
procedure and relevant theory.

Algorithm 1 Random Instance Generator
Inputs: m, n1, n2, α := (1, 2, . . . , n1)T, and β := 2α
Outputs: (b, A1, A2)
for i = 1, . . . ,m do
Generate u from U(0, 1)
For j = 1, . . . , n2, sample [A2]i j independently from N (0, 1)2 (“squared normal”)
For j = 1, . . . , n1, calculate [A1]i j = [A2]i j + uβ j

Calculate bi = ∑n1
j=1(1 − u + uα j )[A1]i j

end for

We generate three types of instances using the above procedure. The first type,
called Small-IVQR, contains 500 random instances with (m, n1, n2) = (50, 5, 5). The
second type, calledMedium-IVQR, contains 300 random instances with (m, n1, n2) =
(100, 5, 5). The Large-IVQR type contains 100 random instances with (m, n1, n2) =
(150, 5, 5). We expect the Large-IVQR instances to be the most challenging since 2m
equals the number of complementarities in (9), which directly affects the (potential)
number of nodes in the B&B tree. Table 1 describes the three types of instances. We
also considered the case ofm > n2 > n1, but the computational results were the same
as those presented with n1 = n2. So here we focus on the case m > n1 = n2.

4.2 Tests against couenne

We first test our algorithm against the open-source global solver Couenne (version
0.4) [8] on the Small-IVQR, Medium-IVQR, and Large-IVQR instances based on the
formulation in (9). For our algorithm, we set the feasibility tolerance to 10−6 and
the fathoming tolerance to 10−6. Couenne incorporates a generic tolerance, which
affects a number of aspects of its performance; we choose 10−6. The per-instance
time limit is set to 900s (15min) for both algorithms on the Small-IVQR instances,
1800s (30min) on the Medium-IVQR instances, and 7200s (2h) on the Large-IVQR
instances. If the time limit is reached for either method on a particular instance, the
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Fig. 1 Comparison of the computation times (in seconds) between our B&B algorithm and Couenne on
the 500 Small-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x . An
asterisk represents an instance for which both algorithms report optimality

method will return its current best objective value (GUB), but of course it is possible
that the GUB returned is not the global optimal value. We employ the best-bound
search for our algorithm on the Small-IVQR instances and the bi-priority search on
the Medium-IVQR and Large-IVQR instances. We report our main observations as
follows.

The comparison results of both algorithms on the 500 Small-IVQR instances are
shown in Fig. 1. Specifically, our algorithm outperforms Couenne on 454 instances
out of 500 in terms of computation time. Our algorithm performs worse than Couenne
only on the remaining 46 instances. Note that we present log–log plots of the CPU
times, and the straight line defines y = x in Fig. 1.

Figure 2 shows the computational comparison of the two algorithms on the 300
Medium-IVQR instances. In particular, our algorithm outperforms Couenne on 283
instances out of 300 in termsof computational time.Our algorithmperformsworse than
Couenne on the remaining 17 instances. Furthermore, our algorithm reports optimality
on all the 300 instanceswhileCouenne reports optimality on 293 instances and exceeds
the time limit on the remaining 7.

Figure 3 indicates the computational results of the comparison of the two algorithms
on the 100Large-IVQR instances.Our algorithmoutperformsCouenneon99 instances
out of 100 in terms of computational time whereas it performs worse than Couenne
on the remaining 1 instance. Furthermore, our algorithm reports optimality on all 100
instances while Couenne reports optimality on 94 instances and exceeds the time limit
of 7200 seconds on the remaining 6.

123



488 G. Xu, S. Burer

QPBB (sec)
10 0 10 2 10 4

C
ou

en
ne

(s
ec

)

10 -1

10 0

10 1

10 2

10 3

10 4

Fig. 2 Comparison of the computation times (in seconds) between our B&B algorithm and Couenne on
the 300 Medium-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x .
An asterisk represents an instance for which both algorithms report optimality; a square represents that
Couenne exceeded the time limit of 1800s
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Fig. 3 Comparison of the computation times (in seconds) between our B&B algorithm and Couenne on
the 100 Large-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x .
An asterisk represents an instance for which both algorithms report optimality; a square represents that
Couenne exceeded the time limit of 7200s
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4.3 Tests against CPLEX

In this subsection, we compare our algorithm against CPLEX’s mixed-integer QP
solver (version 12.4) applied to a mixed-integer programming (MIP) formulation of
(9). For the MIP formulation, we use a standard technique for handling complemen-
tarity constraints by introducing binary variables together with a “big-M” approach.
The big-M constants require a priori bounds on x+

3 and x−
3 , and so we employ the

bounds derived in Sect. 2.2. The MIP formulation is

minx1,x2,x+
3 ,x−

3 ,s+,s−,z+,z− ‖x2‖22
s. t. x+

3 − x−
3 + A1x1 + A2x2 = b, x+

3 , x−
3 ≥ 0

AT
2 (e − s+) = 0, e − s+ = −e + s−, s+, s− ≥ 0

x+
3 ≤ 5 ‖b‖∞ z+, s+ ≤ 2(e − z+)

x−
3 ≤ 5 ‖b‖∞ z−, s− ≤ 2(e − z−)

z+, z− ∈ {0, 1}m,

(13)
where 5‖b‖∞ is the upper bound on both x+

3 and x−
3 from Sect. 2.2.

We compare our algorithm with CPLEX on the Small-IVQR, the Medium-IVQR,
and the Large-IVQR instances. For the comparison, the per-instance time limit is set
to 900s (15min) for both algorithms on the Small-IVQR instances, 1800s (30min)
on the Medium-IVQR instances, and 7200s (2h) on the Large-IVQR instances. If
the time limit is reached for either algorithm on any instance, the algorithm will
return its current best GUB. We use the same tolerances as those in Sect. 4.2 for our
algorithm, and we use the default tolerances for CPLEX. For a fair comparison, we
also introduce the upper bounds x+

3 ≤ 5 ‖b‖∞ e and x−
3 ≤ 5 ‖b‖∞ e into formulation

(9) and its relaxations within our algorithm. However, note that our algorithm does not
technically require the derived upper bounds. Similar to the comparisonwith Couenne,
we employ the best-bound search for our algorithm on the Small-IVQR instances and
the bi-priority search on the Medium-IVQR and Large-IVQR instances.

Figure 4 shows the computational comparison of the two algorithms on the 500
Small-IVQR instances. Our algorithm outperforms CPLEX on 343 instances whereas
it performs worse than CPLEX on the remaining 157. In addition, both algorithms
report optimality for all 500 instances.

Figure 5 shows that the computational results of both the B&B algorithm and
CPLEX on 300 Medium-IVQR instances. Specifically, our B&B algorithm reports
optimality on all 300 instances. However, CPLEX returns optimal values only for 159
instances out of 300, exceeds the time limit on 138 instances, and has numerical issues
on the remaining 3 instances. In addition, our algorithm outperforms CPLEX on 278
instances out of the 297 instanceswhere both algorithms did not have numerical issues.
Our algorithm only performs worse on the remaining 19 instances.

Figure 6 shows the comparison results of both B&B algorithm and CPLEX on the
100 Large-IVQR instances. Specifically, our B&B algorithm reports optimality on
all 100 instances. However, CPLEX reports optimality only on 17 instances, exceeds
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Fig. 4 Comparison of the computation time (in seconds) between our B&B algorithm and CPLEX on 500
Small-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x . An asterisk
represents an instance for which both algorithms report optimality
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Fig. 5 Comparison of the computation time (in seconds) between our B&B algorithm and CPLEX on the
300 Medium-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x . An
asterisk represents an instance where both algorithms reported optimality; a square represents an instance
where CPLEX exceeded the time limit; a circle in the figure represents an instance where CPLEX had
numerical issues

123



A branch-and-bound algorithm for instrumental variable… 491

QPBB (sec)
10 0 10 1 10 2 10 3 10 4

C
PL

EX
(s

ec
)

10 0

10 1

10 2

10 3

10 4

Fig. 6 Comparison of the computation time (in seconds) between our B&B algorithm and CPLEX on the
100 Large-IVQR instances. The x- and y-axes are log scales, and the diagonal line defines y = x . An
asterisk represents an instance where both algorithms reported optimality; a square represents an instance
where CPLEX exceeded the time limit; a circle represents an instance where CPLEX had numerical issues

the time limit of 7200s on 82 instances and has numerical issues on the remaining 1
instance. Furthermore, our B&B algorithm outperforms CPLEX on 96 instances out
of the 100.

Note that imposing the asymptotic bound, 5‖b‖∞, does not cut off all optimal solu-
tions for any Small-IVQR,Medium-IVQR, or Large-IVQR instances, which indicates
that the bound works effectively in practice. As mentioned, our B&B does not tech-
nically require the asymptotic bound.

4.3.1 Sensitivity analysis of the big-M approach

It is well-known that mixed-integer programming is sensitive to larger values of the
big-M . So we investigate the impact of this parameter on the computational times of
both QPBB and CPLEX.

Our experiment proceeds as follows. We first apply our algorithm on formulation
(9) with no upper bounds on x+

3 and x−
3 and obtain optimal vectors (x+

3 )∗ and (x−
3 )∗.

We then set M := max{|(x+
3 )∗|, |(x−

3 )∗|} and separately provide the pre-specified
upper bounds M , 2M , 5M , and 10M to (9) for the variables x+

3 and x−
3 . We then

test our algorithm against CPLEX on each of the four cases on 100 Small-IVQR
instances, and Fig. 7 displays the results. The overall trend is that QPBB performs
better than CPLEX as the bounds M , 2M , 5M , and 10M increase. Furthermore, the
computation time for each instance tends to increase as the bounds increase. Finally,
note that CPLEXperforms slightly worse thanQPBB ifM is chosen exactly. However,
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Fig. 7 Comparison of the computation times (in seconds) between our B&B algorithm and CPLEX with
four pre-specified upper bounds of x+

3 and x−
3 on 100 Small-IVQR instances. The x- and y-axes are log

scales, and the diagonal line defines y = x . An asterisk represents an instance where both algorithms
reported optimality. a The pre-specified value of M . b The pre-specified value of 2M . c The pre-specified
value of 5M . d The pre-specified value of 10M

CPLEX is more sensitive to the value of big-M and becomes even worse with bigger
upper bounds. Of course, it is not a trivial task for CPLEX to find the true M .

We also investigate the impact of the pre-specified upper bounds on the number
of nodes in the B&B tree solved by QPBB. Figure 8 shows box plots for the number
of nodes on the four pre-specified upper bounds as well as no pre-specified upper
bound. As shown in Fig. 8, there is a clear upward trend in the number of nodes solved
increases as the bound increases.

4.4 Additional experiments

To improve the performance of our algorithm, we developed a variety of variants.
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Fig. 8 Illustration of the number of nodes solved by our B&B algorithm on the 100 Small-IVQR instances
with the four pre-specified upper bounds as well as no pre-specified upper bound. The y-axis shows the
number of nodes solved by QPBB. Inf denotes that no upper bound is forced for x+

3 and x−
3

In terms of branching rules, we also tried strong-branching and pseudo-cost
branching rules in addition to themaximum-violation rule. It turned out themaximum-
violation branching rule performs the best among these rules. This is potentially due to
the fact that the optimal values of the IVQR problems in (9) are typically very close to
0, as mentioned above. Generally speaking, there is no improvement on the LBs at the
earlier levels of the tree since almost every branching variable returns a relaxation with
optimal value v = 0. Thus, the extra computation does not return useful information.
Similar observations are true for the pseudo-cost branching rule.

For node selection rules, we tried depth-first search and breadth-first search rules
besides the two strategies we tested in Sect. 4. Results indicated that the best-bound
search and bi-priority search strategies performed best.

5 Conclusions

In this paper,we have studied a problemarising in statistics called instrumental variable
quantile regression (IVQR) and proposed a CQPCC formulation. We have introduced
a relaxation scheme, which we then incorporated into a CQP-based B&B algorithm
to solve the IVQR problem. We have tested our algorithm on three types of randomly
generated instances against two well-known global solvers, Couenne and CPLEX.
The computational results show that our B&B algorithm solves IVQR efficiently and
robustly.
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We have chosen to use the 2-norm of x2 as the objective function for the IVQR
problem becausewe understand from the IVQR literature that the 2-normmay bemore
amenable to analysis of the statistical properties of the errors in IVQR. However, in
principle, one could use a different norm (e.g., the 1-norm or ∞-norm) to formulate
the objective. This would lead to LP subproblems in the B&B algorithm, which could
be an interesting direction for future research. Furthermore, as the main goal of IVQR
problem is to minimize the norm of the estimate of instrumental variable, we have not
investigated the tradeoff between this norm and the model’s final estimate error. This
could also be interesting for future research.
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Appendix A Proof of Lemma 1

Proof Since Ax∗ + ε = b, we have from the triangle inequality that ‖ε‖∞ ≤ ‖b‖∞ +
‖Ax∗‖∞ and ‖Ax∗‖∞ ≤ ‖b‖∞ + ‖ε‖∞. So the event ‖ε‖∞ > C‖b‖∞ implies

‖ε‖∞ > C‖b‖∞ ≥ C(‖ε‖∞ − ‖Ax∗‖∞) = C‖ε‖∞ − C‖Ax∗‖∞

and

‖ε‖∞ > C‖b‖∞ ≥ C(‖Ax∗‖∞ − ‖ε‖∞) = C‖Ax∗‖∞ − C‖ε‖∞,

which together imply

C

C + 1
<

‖ε‖∞
‖Ax∗‖∞

<
C

C − 1
.

This proves the first bound. To prove the second, we note that, by definition,

‖ε‖∞ > C‖b‖∞ ⇐⇒ m
max
i=1

|εi | > C
m

max
k=1

∣∣∣aTk x∗ + εk

∣∣∣ ,

and so ‖ε‖∞ > C‖b‖∞ implies that |εi | > C maxmk=1 |aTk x∗ + εk | holds for at least
one specific i . Hence,

P (‖ε‖∞ > C‖b‖∞) ≤
m∑
i=1

P

(
|εi | > C

m
max
k=1

∣∣∣aTk x∗ + εk

∣∣∣
)

≤ m
m

max
i=1

P

(
|εi | > C max

k

∣∣∣aTk x∗ + εk

∣∣∣
)

. (14)
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Next, we claim |aTk x∗ + εk | ≥ |εk | · 1{εkaTk x∗ ≥ 0} for each k. If εkaTk x
∗ < 0, this

is certainly true. Otherwise, if εkaTk x
∗ ≥ 0, then εk and aTk x

∗ have the same (possibly
zero) signs and hence |aTk x∗ + εk | ≥ |εk |. Thus,

|εi | > C
m

max
k=1

∣∣∣aTk x∗ + εk

∣∣∣ �⇒ |εi | > C
m

max
k=1

{
|εk | · 1

{
εka

T
k x

∗ ≥ 0
}}

and so

P

(
|εi | > C

m
max
k=1

∣∣∣aTk x∗ + εk

∣∣∣
)

≤ P

(
|εi | > C

m
max
k=1

{
|εk | · 1

{
εka

T
k x

∗ ≥ 0
}})

.

(15)
Combining inequalities (14) and (15), we achieve the second bound. �


Appendix B Proof of Lemma 2

Proof The first two-sided inequality is a standard fact about the normal distribution.
For the last inequality, we have

P

(
max
1≤p≤q

Z p ≤ θσ

)
= �

q
p=1P(Z p ≤ θσ ) = (1 − P(Z > θσ))q .

By the first part of the lemma and the standard fact that 0 < x < 1 and a > 0 imply
(1 − x)a ≤ exp(−ax),

(1 − P(Z > θσ))q ≤
(
1 − 1

2θ
· ε(θ)

)q

≤ exp
(
− q

2θ
· ε(θ)

)
.

Now substituting the definition of ε(θ) and θ = √
log(q), we see

exp
(
− q

2θ
· ε(θ)

)
= exp

(
− q

2θ
· 1√

2π
exp(− log(q)/2)

)

= exp

(
− q

2θ
· 1√

2π
q−1/2

)

= exp

(
−

√
q

2
√
log(q)

· 1√
2π

)

≤ exp
(
−q1/4

)
,

where the last inequality follows from the assumption that q/(8π log(q)) ≥ √
q . This

proves the result. �
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