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Abstract Let F be a quadratically constrained, possibly nonconvex, bounded set,
and let E1, . . . , El denote ellipsoids contained in F with non-intersecting interiors.
We prove that minimizing an arbitrary quadratic q(·) over G := F\ ∪�

k=1 int(Ek)
is no more difficult than minimizing q(·) over F in the following sense: if a given
semidefinite-programming (SDP) relaxation for min{q(x) : x ∈ F} is tight, then the
addition of l linear constraints derived from E1, . . . , El yields a tight SDP relaxation
for min{q(x) : x ∈ G}. We also prove that the convex hull of {(x, xxT ) : x ∈ G}
equals the intersection of the convex hull of {(x, xxT ) : x ∈ F} with the same l linear
constraints. Inspired by these results, we resolve a related question in a seemingly
unrelated area, mixed-integer nonconvex quadratic programming.
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542 B. Yang et al.

Fig. 1 The unit disk with three
non-intersecting hollows (an
“alien face”)

1 Introduction

Let

F :=
{
x ∈ R

n : xT Ai x + 2aTi x + αi ≤ 0 (i = 1, . . . ,m)
}

denote a bounded, full-dimensional, quadratically constrained set in R
n , which may

in general be nonconvex. Also, let Ek := {x ∈ R
n : xT Wkx + 2wT

k x + ωk ≤ 0}, for
k = 1, . . . , l, denote full-dimensional ellipsoids, each specified by a positive definite
symmetric matrix Wk ∈ �n×n , vector wk ∈ �n and scalar ωk ∈ R. If each Ek ⊆ F
and the interiors of no two ellipsoids intersect, we say that the set

H :=
{
x ∈ R

n : xT Wkx + 2wT
k x + ωk ≥ 0 (k = 1, . . . , l)

}

induces non-intersecting hollows in F . Geometrically, the set G := F ∩H results by
deleting l disjoint, open ellipsoids from F . See Figs. 1 and 2 for examples.

In this note, we study the relationship between the two optimization problems

v(q,F) := min{q(x) : x ∈ F}
v(q,G) := min{q(x) : x ∈ G}

where q(x) := xT Qx + 2cT x is a general, possibly nonconvex quadratic.
Optimizing q(·) over G certainly cannot be easier than optimizing q(·) over F , and

at least in some cases appears to be more difficult; for example, G is nonconvex even
when F is convex. On the other hand, there are reasons to suspect that the complexity
of optimizing q(·) over G should be closely related to that of optimizing q(·) over F .
To optimize over G, one can first optimize over F . If the resulting optimal x∗ is in G,
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Quadratic programs with hollows 543

Fig. 2 An ellipsoid cut by two parallel planes with non-intersecting hollows (a “Swiss cheese wheel”). A
slice is removed only to depict the hollows inside

then clearly x∗ is optimal over G. On the other hand, if x∗ /∈ G, then becauseH induces
non-intersecting hollows in F , x∗ must lie in the interior of F within exactly one of
the deleted ellipsoids. It then follows that q(·) must be convex and that the global
minimum over G is found on the boundary of that deleted ellipsoid, in which case the
global minimum can be found by solving an instance of the equality-constrained trust-
region subproblem [10]. Our note formalizes this intuition by studying semidefinite
relaxations and reformulations of v(q,F) and v(q,G).

The most basic semidefinite-programming (SDP) relaxation of the setF is the Shor
relaxation:

S(F) :=
{
(x, X) : Ai • X + 2aTi x + αi ≤ 0 (i = 1, . . . ,m)

Y (x, X) 
 0

}

where

Y (x, X) :=
(
1 xT

x X

)

is an (n + 1) × (n + 1) symmetric matrix.1 Note that S(F) may be an unbounded set
even when F is bounded. On the other hand, the tightest convex relaxation of F in
the space of variables (x, X) is the convex hull

C(F) := conv
{
(x, xxT ) : x ∈ F

}

which is compact becauseF is. Clearly C(F) ⊆ S(F), and we call any closed, convex
setR(F) a valid SDP relaxation of F if C(F) ⊆ R(F) ⊆ S(F).2 In particular, both

1 More formally, projx (S(F)) is a relaxation ofF , where projx (·)denotes projection onto the x coordinates.
We ignore this distinction between S(F) and projx (S(F)) to reduce notation.
2 To be usable in practice, a valid SDP relaxationR(F) should have a known positive semidefinite (PSD)
representation [16, Section 6.4]. However, it is convenient in this note to considerR(F) to be a valid SDP
relaxation regardless of whether or not an explicit PSD representation for R(F) is known. We also apply
this terminology to C(F), which in fact may not have an explicit PSD representation—although the PSD
constraint is always valid for C(F).
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544 B. Yang et al.

C(F) andS(F) are valid SDP relaxations ofF . Furthermore, any valid SDP relaxation
R(F) of F gives rise to a relaxation of v(q,F),

v(q,R(F)) := min{Q • X + 2cT x : (x, X) ∈ R(F)}

such that v(q,F) ≥ v(q, C(F)) ≥ v(q,R(F)) ≥ v(q,S(F)). In fact, the first
inequality is tight. (See also [23] for an alternative proof.)

Proposition 1 The equality v(q,F) = v(q, C(F)) holds for all quadratic functions
q(·).
Proof Wehave v(q, C(F)) ≤ v(q,F) by construction. To show the reverse inequality,
note that because C(F) is convex and the objective Q•X+2cT x is linear, a solution of
the problem defining v(q, C(F))must occur at an extreme point of C(F). However all
extreme points of C(F) are of the form (x, xxT ), x ∈ F . It follows that v(q, C(F)) =
Q • xxT + 2cT x = q(x) for some x ∈ F , and therefore v(q,F) ≤ v(q, C(F)). ��
With respect to G, we also define S(G), C(G), and R(G) similarly. Specifically, the
Shor relaxation is

S(G) :=
⎧⎨
⎩(x, X) :

Ai • X + 2aTi x + αi ≤ 0 (i = 1, . . . ,m)

Wk • X + 2wT
k x + ωk ≥ 0 (k = 1, . . . , l)

Y (x, X) 
 0

⎫⎬
⎭

and we also write S(G) = S(F) ∩ L(H), where

L(H) :=
{
(x, X) : Wk • X + 2wT

k x + ωk ≥ 0 (k = 1, . . . , l)
}

.

We prove two main results. First, we show that for a valid SDP relaxation R(F),
if the SDP optimal value v(q,R(F)) equals the original optimal value v(q,F), then
defining R(G) := R(F) ∩ L(H), the relaxed value v(q,R(G)) equals v(q,G); see
Theorem 1. In words, if an SDP relaxation has no gap overF , then the SDP relaxation
obtained by simply adding the l linear constraints Wk • X + 2wT

k x + ωk ≥ 0 also has
no gap over G. Second, we establish that the convex hulls C(F) and C(G) are related
according to the equation C(G) = C(F) ∩ L(H); see Corollary 1. That is, the same
linear constraints Wk • X + 2wT

k x + ωk ≥ 0 are precisely what is required to capture
C(G) from C(F).

We provide two proofs of Corollary 1. The first proof depends on a third result
proved in this note, which provides an alternative characterization of C(F) and has, to
our knowledge, not appeared in the literature. The second proof, in contrast, connects
better with existing proof techniques for studying convex hulls such as C(F). Section 3
provides counterexamples showing the necessity of the assumptions that each Ek ⊆ F
and that the interiors of {Ek} are non-intersecting.

Our results are related to a number of prior works concerning the tightness of SDP
relaxations. It iswell known that the Shor relaxation is tight in the convex programming
case, corresponding to Ai 
 0, i = 1, . . .m and Q 
 0. A classical nonconvex
problem with a tight Shor relaxation is the trust-region subproblem (TRS) [10,14,19],
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Quadratic programs with hollows 545

whose feasible set is the unit ball with arbitrary q(·). The generalized trust-region
subproblem [21] removes a concentric ball from the feasible set of TRS and yet still
has a tight Shor relaxation obtained by adding a single linear constraint to the SDP
relaxation of TRS [18,24]. Other extensions to TRS are also known to have tight SDP
relaxations, sometimes with additional valid inequalities added to the Shor relaxation:
TRSwith a single linear cut [7,22]; TRSwithmultiple, non-intersecting linear cuts [9];
TRS with a homogeneous quadratic objective and an additional concentric, ellipsoidal
constraint [24]; TRS with an additional ellipsoidal constraint and satisfying various
conditions on the quadratic function and/or at local minimizers [2,13]; and TRS with
a general quadratic constraint in place of the unit ball constraint [15]. Many, but not
all, of these results are based on characterizing the convex hull C(F) for the various
feasible sets F under consideration. Characterizing C(F) has also been studied for
some low-dimensional polyhedral F , e.g. triangles and convex quadrilaterals in R

2

and tetrahedra in R
3 [1,6]. Other authors have considered valid cuts of the form

‖x − c‖2 ≥ r for mixed-integer nonlinear programs [11] and valid linear cuts for the
optimization of a convex quadratic over the deletion of an ellipsoid [4].

Our results may be applied uniformly to most of the above problems. For example,
since TRS with non-intersecting linear cuts has a bounded feasible region and a tight
SDP relaxation [9], our result implies that TRS with non-intersecting linear cuts and
hollows also enjoys a tight SDP relaxation.

We note here that the non-intersecting assumption can be checked by solving lm +
l(l + 1)/2 trust-region subproblems. For each hollow Ek, Ek ⊆ F if and only if

max
{
xT Ai x + 2aTi x + αi : xT Wkx + 2wT

k x + ωk ≤ 0
}

≤ 0

for all i = 1, . . . ,m. For any two hollows E j and Ek , the interiors of E j and Ek do not
intersect if and only if

min
{
xT W j x + 2wT

j x + ω j : xT Wkx + 2wT
k x + ωk ≤ 0

}
≥ 0.

As an addendum to the results of Sect. 2, we consider and resolve in Sect. 4 an open
question in the area of mixed-integer quadratic nonconvex programming, namely to
characterize the closure of conv{(x, xxT ) : x ∈ R

n, x1 ∈ Z}. This convex hull is
closely related to optimizing a general multi-variate quadratic function with a single
integer variable. Although the results of Sect. 2 are not directly applicable, we discuss
how the results inspire a conjecture for the convex hull, which we then prove directly.

2 Exact representations with hollows

In this section, we present the main results of the note. The first theorem proves that
a tight SDP relaxation of v(q,F) gives rise to a tight relaxation of v(q,G).

Theorem 1 Let R(F) be a valid SDP relaxation of F , and let q(·) be given.
If v(q,R(F)) = v(q,F) and H induces non-intersecting hollows in F , then
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R(G) := R(F) ∩ L(H) is a valid SDP relaxation of G := F ∩ H and v(q,R(G))

= v(q,G).

Proof By construction, it is clear thatR(G) is a valid SDP relaxation of G. Since q(·)
is fixed in this proof, we write v(·) := v(q, ·) for simplicity. Clearly v(G) ≥ v(R(G))

sinceR(G) is a valid relaxation of G. So it remains to prove the reverse inequality.
If v(F) is attained at some x∗ ∈ bd(F), then because H induces non-intersecting

hollows in F , we have x∗ ∈ G. Hence

v(G) ≤ q(x∗) = v(F) = v(R(F)) ≤ v(R(G))

as desired. So assume v(F) is attained only at some x∗ ∈ int(F). Then Q � 0, and x∗
is the unique global minimum of q(·) overRn . If x∗ ∈ G also, then a similar argument
as above shows v(G) ≤ v(R(G)). On the other hand, if x∗ /∈ G, then x∗ ∈ int(Ek) for
some k, in which case Q � 0 implies that v(G) is attained on bd(Ek). Hence,

v(G) = min{q(x) : x ∈ bd(Ek)}
= min{q(x) : xT Wkx + 2wT

k x + ωk = 0}
= min{q(x) : xT Wkx + 2wT

k x + ωk ≥ 0}
= min{Q • X + 2cT x : Wk • X + 2wT

k x + ωk ≥ 0, Y (x, X) 
 0}
≤ v(R(G))

where the third equality comes from Q � 0, the fourth equality comes from the fact
that the Shor relaxation with one linear constraint is exact (when it is feasible and its
optimal value is attained, which occurs in this case because the dual SDP is interior
feasible since Q � 0) [17], and the inequality comes from the fact that R(G) is a
tightening of the preceding feasible set. ��

Our next theorem establishes a relationship between tight SDP relaxations and the
convex hull C(F). It requires a classical separation result for nonempty closed convex
sets.

Lemma 1 (cf. [12]) Let K ⊆ R
p be a nonempty, closed, and convex set, and suppose

z /∈ K. Then there exists s ∈ R
p such that sT z > sup{sT y : y ∈ K }.

Lemma 1 can also be stated in minimization form as follows: there exists t ∈ R
p such

that t T z < inf{t T y : y ∈ K } [12, Section 4.1]. More generalized results can also be
found in [20, Section 11].

Theorem 2 Let R(F) be a valid SDP relaxation of F . The equality v(q,F) =
v(q,R(F)) holds for all quadratic functions q(·) if and only if R(F) = C(F).

Proof The if direction follows by Proposition 1. To prove the contrapositive of the only
if direction, first recall thatR(F) ⊇ C(F). If there exists (x̄, X̄) ∈ R(F)\C(F), then
the minimization form of Lemma 1 implies the existence of (Q̄, c̄) and corresponding
q̄(x) = xT Q̄x + 2c̄T x such that
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Quadratic programs with hollows 547

v(q̄,R(F)) ≤ Q̄ • X̄ + 2c̄T x̄ < v(q̄, C(F)) = v(q̄,F).

��
An interesting application of Theorem 2 occurs in [9], where it is shown that

R(F) = C(F) for a certain SDP relaxationR(F)whenF corresponds to theTRSwith
additional nonintersecting linear constraints. This result is partially extended to the
case where linear constraints are allowed to intersect on the boundary of the unit ball
definingTRS in [9, Section 5],where it is argued that v(q,F) = v(q,R(F)) continues
to hold for any q(·). Applying Theorem 2, it follows that in fact R(F) = C(F) must
also hold when the linear constraints are permitted to intersect on the boundary of the
unit ball.

As a corollary of Theorems 1 and 2, we now state our second main result of the
note, which gives a description of the convex hull C(G) in terms of C(F) and L(H).

Corollary 1 IfH induces non-intersecting hollows inF , then C(G) = C(F)∩L(H).

Proof Applying Theorem 1 with R(F) = C(F) and R(G) = C(F) ∩ L(H), we see
that v(q,R(G)) = v(q,G) for any q(·). Then Theorem 2 implies R(G) = C(G). ��

We finally provide an alternative proof of Corollary 1, which connects better with
existing proof techniques involving sets such as C(F) and C(G).

Proof We first prove the corollary for l = 1. The containment C(G) ⊆ C(F) ∩ L(H)

is easy because G ⊆ F and C(G) ⊆ L(H). For the reverse containment, let (x, X) be
an extreme point of C(F) ∩L(H). IfW1 • X + 2wT

1 x + ω1 > 0, then (x, X) is in fact
an extreme point of C(F), and so X = xxT . It follows that (x, X) ∈ C(G). So assume
W1 • X + 2wT

1 x + ω1 = 0, and consider the following lemma [22]:

Let V be a symmetric matrix, and suppose Y 
 0 with V •Y = 0 and rank(Y ) =
s. Then there exists a rank-1 decomposition Y = ∑s

p=1 y
p(y p)T such that, for

all p, it holds that y p �= 0 and (y p)T V y p = 0.

We apply this lemma with

V :=
(

ω1 wT
1

w1 W1

)
∈ R

(n+1)×(n+1)

and Y := Y (x, X), in which case

(
1 xT

x X

)
= Y =

s∑
p=1

(y p)(y p)T =
s∑

p=1

(
x p
0

x p

)(
x p
0

x p

)T

with each y p �= 0, (y p)T V y p = 0, x p
0 ∈ R and x p ∈ R

n . Suppose some x p
0 = 0.

Then (x p)T W1x p = 0, which would imply x p = 0 because W1 � 0, a contradic-
tion. Hence, in fact each x p

0 �= 0. Then defining x̄ p := x p/x p
0 , we have the convex

combination
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(
1 xT

x X

)
=

s∑
p=1

(x p
0 )2

(
1

x̄ p

)(
1

x̄ p

)T

where each x̄ p ∈ bd(E1) = bd(H) ⊆ G. It follows that (x, X) ∈ C(G).
The result for general l > 1 can be obtained by induction on l. Consider

Fl := F ∩
{
x ∈ R

n : xT Wkx + 2wT
k x + ωk ≥ 0 (k = 1, . . . , l − 1)

}
,

and

Hl :=
{
x ∈ R

n : xT Wl x + 2wT
l x + ωl ≥ 0

}
.

With the non-intersecting assumption, Hl induces a non-intersecting hollow in Fl ,
which completes the proof. ��

We close this section with an observation concerning conditions that guarantee
that our various SDP relaxations satisfy strong duality, not just enjoy a zero duality
gap. By assumption, F is full-dimensional, and except for pathological cases (such
as when F and H are given by xT x ≤ 1 and xT x ≥ 1, respectively) G = F ∩ H
will be full-dimensional as well. In this case, one can prove that both C(F) and C(G)

are full-dimensional in the space (x, X). Hence, strong duality holds for any SDP
relaxation based on R(F) or R(G) in the sense that the primal and dual SDP values
equal one another and the dual value is attained. Another variation of strong duality
occurs when the dual feasible set contains an interior point, in which case the SDP
values are equal and the primal attains its optimal value. Becausewe have assumed that
F is bounded, this can happen, for example, when a redundant constraint xT x ≤ μ is
added to F , which in turn translates into a primal constraint trace(X) ≤ μ, which in
turn guarantees that the dual SDP has an interior feasible solution.

3 Counterexamples

Theorem1assumes thatH induces non-intersectinghollows inF , i.e. that eachEk ⊆ F
and all E1, . . . , El have disjoint interiors. We now provide two examples showing that
both conditions are necessary for Theorem 1, and hence also for Corollary 1.

Counterexample 1 Let F := {x ∈ R
2 : x21 + x22 ≤ 1} be the unit ball, and define

q(x) := 4x21 − (x2 + 0.5)2. Because of the simplicity of the quadratics involved, it
is straightforward to compute v(q,F) = −2.25 with optimal solution x = (0, 1).
Moreover, the SDP relaxation over S(F) is tight with v(q,S(F)) = −2.25.

Now letH := {x ∈ R
2 : 2x21 +(x2−0.4)2 ≥ 0.9}, and define G := F∩H, which is

depicted in Fig. 3. Note that the corresponding ellipsoid defined by 2x21+(x2−0.4)2 ≤
0.9 crosses the boundary of F . It is not difficult to check that v(q,G) = −0.25 with
optimal solution (0,−1). However, the SDP relaxation over S(F)∩L(H) has optimal
value −1.575, which shows that Theorem 1 does not hold.
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Fig. 3 The feasible region G of
Counterexample 1

Fig. 4 The feasible region G of
Counterexample 2

It is worthwhile to note that counterexamples similar to Counterexample 1 can also
be constructed for the case when an excluded ellipsoid crosses the linear portion of the
boundary of a feasible set of problem TRS with an added linear inequality constraint,
as discussed at the end of Sect. 1, e.g. for the set {x ∈ R

2 : x21 + x22 ≤ 1, x2 ≤ 0.5}.
Counterexample 2 LetF := {x ∈ R

2 : x21 +x22 ≤ 4}, and define q(x) := 2x21 +(x2−
0.1)2, which is strictly convex. One can verify that v(q,F) = 0 with optimal solution
x = (0, 0.1). Moreover, the Shor relaxation S(F) is tight with v(q,S(F)) = 0.

Now letH := {x ∈ R
2 : x21+x22 ≥ 1, x21+(x2−1)2 ≥ 0.5}, and defineG := F∩H,

which is depicted in Fig. 4. Clearly the two ellipsoids defining H have a nontrivial
intersection. The quadratic optimal value is v(q,G) = 1.21 with solution (0,−1),
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but the SDP relaxation over S(F) ∩ L(H) has optimal value 0.86, which shows that
Theorem 1 does not hold.

We remark that Counterexample 2 is written to show that Theorem 1 may fail when
two excluded ellipsoids have a nontrivial intersection, but it can also be interpreted as
an example where a single excluded ellipsoid intersects the boundary of a nonconvex
set F for which S(F) = C(F). For this second interpretation we can start with
F := {x ∈ R

2 : 1 ≤ x21 + x22 ≤ 4}, corresponding to a generalized TRS for which the
Shor relaxation S(F) remains tight, and let H := {x ∈ R

2 : x21 + (x2 − 1)2 ≥ 0.5}.

4 Resolving an open question in mixed-integer nonconvex quadratic
programming

Burer and Letchford [8] studied optimization problems of the form

inf{q(x) : Ax = b, x ∈ Z
n1 × R

n2},
inf{q(x) : Ax = b, x ∈ Z

n1+ × R
n2+ },

where the overall dimension of x is n := n1 + n2. They showed that solving such
problems is closely related to characterizing the closed convex hulls

MIQn1,n2 := conv{(x, xxT ) : x ∈ Z
n1 × R

n2},
MIQ+

n1,n2 := conv{(x, xxT ) : x ∈ Z
n1+ × R

n2+ },

and the authors introduced several classes of valid inequalities. Note that any inequality
valid for the unconstrained case MIQn1,n2 is automatically valid for the nonnegative
case MIQ+

n1,n2 .
For the case when there are no integer variables,

MIQ0,n = {(x, X) : Y (x, X) 
 0},
MIQ+

0,n = {(x, X) : Y (x, X) is completely positive},

where completely positive means that Y (x, X) has a Gram factorization in which the
factor is component-wise nonnegative; see [3]. Moreover, for the case of a single
variable, which is integer, Burer and Letchford showed that

MIQ1,0 = {(x1, X11) : X11 − (2 j − 1)x1 + j ( j − 1) ≥ 0 ∀ j ∈ Z},
MIQ+

1,0 = {(x1, X11) : X11 − (2 j − 1)x1 + j ( j − 1) ≥ 0 ∀ j ∈ Z, x1 ≥ 0}.

The validity of the constraints X11 − (2 j − 1)x1 + j ( j − 1) ≥ 0 can be seen by
linearizing the following single-variable splits, which are valid for x1 ∈ Z:

x1 ≤ j − 1 ∨ x1 ≥ j ⇐⇒ (x1 − ( j − 1))(x1 − j) ≥ 0.
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Fig. 5 Hollows to approximate the mixed-integer convex hull MIQ1,1

Finally, the authors proved that two-variable splits captureMIQ2,0, and later Buchheim
and Traversi [5] gave a simplified proof. However, the same two-variable splits are not
enough to capture MIQ+

2,0. The mixed two-variable cases MIQ1,1 and MIQ+
1,1 were

left open in [8].
For the open case MIQ1,1 of one integer variable and one continuous variable, it is

possible to approximate MIQ1,1 using the results of Sect. 2. Consider Fig. 5, which
depicts one portion of the plane R

2 with two sets of non-intersecting hollows—the
smaller, blue discs and the larger, elongated, orange ellipsoids. Note that the both sets
of hollows remove points in R2 for which x1 is fractional, and the second set removes
a larger portion than the first. By elongating the hollows even further, one can imagine
approximating Z × R better and better. Moreover, in the limit, the non-intersecting
ellipsoids will precisely enforce the one-variable splits x1 ≤ j − 1 ∨ x1 ≥ j for all
j ∈ Z.
Using this logic associated with Fig. 5, we conjecture that MIQ1,1 is completely

characterized by Y (x, X) 
 0 and the one-variable splits. However, the results of
Sect. 2 are not directly applicable primarily due to the unboundedness of Z × R.
While we believe a proof based on Sect. 2 should be possible, we have instead opted
to prove the generalization of this conjecture to arbitrary n2 using a direct approach
that closely mimics the alternate proof of Corollary 1 presented in Sect. 2.

Lemma 2 Let x1 ∈ R and define μ := inf j∈Z(x1 − j)(x1 − ( j − 1)). Then μ is
attained, and if μ is attained at two distinct values of j , then x1 ∈ Z.
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Proof The optimal value μ is attained because (x1 − j)(x1 − ( j − 1)) is a convex
quadratic in j . Next, completing the square implies that the unconstrainedminimumof

(x1 − j)(x1 − ( j − 1)) = x21 − (2 j − 1)x1 + j ( j − 1)

= (
j − (

x1 + 1
2

))2 +
[
x21 − (

x1 + 1
2

)2]
(1)

occurs at x1 + 1
2 . Hence, if μ is attained at two distinct values of j , say, j1 �= j2, then

geometrically, this ensures

1
2 ( j1 + j2) = x1 + 1

2 ⇒ 2x1 ∈ Z ⇒ x1 ∈ Z or x1 + 1
2 ∈ Z.

However, if x1 + 1
2 ∈ Z, then (1) implies that the unconstrained minimum occurs

at an integer, which geometrically implies a single unique minimum over j ∈ Z, a
contradiction. Hence x1 ∈ Z. ��
Theorem 3

MIQ1,n2 =
{
(x, X) : Y (x, X) 
 0

X11 − (2 j − 1)x1 + j ( j − 1) ≥ 0 ∀ j ∈ Z

}
.

Proof The containment ⊆ is clear. For the reverse containment, first let (x̄, X̄) be an
extreme ray of the right-hand side, which implies x̄ = 0 and X̄ 
 0. Since (0, X̄) is
extreme, X̄ must be rank-1. Hence, by Theorem 1 of [8], (x̄, X̄) is also an extreme ray
of MIQ1,n2 . Next, let (x̄, X̄) be an extreme point of the right-hand side, and note that
each linearized split can be expressed as

(X11 − x21 ) + (x1 − j)(x1 − ( j − 1)) ≥ 0.

Suppose that all splits are inactive at (x̄, X̄). Then, by Lemma 2, there exists ε > 0
such that

(
X̄11 − x̄21

)+ (x̄1 − j)(x̄1 − ( j −1)) ≥ ε for all j . Hence, (x̄, X̄) is extreme
for the set {(x, X) : Y (x, X) 
 0}, which implies X̄ = x̄ x̄ T . In particular, X̄11 = x̄21 ,

and hence (x̄1 − j)(x̄1 − ( j − 1)) ≥ ε for all j , which is however impossible. Thus,
at least one split is active at (x̄, X̄).

Suppose exactly one split is active. Using the results of [17] on the rank of extreme
points for semidefinite systems, (x̄, X̄) satisfies X̄ = x̄ x̄ T , and so X̄11 = x̄21 . All splits
then evaluate to (x̄1 − j)(x̄1 − ( j − 1)) ≥ 0, which implies x̄1 ∈ Z with two active
splits, a contradiction.

Finally, by Lemma 2, if two or more splits are active, then x1 ∈ Z, which implies
(x̄1− j)(x̄1− ( j −1)) ≥ 0 for all j . Hence either of the active splits implies X̄11 = x̄21
since X11 − x21 ≥ 0 by semidefiniteness of Y (x, X) 
 0. It is now clear that X̄ = x̄ x̄ T

because (x̄, X̄) is extreme and because the original variables x2, . . . , xn are free. Then
(x̄, X̄) is in the left-hand side convex hull MIQ1,n2 (before taking the closure). ��
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