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Abstract

It has recently been shown (Burer, 2009) that a large class of NP-hard nonconvex
quadratic programs (NQPs) can be modeled as so-called completely positive programs,
i.e., the minimization of a linear function over the convex cone of completely positive
matrices subject to linear constraints. Such convex programs are NP-hard in general.
A basic tractable relaxation is gotten by approximating the completely positive matri-
ces with doubly nonnegative matrices, i.e., matrices which are both nonnegative and
positive semidefinite, resulting in a doubly nonnegative program (DNP). Optimizing a
DNP, while polynomial, is expensive in practice for interior-point methods. In this pa-
per, we propose a practically efficient decomposition technique, which approximately
solves the DNPs while simultaneously producing lower bounds on the original NQP.
We illustrate the effectiveness of our approach for solving the basic relaxation of box-
constrained NQPs (BoxQPs) and the quadratic assignment problem. For one quadratic
assignment instance, a best-known lower bound is obtained. We also incorporate the
lower bounds within a branch-and-bound scheme for solving BoxQPs and the quadratic
multiple knapsack problem. In particular, to the best of our knowledge, the resulting
algorithm for globally solving BoxQPs is the most efficient to date.
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ming, decomposition
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1 Introduction

We study the following NP-hard nonconvex quadratic program having nonnegative and bi-

nary variables, linear equality constraints, and complementarity conditions:

min
x

xTQx+ 2 cTx (NQP)

s.t. Ax = b

x ≥ 0

xB ∈ {0, 1}|B|

[xxT ]E = 0,

where x ∈ <n is the decision vector and Q ∈ <n×n, c ∈ <n, A ∈ <m×n, b ∈ <m, B ⊆ [n],

and E ⊆ [n]2 are the data. In particular, the equation [xxT ]E = 0 encodes xixj = 0 for all

(i, j) ∈ E. Q is assumed symmetric but not positive semidefinite. While representing linear

constraints as equations over nonnegative variables is quite general (e.g., by splitting free

variables and adding slacks to inequalities), this form will be critical for our paper.

(NQP) models many interesting, difficult problems. For example, the box-constrained

nonconvex quadratic program (see Burer and Vandenbussche (2009) and references therein)

min
x

{
xTQx+ 2 cTx : x ∈ [0, 1]p

}
(BoxQP)

can be modeled by adding nonnegative slacks to the upper bounds x ≤ e (where e is the all-

ones vector), padding Q and c with zeros, and taking A = (I, I), b = e, B = ∅, and E = ∅. In

addition, the quadratic assignment problem (see Anstreicher (2003) and references therein)

min
X

{
trace(Q1XQ2X

T ) : X ∈ Πp

}
, (QAP)

where Πp is the set of p × p permutation matrices, can be modeled by taking x := vec(X),

Q := Q1⊗Q2, B = {1, . . . , p2}, and then constructing Ax = b to model the doubly stochastic

nature of X. In addition, (QAP) can be modeled with complementarities arising from the

combinatorial nature of permutation matrices, e.g., X11X12 = 0 and X11X21 = 0.

Extending the work of Bomze et al. (2000), de Klerk and Pasechnik (2002), Bomze and

de Klerk (2002), and Povh and Rendl (2009), Burer (2009) has recently shown that (NQP)
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is equivalent to the linear conic program

min
x,X,Y

C • Y (CPP)

s.t. Ax = b, diag(AXAT ) = b2 (1)

xB = diag(XBB) (2)

XE = 0 (3)

Y =

(
1 xT

x X

)
∈ K,

where C := (0, cT ; c,Q) and K :=
{
NNT : 0 ≤ N ∈ <(1+n)×q for some q

}
is the closed, con-

vex cone of (1+n)×(1+n) completely positive matrices. Formally, equivalence of (NQP) and

(CPP) relies on the equation Feas(CPP) = Conv
{

(1, xT ;x, xxT ) : x ∈ Feas(NQP)
}

, where

Feas(·) and Conv(·) indicate the feasible set and convex hull, respectively. The result ensures,

in particular, that both (NQP) and (CPP) have the same optimal value. It should be noted

that, although (CPP) is convex, it is still NP-hard. Specifically, the separation problem

for K is widely thought to have exponential or worse complexity (Murty and Kabadi, 1987;

Berman and Rothblum, 2006).

If Y ∈ K, then it necessarily holds that Y is doubly nonnegative, i.e., nonnegative (Y ≥ 0)

and positive semidefinite (Y � 0). Hence, replacing K in (CPP) by D := {Y : Y ≥ 0, Y � 0}
results in the relaxation

min
x,X,Y

{
C • Y : (1), (2), (3), Y =

(
1 xT

x X

)
∈ D

}
. (DNP)

In fact, an entire hierarchy of polyhedral-semidefinite relaxations is available; see Parrilo

(2000) and Bomze and de Klerk (2002). From the theory of interior-point methods (IPMs),

(DNP) can be solved in polynomial time to any fixed precision. However, in practice, IPMs

are limited to fairly small problem sizes as we demonstrate by example in the following

paragraph.

Consider the simple case of standard quadratic programming (Bomze et al., 2000), i.e.,

when m = 1, A = eT , b = 1, B = ∅, and E = ∅. We generated a random C for each of

n = 25, 50, 75, 100 and solved the four instances with SeDuMi (Sturm, 1999); the resulting

CPU times (in seconds) were 1, 30, 385, and 1787, respectively. Even for the basic case

of standard quadratic programming, the CPU times increase dramatically as n gets larger.

The reason for this performance is the constraint Y ∈ D, which causes the Newton system

in every iteration to be size O(n2 × n2).
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As an alternative to IPMs, one may consider any number of large-scale SDP methods

developed in recent years. We highlight here those large-scale methods that use decompo-

sition coupled with the augmented Lagrangian method. This trend began with the work

of Burer and Vandenbussche (2006a) for solving the lift-and-project polyhedral-semidefinite

relaxations and has continued in the works of Povh et al. (2006), Zhao et al. (2008), and

Wen et al. (2009) for more general SDPs.

In this paper, we introduce a specialized augmented-Lagrangian decomposition method

whose basic idea is to separate the constraints of (DNP) into two sets, namely Ax =

b, diag(AXAT ) = b2, Y � 0 and xB = diag(XBB), XE = 0, Y ≥ 0. We illustrate the perfor-

mance of our algorithm on instances of (BoxQP) and (QAP) and compare with the methods

of Burer and Vandenbussche (2006a) and Zhao et al. (2008).

An important feature of our method is that, at any stage of the computation, a quickly

computable, valid lower bound on the NP-hard problem is available. Valid lower bounds

are critical if one wishes to incorporate the relaxations in a branch-and-bound scheme for

globally solving (NQP).1 In this paper, we incorporate these bounds into branch-and-

bound algorithms for solving (BoxQP) and a class of binary NQPs having more general

constraints (specifically, quadratic multiple knapsack problems). We compare with Burer-

Vandenbussche, who also incorporated their method within in branch-and-bound for globally

optimizing several classes of continuous NQPs, including (BoxQP).

This paper is organized as follows. In Section 2, we introduce our decomposition method

and describe it in detail. We also briefly compare our method to that of Burer and Van-

denbussche (2006a). Sections 3 and 4 are then devoted to the performance of our algorithm

for solving (DNP) and solving (NQP) via branch-and-bound, respectively, with particular

emphasis on how our results compare to those of Burer-Vandenbussche and Zhao-Sun-Toh.

The main conclusions of the paper are:

(i) for (BoxQP), our method is about an order of magnitude faster than Burer-Vandenbussche

for solving the relaxation (DNP) and also for globally solving (NQP) via branch-and-

bound; thus, to the best of our knowledge, we obtain is a state-of-the-art method for

the global optimzation of (BoxQP);

(ii) for (QAP), our method solves the relaxation (DNP) about three times faster on average

than both Burer-Vandenbussche and Zhao-Sun-Toh; it also achieves a best known

global lower bound on a particular instance from QAPLIB;

1We remark that the method of Jansson et al. (2007/08) can be used to recover valid lower bounds from
any SDP method.
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(iii) for the quadratic multiple knapsack problem, our method with no particular enhance-

ments can globally solve reasonably sized instances of (NQP) in moderate amounts of

time;

(iv) overall, our method shows promise as a general purpose solver for the relaxation (DNP),

which in turn can be used effectively within branch-and-bound for globally solving

(NQP).

In Section 5, we close the paper with a few comments on a possible extension of our method.

1.1 Assumptions and definitions

We assume throughout the paper that the feasible set of (NQP) implies known (possibly

infinite) upper bounds x ≤ u. We also define U := (1, uT ;u, uuT ) so that the bounds Y ≤ U

are valid for (DNP). The method of Section 2 makes sense even if all uj = ∞, but finite

bounds, if known, can be used easily and effectively as will be done in Sections 3 and 4. We

will also find it helpful to define the following matrices:

M :=
(
b −A

)
, (4)

N := matrix whose columns form an orthonormal basis of Null(M). (5)

In particular, it holds that NTN = I. We do not specify the number of columns of N , i.e.,

the dimension of Null(M), but all matrix calculations carefully match dimensions.

Finally, recall that the size of Y is (1 +n)× (1 +n); we index the rows and columns of Y

by {0, 1, . . . , n}. Also, projection onto the positive semidefinite cone is denoted as proj�0(·);
similarly, projection onto an arbitrary convex set J is denoted projJ (·).

2 The Decomposition Method

In the following subsections, we examine the structure of the doubly nonnegative relaxation

(DNP) in detail and design our decomposition method to exploit this structure.

2.1 Additional properties of the doubly nonnegative program

We first establish some additional properties of (DNP).

Proposition 1. Suppose Y = (1, xT ;x,X) � 0, and let M be given by (4). Then the

following are equivalent: (i) Ax = b, diag(AXAT ) = b2; (ii) MYMT = 0; (iii) MY = 0.
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Proof. (i ) ⇒ (ii ): Let aTx = β be any row of Ax = b. We have

(
β −aT

)
Y

(
β

−a

)
= β2 − 2βaTx+ aTXa = β2 − 2β2 + β2 = 0.

Considering all rows of Ax = b, this shows that diag(MYMT ) = 0. Since MYMT � 0

because Y � 0, it follows that MYMT = 0.

(ii ) ⇒ (iii ): Let Y = V V T be a Gram representation of Y , which exists because Y � 0.

We have 0 = trace(MYMT ) = trace(MV V TMT ) = ‖MV ‖2F , and so MV = 0, which implies

MY = (MV )V T = 0.

(iii ) ⇒ (i ): Ax = b follows because

0 = MY•0 =
(
b −A

)(1

x

)
= b− Ax.

Also, letting aTx = β be any row of Ax = b, MY = 0 implies MYMT = 0, which in turn

implies

0 =
(
β −aT

)
Y

(
β

−a

)
= β2 − 2βaTx+ aTXa = aTXa− β2.

Taking all rows of Ax = b together, this is precisely diag(AXAT ) = b2.

For the solution of (DNP), the above proposition allows us to work instead with the

equivalent

min
x,X,Y

{
C • Y : MYMT = 0, (2), (3), Y =

(
1 xT

x X

)
∈ D

}
. (6)

This formulation will indeed be the basis of our decomposition in Section 2.3. At first sight,

this choice may seem counterintuitive because MYMT = 0 contains O(m2) constraints

instead of the original O(m) constraints, but its specific form will have advantages for the

decomposition.

2.2 Specialized cones and projections

Related to (6), we now introduce some technical definitions and procedures that we use in

the next subsection.

Given M from (4), define the following closed, convex cone:

J := {Z � 0 : MZMT = 0}. (7)
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J ∗ denotes the dual cone of J with respect to the trace inner product.

Lemma 1. J =
{
NPNT : P � 0

}
.

Proof. (⊇): Let P � 0, and define Z := NPNT . Then Z � 0 andMZMT = (MN)P (MN)T =

0. (⊆): Given Z ∈ J , let Z = V V T be a Gram representation of Z. Because MZMT = 0,

it holds that MV = 0, i.e., each column of V is in Null(M). Hence, given V , there exists

a (unique) W such that V = NW . Defining P := WW T � 0, we see that Z = NPNT , as

desired.

Proposition 2. For any symmetric R, projJ (R) = N proj�0

(
NTRN

)
NT and projJ ∗(R) =

R + projJ (−R).

Proof. By definition, projJ (R) is the unique optimal solution of minZ
{
‖R− Z‖2F : Z ∈ J

}
.

By the preceding lemma, this optimization problem can be rewritten as

min
P

{∥∥R−NPNT
∥∥2

F
: P � 0

}
for which the objective function equals

∥∥R−NPNT
∥∥2

F
= R •R− 2R •NPNT +NPNT •NPNT

= R •R− 2NTRN • P + P • P.

Swapping in the constant NTRN •NTRN for R • R, this objective is in turn equivalent to∥∥NTRN − P
∥∥2

F
. In other words, the above optimization is equivalent to

min
P

{∥∥NTRN − P
∥∥2

F
: P � 0

}
,

which has optimal solution proj�0(N
TRN). In total, projJ (R) = N proj�0(N

TRN)NT .

The second statement of the proposition follows from standard convex analysis (Moreau,

1962).

Let k be the number of columns of N . It is then easy to see that projJ (R) requires

O(n2k + k3) = O(n2k) time. In particular, if M has full-row rank, then k = n−m and the

time is O(n2(n − m)). The basic mathematical operations are matrix multiplications and

a projection onto the k × k positive semidefinite cone, which is dominated by the cost of a

single spectral decomposition. In practice, both operations can be peformed using LAPACK

(Anderson et al., 1999).
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2.3 The decomposition algorithm

For notational simplicity, we assume from this point that Y , x, and X are always related by

the equation Y = (Y00, x
T ;x,X).

Starting from its equivalent formulation (6), we rewrite (DNP) as

min
Y

{
C • Y :

xB = diag(XBB), XE = 0, Y00 = 1, Y = Y T , 0 ≤ Y ≤ U

Y ∈ J

}
,

where J is defined in (7). We next introduce an auxiliary variable Z and consider the

auxiliary problem

min
Y,Z

C • Y :

xB = diag(XBB), XE = 0, Y00 = 1, Y = Y T , 0 ≤ Y ≤ U

Z ∈ J
Y = Z

 , (8)

which will be the basis of our decomposition.

The idea of the decomposition is to relax the constraint Y = Z using a multiplier S

and then to apply the standard augmented Lagrangian method. Using duality theory, it

can be shown fairly easily that S ∈ J ∗ holds without loss of generality. We also introduce

the penalty parameter σ > 0 to yield the augmented Lagrangian function L(S,σ)(Y, Z) :=

C • Y − S • (Y − Z) + σ
2
‖Y − Z‖2F and the associated subproblem

min
Y,Z

{
L(S,σ)(Y, Z) :

xB = diag(XBB), XE = 0, Y00 = 1, Y = Y T , 0 ≤ Y ≤ U

Z ∈ J

}
. (9)

After the solution of (9) to calculate (Y, Z), S is updated in the standard way; in this case,

the formulas reads

S ← projJ ∗ (S − σ (Y − Z)) , (10)

where projJ ∗(·) is given by Proposition 2.

We now state the augmented Lagrangian framework as Algorithm 1. Note that a number

of important details have not yet been specified. In particular, in the following subsection,

we discuss our approach for solving the subproblem (9) and for calculating the lower bound

v. In Section 3, we discuss how accurately to solve (9), how the initial penalty parameter σ0

is chosen, the precise strategy for updating σ and v, and the algorithm’s overall termination

criteria.
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Algorithm 1 Augmented Lagrangian method for optimizing (DNP) relaxation of (NQP)
via auxiliary problem (8)

Input: Data (Q, c, A, b, B,E). Derived data (M,N) given by (4) and (5). Initial penalty
parameter σ0 > 0.

Output: Approximate solution Y and valid lower bound v for (DNP).
1: Set (S, σ) = (0, σ0) and v = −∞.
2: for k = 0, 1, 2, . . . do
3: Optimize (9) to obtain (Y, Z).
4: Update S according to (10).
5: Update σ.
6: Update v.
7: If termination criterion met, then STOP.
8: end for

2.4 The subproblem and lower bound

We now discuss in detail how to solve the subproblem (9) within Algorithm 1. We recommend

block coordinate descent over Y and Z. The idea of using block coordinate descent is also

employed in Burer and Vandenbussche (2006a); Povh et al. (2006); Zhao et al. (2008); Wen

et al. (2009).

Let us first examine the subproblem over Y when Z is held constant. Neglecting constant

terms, the optimization is

min
Y

(C − S − σZ) • Y +
σ

2
‖Y ‖2F (11)

s.t. xB = diag(XBB), XE = 0, Y00 = 1, Y = Y T

0 ≤ Y ≤ U,

which immediately decomposes into n(n+1)/2−|B|−|E|−1 one-dimensional strictly convex

subproblems of the form miny{αy + βy2 : 0 ≤ y ≤ µ}, each of which can be solved easily in

constant time.

Neglecting constant terms, the subproblem over Z with Y held constant is

min
Z

{
(S − σY ) • Z +

σ

2
‖Z‖2F : Z ∈ J

}
.

Completing the square and dividing by σ, the objective is ‖(Y − σ−1S)− Z‖2F , and so the

problem is just the projection of Y − σ−1S onto J , i.e., Z = projJ (Y − σ−1S) which can

be calculated by Proposition 2.

To calculate a valid lower bound v on the optimal value of (DNP) given S, we consider

the Lagrangian relaxation of (8), which is just (9) with σ set to 0. This problem is separable

9



over Y and Z. Moreover, by standard convex analysis, the subproblem over Z has optimal

value 0 because S ∈ J ∗. Hence, the problem becomes (11) with σ set to 0, which can be

solved in O(n2) time. In principle, it is possible that the obtained bound is trivial, i.e., equal

to −∞, but when u and U are finite, the bound is guaranteed to be finite.

2.5 Comparison with the Method of Burer-Vandenbussche

In this subsection, we briefly summarize the decomposition method of Burer and Vandenbuss-

che (2006a) for solving lift-and-project semidefinite relaxations of problems such as (NQP).

Our intent is to draw a contrast with our method, which will in turn provide insight into the

computational results of Sections 3 and 4. However, we caution the reader that many of the

details of Burer and Vandenbussche (2006a) are overly simplified for the sake of brevity.

In essence, Burer-Vandenbussche propose to solve (DNP) via the auxiliary formulation

min
Y,Z

C • Y :

MY = 0, xB = diag(XBB), XE = 0, Y00 = 1, 0 ≤ Y ≤ U

Z � 0

Y = Z

 , (12)

which is similar to (8) except that the condition MZMT = 0 implied by Z ∈ J in (8) is

shifted to the equivalent condition MY = 0 in (12); see Proposition 1. Note also that, in

(12), symmetry on Y is not explicitly enforced as it is in (8); instead, it is only enforced

implicitly through the equation Y = Z because Z � 0 is symmetric by definition. Burer-

Vandenbussche then apply decomposition by relaxing the “difficult” constraint Y = Z with

a multiplier S � 0 and then invoking the augmented Lagrangian approach.

After relaxing Y = Z, the constraints of the Burer-Vandenbussche augmented-Lagrangian

subproblem are separable with respect to Y•0, Y•1, . . . , Y•n, and Z since symmetry is not

enforced on Y . This leads Burer-Vandenbussche to solve the augmented Lagrangian sub-

problem using block coordinate descent over Y•0, Y•1, . . . , Y•n, and Z. In this case, each

subproblem over Y•j is a convex QP over essentially the polyhedron {x ≥ 0 : Ax = b}, which

is solved in practice using CPLEX’s pivoting algorithm for convex QP (ILOG, Inc., 2003).

Note that, if symmetry on Y were enforced, then the smaller-sized subproblems over the

columns of Y would not be possible, thus increasing the complexity of Burer-Vandenbussche’s

method. The subproblem over Z is equivalent to the projection of a matrix onto the positive

semidefinite cone, which can be done at the cost of a single spectral decomposition, an O(n3)

operation.

To summarize, we observe that the Y -subproblems of Burer-Vandenbussche are much

more expensive than our Y -subproblem, and their Z-subproblem is slightly more expensive
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than ours.

We also remark that, in reality, Burer-Vandenbussche focused primarily on linear con-

straints of the from Ax ≤ b as opposed to Ax = b, x ≥ 0 as we do in this paper. For them, it

was in some sense just a question of the preferred standard form, and so we are able to tweak

the presentation of their method to Ax = b, x ≥ 0 above. However, our method in Section

2 specifically exploits the structure of Ax = b, x ≥ 0. This makes it appropriate for solving

the doubly nonnegative relaxation (DNP) of the completely positive formulation (CPP) of

(NQP), which itself requires the form Ax = b, x ≥ 0.

3 Computational Results: Doubly Nonnegative Relax-

ation

In this section, we illustrate the performance of Algorithm 1 on instances of (DNP) for the

nonconvex quadratic programs (BoxQP) and (QAP). We also compare with the methods of

Burer and Vandenbussche (2006a) and Zhao et al. (2008). We start by specifying many of

the implementation details of Algorithm 1.

3.1 Implementation details

We have implemented Algorithm 1 for solving (DNP) in Matlab (version 7.6.0.324, R2008a)

on a Linux PC having four 2.4 GHz Intel Core2 Quad CPU processors (with 4,096 KB cache)

and 4 GB RAM. However, all calculations use only one processor. In particular, we have

used the Matlab command maxNumCompThreads(1) to ensure that Matlab makes use of only

one processor.

As is clear from the statement of Algorithm 1 and from Section 2.4, the solution of (11)

and projection onto J are the two key computational subroutines. Note also that the lower

bound calculation and projection onto J ∗ rely on these subroutines. Hence, for efficiency,

we have implemented these in the C programming language and connected them to Matlab

using Matlab’s MEX library.

A fundamental implementation choice for Algorithm 1 is how accurately to solve the

subproblem (11). Consistent with the experience of Burer and Vandenbussche (2006a) and

other augmented-Lagrangian methods for SDP, we find that it pays only to solve these

problems very loosely. In particular, as in Burer-Vandenbussche, we do one loop of block

coordinate over Y and Z.

To save a bit of time, we also do not update the lower bound v every iteration. Instead,

we update it every 25 iterations, which is the same as Burer-Vandenbussche.
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The practical performance of Algorithm 1—indeed, any augmented Lagrangian algorithm—

depends immensely on how σ is initialized and updated throughout the algorithm. We first

discuss our update rule, which we have found to work well in practice after much experimen-

tation. The basic idea is to be more agressive with σ (i.e., increase it more) when the bound

v is converging more quickly (usually near the beginning of the algorithm) and conversely

to be more conservative with σ when v is converging slowly (usually near the end). If v de-

creases, we even allow σ to decrease. The exact rule is as follows. Let v be the current lower

bound associated with the multiplier S, and let v̄ be the maximum lower bound achieved so

far during the course of Algorithm 1. Then update σ as

σ ←
(

1 +
v − v̄
1 + |v̄|

)
σ.

The ratio (v − v̄)/(1 + |v̄|) gives the percentage change in the bound. Adding this ratio

to 1 gives the muliplicative factor for σ (usually above 1, but sometimes below). Very

occasionally, it happens that the bound v deteriorates dramatically relative to v̄, so much so

that the ratio is nonpositive, making the update rule nonsensical. As a safeguard in these

cases, we do not update σ and instead solve subsequent subproblems more accurately, i.e.,

more than one loop of block coordinate descent, until a sensible update to σ is realized. Note

that σ is updated as often as v is updated, i.e., every 25 iterations in our implementation.

In the best case, an update rule for σ could identify the optimal σ during the course of

the algorithm even with a poor choice of σ0. Unfortunately, our update rule is not perfect: it

is sensitive to the initial penalty parameter σ0. Despite many attempts, we have been unable

to establish a single rule or strategy for setting σ0 that works well for all problem instances.

(Such a strategy is an important area for further investigation.) Instead, we calibrate and

choose σ0 for each problem class. Specifically, in Section 3.2 below, we set σ0 := maxij |Cij|
for (BoxQP), while in Section 3.3 we set σ0 := 1 for (QAP).

Finally, we terminate the augmented Lagrangian algorithm if either: (i) the average

relative change of v over the last 5 updates goes below 10−5; or (ii) the number of iterations

exceeds 6,000. Burer-Vandenbussche use similar stopping criteria.

3.2 Box-constrained nonconvex quadratic programs

We solve the doubly nonnegative relaxation (DNP) for 99 random instances of (BoxQP) with

sizes ranging from p = 20 to p = 125. Note that, in this case, to put (BoxQP) in the form

of (NQP), one must add slack variables. In particular, the number of variables in (NQP) is

n = 2p. We also have m = p and B = E = ∅. Moreover, we have implied bounds u = e,
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which gives U = eeT .

The 99 instances come from the following sources: (i) 54 instances with sizes 20 ≤ p ≤ 60

generated by Vandenbussche and Nemhauser (2005); (ii) 36 instances with sizes 70 ≤ p ≤ 100

generated by Burer and Vandenbussche (2009); and (iii) 9 instances with p = 125 generated

for this paper. The instances with p ≥ 70 have been generated in the same way as the smallest

54 instances, i.e., for varying densities of Q, nonzeros of (Q, c) are uniformly generated

integers in [−50, 50].

We compare Algorithm 1 with the method of Burer-Vandenbussche. Although we have

not summarized all the details of their algorithm, we remark that the two methods are

directly comparable in that they both solve and produce lower bounds on (DNP). The basic

question we ask is: which method produces better bounds more quickly?

To make a fair comparison, we control for the lower bounds obtained and adopt the

following definition of algorithm run time on a particular instance:

Let vA1 be the best (maximum) lower bound obtained by Algorithm 1 on a

particular instance, and let vBV be the best lower bound obtained by Burer-

Vandenbussche. Define v̂ := min{vA1, vBV }. In particular, both methods have

achieved the lower bound v̂ on that instance. Then, by definition, the run time

of Algorithm 1 is the time when it first reaches the bound v̂, and similarly the

run time for Burer-Vandenbussche is the time when it first reaches v̂.

With this definition of run time, we summarize our tests in Figure 1, which is a log-log

scatter plot of the run times of Burer-Vandenbussche versus the run times of Algorithm 1

on the 99 instances. All times are in seconds. For reference, the lines y = x and y = 10x are

plotted as well.

Figure 1 clearly shows that Algorithm 1 outperforms Burer-Vandenbussche, achieving

the same lower bound in much less time (often more than 10 times faster). On average,

Algorithm 1 is 10.21 times faster.

We mention one additional statistic. Over all 99 instances, the average time per augmented-

Lagrangian iteration for Algorithm 1 is 0.0058 seconds, while the same measurement for

Burer-Vandenbussche is 0.0393 seconds. In other words, Algorithm 1 is about 7 times

faster than Burer-Vandenbussche per iteration. Since the two algorithms both follow the

augmented-Lagrangian framework with similar implementation choices (see Section ??) and

hence seem to converge at roughly the same rate, this difference in time-per-iteration explains

Figure 1 to a large degree.
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Figure 1: Comparison of Algorithm 1 and Burer-Vandenbussche for solving the (DNP) re-
laxation of 99 instances of (BoxQP). Each axis is algorithm run time (in seconds) plotted
on a logarithmic scale. The lines y = x and y = 10x are plotted for reference.

3.3 The quadratic assignment problem

We solve the relaxation (DNP) for 92 instances of (QAP), which are all of the instances from

QAPLIB (Burkard et al., 1991) having p ≤ 36 (see the QAPLIB website). When (QAP) is

put into the form (NQP), we have n = p2, m = 2p, and B = [n]. Moreover, we have the

implied bounds u = e and U = eeT . We also enforce the so-called gangster operator (Zhao

et al., 1998), which are complementarities in a set E of size O(n3).

Different polyhedral-semidefinite relaxations for the QAP have been investigated in the

literature, and several of them have been shown to be equivalent. In particular, the lift-and-

project relaxation solved by Burer and Vandenbussche (2006a) is equivalent to the copositive

one solved by Zhao et al. (2008); see Povh and Rendl (2006). In its derivation—lifting from

the original space of vec(X) to the quadratic space of vec(X)vec(X)T—our relaxation is

quite similar to Burer-Vandenbussche, and we believe, but have not rigorously proved, that

the two are equivalent. If this is indeed the case, then all three algorithms produce bounds

for the QAP that are directly comparable.

We also mention here that, although not employed in this paper, de Klerk and Sotirov

(2010) have devised a pre-processing technique to reduce the size of the SDP relaxation of the

QAP. Their method works particularly well when an instance possesses inherent symmetry.

Such is the case with relaxations of the esc instances of QAPLIB, which can be solved in

a couple of minutes after pre-processing. The size reduction also benefits the numerical
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Figure 2: Comparison of Algorithm 1 and Burer-Vandenbussche for solving the (DNP) re-
laxation of 92 instances of (QAP). Each axis is algorithm run time (in seconds) plotted on
a logarithmic scale. The lines y = x and y = 10x are plotted for reference.

accuracy of the algorithms, and as a result some best known lower bounds can be obtained

by their method, e.g., for instance esc32h.

Figure 2 reports the results of Algorithm 1 and Burer-Vandenbussche; the figure is setup

exactly as Figure 1 of the previous subsection. On the vast majority of instances, Algorithm

1 computes the same bound more quickly than Burer-Vandenbussche; overall, Algorithm 1

is 4.83 times faster on average.

We also plot in Figure 3 the following time-per-iteration ratio for each of the 92 instances

versus the problem size p:

time-per-iteration ratio :=
Algorithm 1 average time per iteration

Burer-Vandenbussche average time per iteration

:=
Algorithm 1 time

number of iterations

Burer-Vandenbussche time
number of iterations

,

where both the time and the number of iterations are defined with respect to the bound v̂

obtained by both methods (see previous subsection for the definition of v̂).

Figure 3 shows that Algorithm 1 spends significantly less per iteration than Burer-

Vandenbussche, which accounts to a large degree for the overall results in Figure 2. However,

Figure 3 shows an upward trend as p increases. This indicates that, as p gets larger, the

relative difference in performance between the two algorithms will grow smaller. This trend
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Figure 3: Comparison of the time-per-iteration ratio between Algorithm 1 and Burer-
Vandenbussche versus the size p when solving the (DNP) relaxation of 92 instances of (QAP).
A ratio less than 1 indicates that Algorithm 1 requires less time per iteration than Burer-
Vandenbussche on that instance.

is due to the fact that, for larger p, each iteration in either algorithm is dominated by the

O(p6) projection of a p2 × p2 matrix onto a positive semidefinite cone. This is a bottleneck

for both methods.

Finally, Figure 4 is the same as Figure 2 except that Algorithm 1 is compared with the

method of Zhao et al. (2008). The method of Jansson et al. (2007/08) was incorporated

within the execution of Zhao-Sun-Toh to compute valid lower bounds; this modification did

not significantly increase the run times for Zhao-Sun-Toh. Overall, the figure shows that

Algorithm 1 performs better than Zhao-Sun-Toh on most problems; on average, Algorithm

1 is 2.94 times faster.

Since (QAP) is a particularly well studied problem, in the online Appendix2 we catalog

in detail the performance of the three algorithms on the 92 instances. In particular, we point

out that Algorithm 1 achieves the best known lower bound for the instance tai35b according

to the QAPLIB website (visited on November 2, 2009). Also, Zhao-Sun-Toh obtains the best

known lower bound on tai30b.

2Available at the website http://dollar.biz.uiowa.edu/~sburer.
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Figure 4: Comparison of Algorithm 1 and Zhao-Sun-Toh for solving the (DNP) relaxation of
92 instances of (QAP). Each axis is algorithm run time (in seconds) plotted on a logarithmic
scale. The lines y = x and y = 10x are plotted for reference.

4 Computational Results: Branch-and-Bound

Consider a branch-and-bound method where each node has a relaxation of the type (DNP)

so that Algorithm 1 may be applied. By and large, incorporating Algorithm 1 into branch-

and-bound is straightforward. The main modifications we make relate to warm-starting the

augmented Lagrangian algorithm at the current node using information from the parent

node.

In particular, we save the last multiplier S from the parent node and modify it in a

problem-dependent way to initialize the S at the current node. By “problem-dependent,”

we mean, for example, padding S by an extra row and column of zeros when a new row

and column are introduced into the Y of the parent’s relaxation to form the Y of the child’s

relaxation.

We also save the final penalty parameter σ of the parent and initialize σ0 :=
√
σ for the

child. The reason for the square root is experimental. We tried setting σ0 equal to σ, but

found that the penalty parameters became too large deep in the tree when the multipliers S

were becoming closer and closer to optimal. Hence, we devised the update
√
σ to gradually

lower the penalty parameter to more reasonable levels deeper in the tree.

Finally, we also impose a 1000-iteration limit on Algorithm 1 at each node of the

branch-and-bound tree. In the next subsection, the branch-and-bound algorithm of Burer-
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Vandenbussche is run with the same 1000-iteration limit.

4.1 Box-constrained nonconvex quadratic programs

As discussed in the Introduction, Burer and Vandenbussche (2009) have used their aug-

mented Lagrangian method along with the lower bounds it produces to solve instances of

(BoxQP) globally. We replicate the exact same branch-and-bound algorithm, e.g., same

branching rule, node-selection rule, fathoming tolerance, primal heuristic, etc. The only

change we make is to use Algorithm 1 in place of their augmented Lagrangian method for

solving the relaxation at each node. While it is certainly possible that numerical differences

in the relaxations can result in different branch-and-bound trees, we anticipate that any

overall differences in run times will be due mainly to differences between Algorithm 1 and

Burer-Vandenbussche.

In the interest of space, we do not give all details of the branch-and-bound algorithm;

please see Burer and Vandenbussche (2009) for the full description. However, we indicate

the structure of (DNP) at any node in the tree. A node is based on the original formulation

(BoxQP) with a finite list of additional “optimality cuts” (say, aTx ≤ β) and variable fixings

(xj = 0 or xj = 1). To form (DNP), we add slacks to aTx ≤ β and x ≤ e to bring the

problem into the form of (NQP). In fact, associated with the slack on aTx ≤ β, we calculate

its implied upper bound µ, and then add the scaled-slack equation aTx + µ s = β with

0 ≤ s ≤ 1. We found this resulted in more numerically stable relaxations. We handle the

variable fixings by setting their lower and upper bounds equal to one another and then carry

the bounds and variables throughout the calculations. Another alternative would have been

just to eliminate the variables, but our approach involves only a small overhead and yet

keeps our data structures consistent and more transparent from node to node.

We globally solve the same 99 (BoxQP) instances from Section 3.2 and compare overall

timings in Figure 5. This figure is setup just as Figures 1 and 2 in Section 3 and clearly

shows that the advantage of Algorithm 1 seen in Figure 1 transfers well to the context of

branch-and-bound. For example, for all problems that took Algorithm 1 1,000 seconds or

more, the same problems took Burer-Vandenbussche at least ten times as long. Overall,

Algorithm 1 is 11.28 times faster on average. For the 9 largest problems of size p = 125,

Algorithm 1 is 20.50 times faster.

To date the method of Burer-Vandenbussche has been the most efficient for globally solv-

ing (BoxQP). In particular, off-the-shelf solvers such as BARON (Sahinidis, 1996) have been

outperformed by a specialized LP-based branch-and-cut algorithm due to Vandenbussche

and Nemhauser (2005), and Burer and Vandenbussche (2006b) present their method, which
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Figure 5: Comparison of Algorithm 1 and Burer-Vandenbussche for globally solving 99
instances of (BoxQP). Each axis is algorithm run time (in seconds) plotted on a logarithmic
scale. The lines y = x and y = 10x are plotted for reference.

outperforms the branch-and-cut method. Our experiments here show convincingly that Al-

gorithm 1 outperforms Burer-Vandenbussche and hence is a state-of-the-art algorithm for

globally solving nonconvex box-constrained quadratic programs.

4.2 The quadratic multiple knapsack problem

The binary quadratic (single) knapsack problem minx{xTQx+ 2 cTx : aTx ≤ β, x ∈ {0, 1}p}
is a generalization of the standard 0-1 knapsack problem and has been well studied in the

last few years; see Pisinger (2007) for a recent survey. Specialized methods for solving the

quadratic knapsack problem have been presented in Caprara et al. (1999) and Pisinger et al.

(2007). These methods can solve random instances of size p ≈ 1, 500 in a few thousand

seconds on a modern PC. A semidefinite cutting plane approach is presented in Helmberg

et al. (2000) for p ≈ 50.

Pisinger et al. (2007) discuss a scheme for generating random (Q, c, a, β), which has

become standard in the literature. In particular, a > 0 and β > 0 so that the problem is

feasible (with x = 0). Also, one typically takes c = 0.

We generated several random instances and put them in the following “extended” form

19



matching (NQP):

min
x

xTQx+ 2 cTx

s.t. aTx+ βs = β, x+ y = e

(x, y) ∈ {0, 1}2p, s ≥ 0

xjyj = 0 ∀ j = 1, . . . , p.

Note that all variables, including the slack s, have an implied upper bound of 1. The extended

form is used in order to strengthen the resulting (DNP) relaxation as much as possible.

We then implemented a straightforward branch-and-bound algorithm based on calculating

bounds from (DNP) via Algorithm 1 and branching on the most fractional variables. To

generate primal solutions, we take the x from (DNP), round it to a binary vector, and then

greedily remove items from the knapsack until x becomes feasible. This is the simplest primal

heuristic presented in Pisinger et al. (2007). Though our method was successful for p ≈ 50,

it was not competitive with the specialized method of Pisinger et al. (2007).

On the other hand, our method does not exploit the structure of the quadratic knapsack

problem to the extent that the specialized methods do. For example, the lower bounds cal-

culated in Pisinger et al. (2007) rely on a linear programming relaxation, which decomposes

into n continuous linear knapsack problems that are extremely quick to solve. It is not

clear how additional constraints would affect these methods. In addition, these methods can

reduce the overall size of a problem using clever reduction techniques.

With these observations, we hypothesize that our method generalizes well in the pres-

ence of additional linear inequality constraints, which is a natural concern beyond a single

constraint or knapsack. So we consider the binary quadratic multiple knapsack problem

minx{xTQx + 2 cTx : Ax ≤ b, x ∈ {0, 1}p}. Let q be the number of knapsacks, i.e., the

number of rows of A. In particular, in order to ensure that the problem is feasible, we

generate instances with each row of Ax ≤ b a single knapsack aTx ≤ β with a > 0 and

β > 0. There does not seem to be much work on globally optimizing the quadratic multiple

knapsack problem; a heuristic is presented in Sarac and Sipahioglu (2007).

We implemented a simple branch-and-bound algorithm just as we did for the single-

knapsack case and ran the following experiments: for each of the values p = 10, 20, 30, 40, 50,

solve 50 random instances with 5 knapsacks (i.e., q = 5) and report the average and standard

deviation of the solution times; repeat with q = dp/2e for each p. For completeness, we also

ran q = 1 for each p (i.e., the single knapsack case). The results of these experiments are

shown in Table 1.

Overall, we believe that Table 1 shows a reasonable pattern for increasing q: irrespective
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p q = 1 q = 5 q = dp
2
e

10 3.2 (2.1) 3.3 (2.9) 3.4 (4.1)
20 18.3 (22.4) 33.2 (32.3) 29.9 (26.2)
30 104.5 (212.3) 206.8 (678.0) 78.6 (61.0)
40 930.1 (3204.4) 329.3 (394.3) 303.7 (344.2)
50 1048.8 (5180.6) 476.1 (867.5) 812.8 (1273.4)

Table 1: Average time (in seconds) and standard deviation in parentheses for globally solv-
ing 50 instances of the quadratic multiple knapsack problem for various combinations of p
(number of variables) and q (number of knapsack constraints).

of q, one can solve instances of the quadratic multiple knapsack problem having a few tens

of variables in a reasonable amount of time (say, in about 20 minutes on average). This is a

reflection of the strength of (DNP) and the speed of Algorithm 1 to solve it. We anticipate

that these results could be improved, for example, with more intelligent branching strategies

and/or primal heuristics.

5 Future Extension

It would be interesting to generalize Algorithm 1 to arbitrary linear conic programs, where

the convex cone of interest is D, the set of doubly nonnegative matrices. In principle, this

paper’s decomposition approach involving the auxiliary variable Z and the equation Y = Z

could become the basis of just such an algorithm, but the following key issue would need to be

addressed: should the arbitrary linear constraints be grouped into the Y subproblem or the

Z subproblem, or divided between the subproblems in some intelligent manner? Whatever

the choice, one would require that the Y and Z subproblems remain quick and easy to solve

(as in this paper) in order to ensure overall efficiency of the decomposition method.
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